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Space-time-resolved capillary wave turbulence
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We report experiments on the full space- and time-resolved statistics of capillary wave turbulence at the
air-water interface. The three-dimensional shape of the free interface is measured as a function of time by using
the optical method of diffusing light photography associated with a fast camera. Linear and nonlinear dispersion
relations are extracted from the spatiotemporal power spectrum of wave amplitude. When wave turbulence regime
is reached, we observe power-law spectra both in frequency and in wave number whose exponents are found
to agree with the predictions of capillary wave turbulence theory. Finally, the temporal dynamics of the spatial
energy spectrum highlight the occurrence of stochastic bursts transferring wave energy through the spatial scales.
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I. INTRODUCTION

Wave turbulence concerns the study of the statistical prop-
erties of a set of numerous waves in nonlinear interaction. For
sufficiently strong interactions, a turbulent cascade transfers
wave energy from an injection scale towards a dissipation
scale. This phenomenon is analytically described in a weakly
nonlinear regime by the weak turbulence theory. Analytical
expressions of the wave spectrum as a scale power law are then
derived in out-of-equilibrium situations in nearly all fields of
physics involving waves (for reviews, see Refs. [1,2]). Several
recent studies have tested the relevance of wave turbulence
theory in well-controlled laboratory experiments, notably for
bending waves in elastic plates [3] and for hydrodynamic
waves on the surface of a fluid in the gravity and capillary
regimes (for a review, see Ref. [4]). Most in situ or laboratory
measurements on wave turbulence involve time signals at a
fixed location and show partial agreement with the theory.
Spatiotemporal measurements of the turbulent wave amplitude
are thus needed to investigate basic mechanisms of wave
turbulence. For gravity wave turbulence, laboratory experi-
ments involve measurements resolved in time and restricted to
one-dimensional (1D) space [5] or simultaneously resolved in
time and two-dimensional (2D) space [6,7]. For the capillary
regime, most of previous laboratory works have tried to isolate
capillary wave turbulence from the gravity wave regime by
using parametric forcing [8–13], operating under microgravity
[14], or studying waves at the interface between two fluids of
same density [15].

To our knowledge, there is no experiment studying cap-
illary wave turbulence with a wave amplitude measurement
simultaneously resolved in time and 2D space. As a con-
sequence, linear and nonlinear dispersion relations have not
been measured for capillary waves in a turbulent regime.
Accurate characterization of capillary wave turbulence is
of prime interest at fundamental level. According to weak
turbulence theory, energy transfer through the scales occurs
by three-wave interactions, instead of four-wave interactions
for gravity wave turbulence. Therefore, capillary and gravity
wave turbulence differ fundamentally. Moreover, the validity
domain of wave turbulence theory for capillary waves in
experiments remains an open question, due to restrictive
hypotheses of the theory (infinite isotropic and homogeneous
system, weak nonlinearity, etc.). In particular for scales smaller

than or equal to the capillary length, viscous damping of waves
is not negligible [16], whereas theory relies on an Hamiltonian
structure of the wave fields. Moreover, in oceanography,
capillary waves dynamics could control heat and gaseous
exchanges between ocean and atmosphere and contribute to
the overall dissipation of gravity waves.

In this paper, we report full space- and time-resolved exper-
iments on the statistics of capillary wave turbulence generated
by gravity waves, a forcing close to the oceanographic case.
The free-surface elevation is directly measured by a sensitive
optical method known as the diffusing light photography
(DLP) [8,9]. This technique has a better spatial resolution and
a higher sensitivity than the Fourier transform profilometry (an
optical technique generally used to study wave turbulence at
the gravity wave scales [6,7]) and is not limited to small wave
steepness, in contrast to other optical methods measuring the
local wave slope [17,18]. The DLP method was introduced
more than 15 years ago to study capillary wave turbulence
excited parametrically [8] and was able to get a 2D spatial
measurement of the free surface amplitude but only at a
given time (a CCD sensor recording only a photograph of the
free surface). In our work, by associating the DLP technique
with a modern fast camera, we present the 2D spatial and
temporal statistics of capillary wave turbulence excited by
gravity waves. Note that recently, dynamics of highly nonlinear
Faraday waves were studied using the DLP technique with
a fast camera, but wave turbulence regimes have not been
investigated [19].

II. EXPERIMENTAL SETUP

The experimental setup is displayed in Fig. 1(a). A
Plexiglass tank (165 × 165 mm2) is filled with a diffusing
liquid (1 L of distilled water with 8 mL of intralipid 20%)
up to height h0 = 30 mm. Intralipid 20% (Fresenius KabiTM)
is a commercial lipidic emulsion of microspheres, whose
aqueous solutions are used as model diffusing media with
characterized optical properties [20]. Low dilution does not
significantly modify the fluid viscosity and density from
the pure water values (ν = 10−6 m/s2 and ρ = 1000 kg/m3,
respectively). The value of surface tension γ is obtained
from the spatiotemporal measurements and is found to be
γ = 60 mN/m (see below). The transition between gravity
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FIG. 1. (Color online) (a) Experimental setup (see text). (b)
Snapshot of the wave field h(x,y). Random forcing between 4
and 6 Hz. σh = 3.4 mm and σs = 0.30 (see text). Color scale is in
millimeters. Wave maker is parallel to the y axis and located at
x = −12 mm. (c) Snapshot of the spatial gradient of wave elevation
||∇h(x,y)||. Same parameters.

and capillary waves is expected to occur for a critical
wave number kc = √

ρ g/γ , which corresponds to a critical
frequency, fc ≈ 14 Hz. Surface waves are generated by the
horizontal motion of a rectangular paddle (130 mm in width
and 13 mm in immersed depth) driven by an electromagnetic
shaker (LDS V406) subjected to a random forcing (in phase
and amplitude) bandpass filtered in frequency between 4 and
6 Hz. By enhancing the initial mixing of waves, this type
of forcing is known to produce cascades of gravitocapillary
wave turbulence in laboratory experiments [6,7,21]. A LED
device Phlox (100 × 100 mm2) ensures homogeneous lighting
below the transparent tank. A fast camera (PCO EDGE), 1 m
above, is focused on the liquid free surface and records with
1024 × 1120 pixels and a 200-Hz frame rate on an observation
area S of 89 × 96 mm2. Complementary measurements are
also performed using a faster camera (Phantom V9) with a
1-kHz frame rate but with lower sensitivity and a limited
number of images. For comparison, the wave amplitude at
some location is also recorded by a capacitive wave gauge
lying outside the camera field.

Typical 2D spatiotemporal wave elevation is measured as
follows. If the free mean path of light within the liquid is
smaller than the depth of the fluid and larger than the wave
amplitude, light going through the diffusing liquid is no more
propagating like a ray, due to the scattering on micrometric
particles. As a result, focusing of rays producing caustics
should disappear [9]. If the free mean path is also larger than
the wave amplitude, the light amplitude I (x,y) recorded by
the camera on the free surface is controlled by the local depth
of fluid h(x,y) [9]. After static calibration on a flat surface, we
find in agreement with Xia et al. [19], an exponential decay of

light amplitude with the local elevation

I (x,y) = I0(x,y) exp[−h(x,y)/L∗], (1)

I0 being the light amplitude for h = h0, and L∗ � 25 mm, a
typical distance of order of the free mean path of light within
the liquid. If L∗ is not too small compared to the fluid depth
h0 = 30 mm, the multiple diffusion regime is not reached,
which guarantees the locality of the measurement and implies
an exponential decay of light through the fluid [22]. The
reconstruction of the free-surface topography h(x,y,t) is then
performed at each time step using Eq. (1). Note that images
are spatially filtered with a Gaussian kernel of 5 pixels (due to
the camera photon shot noise), leading to a spatial resolution
of roughly 0.5 mm. An example of free-surface reconstruction
is shown in Fig. 1(b). Gravity waves mainly propagate in the
direction of wave-maker vibrations. The corresponding spatial
gradient of wave elevation ||∇h||, or wave steepness, is also
shown in Fig. 1(c). Movies of h(x,y,t) and ||∇h||(x,y,t) are
also shown in Ref. [23]. Although the wave field is found
to be inhomogeneous and anisotropic, capillary waves will be
found in a wave turbulence regime (see below). The full space-
and time-resolved power spectrum of wave elevation Sh(ω,k)
is computed from the set of free-surface images h(x,y,t) by
performing successively a two-dimensional Fourier transform
in space and a Fourier transform in time and then integrating
over the different directions of k. This operation is performed
on 8192 (respectively 4196) images corresponding to a dura-
tion of 41 s (respectively 4.2 s) for the 200-fps (respectively
1000-fps) camera. Two important parameters are the typical
rms wave amplitude

σh ≡
〈√

1

S

∫
S

h2(x,y,t)dxdy −
(

1

S

∫
S

h(x,y,t)dxdy

)2〉

and the typical rms wave steepness

σs ≡
〈√

1

S

∫
S

||∇h(x,y,t)||2dxdy −
(

1

S

∫
S

||∇h||dxdy

)2〉
,

where 〈·〉 denotes a temporal averaging and
∫
S a spatial

integration on the surface S.

III. LINEAR AND NONLINEAR DISPERSION RELATIONS

Let us first focus on the linear and nonlinear dispersion
relation of capillary waves. For a random or a purely sinusoidal
forcing at weak amplitude, the wave field should follow the
linear gravity-capillary dispersion relation. In order to test this
assumption, spatiotemporal power spectrum of wave elevation
Sh(ω,k) is displayed in Fig. 2 for a sinusoidal forcing with an
excitation frequency of 40 Hz. The maxima (black crosses)
of the spectrum Sh(ω,k) give the experimental dispersion
relation corresponding to the localization of wave energy in
the (ω ≡ 2πf,k ≡ 2π/λ) space. λ is the wavelength and f is
the frequency of waves. The experimental dispersion relation
can be accurately fitted by the linear dispersion relation where
the surface tension γ is the only free parameter:

ω2 = [g k2 + (γ /ρ) k3] tanh(k h0), (2)

with g = 9.81 m/s2 being the gravity acceleration and ρ =
1000 kg/m3 the fluid density. We find γfit = 59.6 mN/m and

033003-2



SPACE-TIME-RESOLVED CAPILLARY WAVE TURBULENCE PHYSICAL REVIEW E 87, 033003 (2013)

f (Hz)

λ −
1  (

m
m

 −
1 )

20 40 60 80 100

0.1

0.2

0.3

0.4

−7 −6 −5 −4 −3 −2 −1

FIG. 2. (Color online) Spatiotemporal spectrum of wave elevation
Sh(ω,k) in sinusoidal forcing with an excitation frequency of
40 Hz. Amplitude σh = 0.22 mm and σs = 0.16. (+) Experimental
dispersion relation extracted from the maxima of Sh(ω,k). Red (dark
gray) dashed line: linear theoretical dispersion relation. Color scale
corresponds to log10[Sh(ω,k)]. Camera frame rate: 200 Hz.

then we consider γ to be equal to 60 mN/m. Note that such
a linear dispersion relation is observable, simultaneously at
all scales, for sufficiently strong forcing amplitude where
nonlinearity spreads energy continuously in the (ω,k) space.
Moreover, harmonic and subharmonic peaks are still visible
(e.g., at f = 20 Hz due to cross-wave instability [24]), and the
wave turbulence regime is thus not reached.

At higher amplitudes of sinusoidal or random forcing, a
departure from the linear dispersion relation is observed in
particular in wave turbulence regimes as depicted in Fig. 3(a)
for a moderate amplitude and in Fig. 3(b) for a stronger
amplitude. The curve of the maxima of the spectrum (black
crosses) differs significantly from the linear dispersion relation
(red or dark gray dashed line). These discrepancy is found
to increase with the forcing amplitude and thus suggests a
possible nonlinear shift of the dispersion relation. Indeed,
dispersion relation of sinusoidal waves of high amplitude
are theoretically known to experience a nonlinear shift in
the gravity (Stokes waves) [25] and capillary regimes [26].
Although such a nonlinear shift is not predicted for nonlinear
interacting waves with a continuous spectrum, an estimated
nonlinear dispersion relation

ω2 =
(

gk[1 + (ak)2] + γ

ρ
k3

[
1 +

(
ak

4

)2]−1/4)
tanh(kh0)

is also plotted in Fig. 3 (white dot-dashed line), with a being
the wave amplitude assumed to be equal to σh. The first term on
the right-hand side of the equation (nonlinear gravity wave)
dominates at low wave numbers and leads to a theoretical
nonlinear dispersion relation below the linear one in the (ω,k)
space. Experimental results follow a similar trend and suggest
that nonlinear effects (appearance of Stokes waves) are the
cause of the observed shift of the dispersion relation. Note that
bound waves are not observed here, in contrast to larger size
experiments studying the gravity wave turbulence regime [6].

Directional properties of the wave field are now investigated
by plotting Sh(ω,kx,ky) as a function of λx

−1 and λy
−1 for fixed

f = ω/(2π ) as in Fig. 4. Because the direction of the wave
forcing is along the x axis, we observe a strong anisotropy
of the wave field. This anisotropy is conserved regardless of
the frequency scales inside the capillary waves range (see at
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FIG. 3. (Color online) (a) Spatiotemporal spectrum of wave
elevation Sh(ω,k) for two different random forcing amplitudes:
(a) σh = 2.7 mm and σs = 0.26. (b) σh = 3.6 mm and σs = 0.34.
(+) Experimental dispersion relation extracted from the maxima of
Sh(ω,k). Red (dark gray) dashed line: linear theoretical dispersion
relation. White dot-dashed line: theoretical dispersion relation with a
nonlinear shift (see text). Color scales correspond to log10[Sh(ω,k)].
Camera frame rates: (a) 1 kHz and (b) 200 Hz.

f = 20, 40, or 80 Hz). Capillary waves appear preferentially
along the same direction as the long waves from which they
originate by nonlinear interactions. Due to the geometry of our
experimental device and to the viscous dissipation, the wave
field appears also inhomogeneous. The spatial inhomogeneity
of the wave field can be estimated by taking the square root
of the temporal average of h2(x,y,t) and then computing the
spatial standard deviation. We found in our experiments a
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FIG. 4. (Color online) Spectrum Sh(ω,λx
−1,λy

−1) for fixed f =
10, 20, 40, and 80 Hz (log10 color scale) showing anisotropy of wave
field at high forcing amplitude (σh = 3.6 mm and σs = 0.34). Dashed
black circle: Linear dispersion relation of Eq. (2). Wave amplitudes
are larger in the direction of forcing (x axis), revealing anisotropy in
all frequency ranges.
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spatial inhomogeneity of order of 24%, without significant
changes with the wave amplitude.

IV. TEMPORAL AND SPATIAL SPECTRA OF
WAVE ELEVATION

We next investigate the scaling of the spectrum with the
spatial and temporal scales. Theoretically, the spectrum of
capillary wave turbulence is predicted to scale as S theo

h (ω) ∼
ω−17/6 and as S theo

h (k) ∼ k−15/4 [27,28]. Experimentally, the
temporal spectrum of wave elevation Sh(ω) is obtained by
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FIG. 5. (Color online) (a) Temporal power spectra Sh(ω) for
different forcing amplitudes. From bottom to top: σh = 1.3, 2.7,
2.1, 3.4, and 3.6 mm, and σs = 0.15, 0.26, 0.19, 0.3, and 0.34.
Solid black line is the capillary prediction f −17/6. The second
measurement is recorded with a 1-kHz frame rate; the other ones
are recorded at 200 Hz. (b) Inset: Sh(ω) exponents vs σh (fits from
20 � f � 100 Hz). Dashed line shows the theoretical value −17/6.
(c) Spatial power spectra Sh(k) for the same measurements. Solid
black line is the capillary prediction k−15/4. (d) Inset: Sh(k) exponents
vs σh (fits from 0.094 � λ−1 � 0.30 mm−1). Dashed line shows the
theoretical value −15/4. λd is a characteristic scale of dissipation.
λc is the gravity-capillary crossover and λ−1

	 = 0.094 mm−1 (see Fig
6). (e) Spatial spectrum of the energy E(k) (•). Contributions of
gravitational Egrav ∼ Sh(k) and capillary Ecap ∼ k2Sh(k) energies are
well separated. The solid black line is the prediction for the capillary
energy spectrum ∼k−7/4. σh = 3.6 mm and σs = 0.34.

averaging Sh(ω,k) over k as shown in Fig. 5(a) for different
forcing amplitudes. When the forcing amplitude is increased,
the peaks related to the forcing frequencies and their harmonics
progressively disappear on the spectra, and a power-law
spectrum is observed in the capillary regime on one decade
in frequency (20 � f � 200 Hz). No self-similar regime is
observed in the gravity range due to the small size of the tank.
Exponents from frequency power-law fits of spectra in the
capillary range are plotted in Fig. 5(b) as a function of the
rms wave amplitude, σh. These spectral exponents are in good
agreement with the predicted exponent f −17/6 at sufficiently
high wave amplitude. Note that the signal (recorded with the
highest frame rate) reaches noise level around 200 Hz before
reaching the dissipative range. These results are confirmed by
simultaneous measurements provided by a capacitive wave
gauge, which was used extensively in previous studies of
capillary wave turbulence [4,21].

The spatial spectrum Sh(k) is obtained by averaging Sh(ω,k)
over the frequencies f and is shown in Fig. 5(c) for different
forcing amplitudes. For sufficiently high wave amplitude, a
power-law spectrum is also observed in the capillary range.
Exponents from wave number power-law fits of spectra in the
capillary range are plotted in Fig. 5(d) and are close to the
weak turbulence prediction in k−15/4. Finally, note that the
departure from the theoretical power law at small scales is
observed in Fig. 5(c) at λd

−1. λd
−1 is found to increase with

an increasing forcing amplitude. This suggests that λd
−1 arises

from the balance between viscous dissipation and nonlinear
interactions [16,27]. Moreover, for the highest forcing ampli-
tude, λd

−1 = 0.48 mm−1, which corresponds to fd ∼ 200 Hz.
For λ−1 � λd

−1, self-similarity is broken and the spectrum
departs from the power law. Although some strong hypotheses
of weak turbulence (notably homogeneous, isotropic, and
infinite system) are not verified in our experimental system,
correct agreement is found for both the temporal and spatial
scalings of the capillary wave spectrum.

V. STATISTICS OF ENERGY MODES

We now use the energetic point of view to better probe
the statistics of capillary wave turbulence. Assuming that,
in average on a wave period, there is equality between the
kinetic and potential energies at each scale, the total wave
energy at one scale should thus be proportional to the potential
energy at this scale. Therefore, neglecting nonlinear surface
deformations, one can compute the total potential energy of
the wave field as

Epot ∼
∫

[ρg|h̃(k)|2 + γ k2|h̃(k)|2]dk ∼
∫

E(k)dk.

From the spatial power spectrum Sh(k) ∼ |h̃(k)|2 (h̃ denotes
the Fourier transform of h), one can thus easily deduce
the energy spectrum E(k) that is depicted in Fig. 5(e). The
separation of the respective contribution of the gravity energy
and of the capillary energy appears clearly. Moreover, in
the capillary range, E(k) follows the predicted spectrum of
weak turbulence for the energy ∼k−7/4, confirming the above
results.

The spatial power spectrum Sh(k) is now computed at each
time step from the wave field h(x,y,t). We thus obtain the
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temporal evolution of wave energy spectrum E(k,t) as shown
in Fig. 6(a). An important result is that E(k,t) exhibits
stochastic bursts transferring energy towards small spatial
scales. Indeed, most of the time, the wave energy is confined
near the forcing scales, but from time to time, energy cascades
through all spatial scales (within the inertial capillary range).
Moreover, at a given spatial scale k	, i.e., a horizontal slice in
Fig. 6(a), E(k	,t) is found to be strongly erratic and bursts of
random large-amplitude occur as for gravity wave turbulence
[6]. The probability density function (PDF) of E(k	,t) of a
mode k	 is shown in Fig. 6(b) for two forcing amplitudes. For
a moderate forcing, the PDF roughly follows an exponential
distribution as expected for a Gaussian wave field [2]. At

higher forcing, a departure from the exponential distribution
becomes significant, likely revealing a stochastic nonlinear
phenomenon as described theoretically [29]. The PDF shape
does not depend significantly on the scale k	 within the inertial
range of the capillary cascade.

VI. CONCLUSION

We have reported experiments on statistics of capillary
wave turbulence generated by gravity waves. The full space-
and time-resolved spectrum of wave height is obtained for
the first time in the capillary range by means of an optical
method. The spectrum exhibits both frequency and wave
number power-law scalings whose exponents are close to the
ones of the weak turbulence theory. Beyond the confirmation of
these predictions in the capillary regime, significant departure
from theoretical hypotheses has been reported (notably related
to the isotropy and homogeneity of the wave field). We have
also observed the occurrence of stochastic bursts in time
transferring wave energy through the spatial scales within
all the inertial range. The joint space- and time-resolved
measurement have also allowed us to observe the linear and
nonlinear dispersion relations of waves in a turbulent regime.
When the forcing is strong enough, a nonlinear shift of
the dispersion relation is reported, the spectrum power-law
scalings with k and ω being still in agreement with the
predictions. Although the latter are derived using the linear
dispersion, nonlinearity is considered in the theory as a
perturbation of the linear state, and the observations reported
here are thus consistent with the predictions. Further studies
will investigate more in detail the statistics of Fourier modes
of wave energy as well as the space-time correlations in order
to better understand basic mechanisms involved in capillary
wave turbulence.
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