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We study experimentally the dynamics and statistics of capillary waves forced by
random steep gravity waves mechanically generated in the laboratory. Capillary
waves are produced here by gravity waves from nonlinear wave interactions. Using
a spatio-temporal measurement of the free surface, we characterize statistically the
random regimes of capillary waves in the spatial and temporal Fourier spaces. For
a significant wave steepness (0.2–0.3), power-law spectra are observed both in space
and time, defining a turbulent regime of capillary waves transferring energy from
the large scale to the small scale. Analysis of temporal fluctuations of the spatial
spectrum demonstrates that the capillary power-law spectra result from the temporal
averaging over intermittent and strong nonlinear events transferring energy to the
small scale in a fast time scale, when capillary wave trains are generated in a way
similar to the parasitic capillary wave generation mechanism. The frequency and
wavenumber power-law exponents of the wave spectra are found to be in agreement
with those of the weakly nonlinear wave turbulence theory. However, the energy flux
is not constant through the scales and the wave spectrum scaling with this flux is not
in good agreement with wave turbulence theory. These results suggest that theoretical
developments beyond the classic wave turbulence theory are necessary to describe
the dynamics and statistics of capillary waves in a natural environment. In particular,
in the presence of broad-scale viscous dissipation and strong nonlinearity, the role of
non-local and non-resonant interactions should be reconsidered.

Key words: capillary waves, waves/free-surface flows, wave–turbulence interactions

1. Introduction
Disordered patterns of waves are easily seen on a choppy sea, a consequence of

both the wave dynamics and the wind forcing. Due to the large number of degrees
of freedom and to the exchanges between these scales permitted by nonlinear effects,
the dynamics becomes complex and unpredictable. The relevant approach is therefore
a statistical analysis of the free surface, considering random propagation of dispersive

† Email address for correspondence: michael.berhanu@univ-paris-diderot.fr
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804 M. Berhanu, E. Falcon and L. Deike

surface waves interacting nonlinearly in the presence of wind forcing and dissipation.
At large scales the main restoring force is gravity, whereas at scales below 1 cm,
surface tension is dominant, and the waves are said to be capillaries or capillary
waves. Although the energy carried by capillary waves is significantly lower than
by gravity waves, the study of capillary wave dynamics is important to describe
exchanges between the sea and the atmosphere. They also increase tremendously
the water surface roughness, necessary for the radar scattering monitoring of sea
waves (Hwang et al. 2013), and contribute to the overall dissipation of gravity waves
(Zhang 2002; Tsai & Hung 2010; Caulliez 2013; Melville & Fedorov 2015; Deike,
Popinet & Melville 2015b). Therefore a statistical description of random waves at
the capillary scales is important in environmental fluid dynamics and oceanography.

For small wave amplitudes at the air–water interface, in the absence of currents and
vorticity, wave propagation obeys the linear dispersion relation:

ω2
= [gk+ (γ /ρ)k3

] tanh(kh0), (1.1)

where ω = 2πf is the angular frequency, k = 2π/λ the wavenumber modulus, g =
9.81 m s−2 the gravity acceleration, γ the surface tension at the air–water interface, ρ
the water density and h0 the depth of the fluid layer. In the following we consider the
deep-water limit, where kh0� 1. At higher wave amplitude, nonlinear effects must be
taken into account, leading to modifications of the dispersion relation (Crapper 1957;
Whitham 1999) and to wave interactions between different scales. A dimensionless
nonlinear parameter is introduced to quantify the relevance of nonlinear effects: the
wave steepness ak, where a is the wave amplitude and k the typical wavenumber. It
represents the typical slope of the deformed free surface.

Three-wave interactions for frequencies close to the gravity–capillary crossover
are prone to produce capillaries from gravity waves (Hammack & Henderson 1993;
Aubourg & Mordant 2015) in the weakly nonlinear regime. For a wave field having
frequency wave components f1 and f2, the quadratic nonlinearity of the equations
describing surface wave propagation induces a product of these components. An
excitation is obtained at the sum frequency f1 + f2. For large systems, or for long
observation times, only interactions which are resonant have a net contribution to
energy transfer. The resonance condition for waves following the dispersion relation
ω(k), with k= ‖k‖, consists in the following relations:

k1 ± k2 ± k3 = 0 (1.2)
ω(k1)±ω(k2)±ω(k3)= 0. (1.3)

Non-resonant interactions (i.e. not validating the above conditions) produce oscillating
contributions with a period (spatial or temporal) decreasing with the mismatch with
respect to the resonant condition. After averaging over this period, energy transfer
by non-resonant interactions vanishes. These interactions are thus most of the time
neglected. However, experimentally, especially in finite domains, the resonances cannot
be exact. Therefore, we define quasi-resonant interactions in the wave-field dynamics
as interactions with small differences with respect to the resonant conditions (Aubourg
& Mordant 2015; Pan & Yue 2017). The tolerance is usually justified by a nonlinear
broadening of the dispersion relation. For quasi-resonant interactions, the mismatch
with respect to the resonance is sufficiently small such that the average on a finite
size domain leads to a net energy transfer.

At a higher level of nonlinearity, i.e. higher wave steepness, other mechanisms of
generation of capillary waves must be considered. Parasitic capillary wave generation
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Turbulence of capillary waves 805

is the most studied mechanism. It describes the appearance of capillaries on the crest
of a steep gravity propagating wave (Longuet-Higgins 1963, 1995; Fedorov & Melville
1998; Fedorov, Melville & Rozenberg 1998) by a fast mechanism transferring energy
directly from the large scale to the small scale (Melville & Fedorov 2015). Such a
nonlinear interaction between a long wave and a short wave is said to be non-local in
wavenumber space. Parasitic capillary waves are typically observed for gravity waves
with a wavelength λ between 5 and 40 cm and a steepness larger or equal to 0.05
(Fedorov & Melville 1998; Fedorov et al. 1998; Zhang 2002). Similar capillary wave
patterns occur also on the front of gravity waves at higher steepness, before spilling
breaking events (Duncan et al. 1999; Duncan 2001; Deike et al. 2015b; Melville &
Fedorov 2015), and also on the crest of steep standing gravity waves (Schultz et al.
1998). Nevertheless, the parasitic capillary wave generation mechanism is described to
date theoretically only for unidirectional, propagative and monochromatic long gravity
waves.

The wave turbulence theory (Zakharov, L’vov & Falkovich 1992; Nazarenko 2011;
Newell & Rumpf 2011; Nazarenko & Lukaschuk 2016) provides an analytical
description in the Fourier space of dynamics of random dispersive waves interacting
by resonant wave interactions in a weakly nonlinear regime. It predicts the capillary
wave elevation spectra as a power law, Sη( f ) ∝ f−17/6 in time and Sη(k) ∝ k−15/4

in space (after integration on all the orientations) (Zakharov & Filonenko 1967b;
Pushkarev & Zakharov 2000). The hypotheses used in the theoretical derivation are
drastic, in particular scale separation between forcing and dissipation, i.e. negligible
dissipation in the inertial range, an infinite homogeneous system and randomness of
the wave field. Moreover, analytic results are provided only for pure gravity waves
or pure capillary waves. Therefore, the applicability of wave turbulent concepts
in experimental and natural systems remains questionable. Beyond this theory, in
order to describe statistically spectra of gravity–capillary wave fields, a few authors
have considered the dynamics of the wave action spectrum modelled with a kinetic
equation including three-wave interactions numerically (Dulov & Kosnik 2009; Kosnik,
Dulov & Kudryavtsev 2010) and analytically (Stiassnie 1996). Finally to study
statistically gravity–capillary waves at higher nonlinearity an interesting approach
in Fourier space consists in enabling a given mismatch with respect to resonant
conditions in wave interactions (Watson & McBride 1993; Watson & Buchsbaum
1996; Watson 1999). Parasitic waves can be numerically reproduced by considering
non-resonant unidirectional three-wave interactions (Watson & Buchsbaum 1996;
Watson 1999). Therefore, at sufficiently high steepness, energy transfer to the small
scales could occur through non-resonant three-wave interactions under the form of
parasitic capillary wave generation.

In this article, we study experimentally random fields of capillary waves forced by
random steep gravity waves mechanically generated in a finite-sized tank. Small-scale
properties of a choppy sea surface is in this way mimicked, by replacing the chaotic
forcing by gravity waves with a stochastic one. Using a resolved spatial temporal
measurement of the free surface, we characterize statistical and dynamical properties
of capillary waves in real and Fourier space.

This study follows a previous work, using the same experimental device (Berhanu
& Falcon 2013). At a high enough level of excitation by a spatio-temporal analysis,
we characterized the capillary wave turbulence, forced by gravity waves. We reported
an agreement of the exponents of temporal and spatial power-law spectra with the
predictions of wave turbulence theory. Nevertheless, in these conditions, we observed
that several hypotheses of the theory are not met. The nonlinearity is not weak, the
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dissipation in not negligible for capillary waves, and the wave field is not isotropic
even at small scales (Berhanu & Falcon 2013).

Here we perform a deeper and more complete analysis for wave steepness varying
from 0.15 to 0.34. In the real space, the wave field displays capillary wave trains on
the crests of large gravity waves. First, we demonstrate by a spatial Fourier analysis
that the capillary wave phases are uniformly distributed, justifying the stochasticity of
the wave field at small scales. Then we compute space–time Fourier spectra of the
wave elevation. We obtain experimentally continuous dispersion relations displaying
a significant nonlinear broadening. To describe energy transfer from gravity waves
to small-scale capillary waves, the decays of spectral energy as a function of the
frequency and of the wavenumber are analysed. We observe power-law spectra
that we interpret as a signature of turbulence of capillary waves. The spectral
exponents are close to the predictions of wave turbulence theory. Then, by studying
higher-order correlations in Fourier space, we detect the substantial presence of
three-wave interactions. We note the broad width of the dispersion relation may
permit interactions far from the resonant conditions. However, by studying the
temporal fluctuations of the spatial spectrum, we show that the energy transfers occur
through strong nonlinear events generating capillary wave trains, similarly to the
parasitic capillary wave mechanism. A departure from the Gaussian distribution of
wave amplitude is reported, corresponding to the presence of intermittent large-scale
coherent structures, having a broad spectral contribution. This strong capillary wave
turbulence thus differs from the weak capillary wave turbulence described by the
wave turbulence theory, although the exponents of the power law of the temporal
and spatial spectra are the same in both cases. A quantitative comparison of our
results with predictions of the wave turbulence theory is then performed. Using
the computation of the dissipated power, the energy flux is estimated and is found
non-conserved through the scales due to the broad band dissipation. The scaling of
the wave spectrum with the mean energy flux is tested and is found approximate and
dependent on the wave amplitude. Thus, for turbulent capillary waves, broad-scale
dissipation and strong nonlinearity should be taken into account in theoretical analyses.
Moreover, due to the significant viscous dissipation, we show that finite-size effects
are negligible for capillary waves.

This paper is organized as follows. First, in § 2, we present the methods of this
work: the experimental device, the forcing protocol and a brief characterization
of the velocity field. Then, in § 3, we analyse the turbulent wave field in the
stationary regime in Fourier space. In § 4, the capillary wave turbulent regimes
are studied as a function of time to characterize the fluctuations. In § 5, we compare
our results with the predictions of wave turbulence theory. Then we discuss the
applicability of the wave turbulence theory to capillary waves in experiments. Finally,
in § 6, before giving the conclusion, we discuss the role of viscous dissipation and
gravity–capillary crossover on turbulent regimes of capillary waves. Moreover, the
appendix demonstrates that, due to viscous dissipation, finite-size effects are negligible
for capillary waves.

2. Methods
2.1. Experimental set-up

The experimental set-up and measurement techniques are similar to those described
in Berhanu & Falcon (2013) and the experimental device displayed in figure 1 is
thus identical. We recall here only the essential points. The free-surface elevation
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Turbulence of capillary waves 807
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FIGURE 1. (Colour online) (a) Experimental set-up. Surface waves are produced by the
horizontal motion of a rectangular paddle and the free surface is measured in space and
time using diffusing light photography (DLP). (b) Typical wave steepness σs versus the
typical wave amplitude σh. The dashed line depicts the usual estimation of steepness by
σhk, with k the wavenumber obtained with the linear dispersion relation for f = 5 Hz
(central forcing frequency).

is directly measured in space and time using the diffusing light photography (DLP)
(Wright, Budakian & Putterman 1996; Wright et al. 1997; Xia et al. 2012) technique.
A Plexiglass tank (165 × 165 mm2) is filled with a diffusing liquid (1 l of distilled
water with 6 ml of Intralipid 20 %) up to a height h0 = 30 mm. Intralipid 20 %
(Fresenius KabiTM) is a commercial lipidic emulsion of microspheres, whose aqueous
solutions are used as model diffusing media with characterized optical properties (van
Staveren et al. 1991). Due to the low dilution, the fluid viscosity and density are
close to the pure water values (ν = 10−6 m s−2 and ρ = 1000 kg m−3, respectively).
The surface tension has been measured statically with a Du Noüy ring tensiometer,
providing a value of 53.6 mN m−1. However, a dynamic value of surface tension
γ = 60 mN m−1 is obtained from the spatio-temporal measurements (Berhanu &
Falcon 2013). The dynamic values appear nevertheless more relevant to analyse
wave propagation (Hammack & Henderson 1993). Surface waves are produced by
the horizontal motion of a rectangular paddle (130 mm in width and 13 mm in
immersed depth) driven by an electromagnetic shaker (LDS V406). A LED device
Phlox (100 × 100 mm2) ensures a homogeneous lighting below the transparent tank.
A 16-bit camera (PCO EDGE), one metre above, with 1024 pixel × 1120 pixel is
focused on the liquid free surface and records at a 200 Hz frame rate an observation
area S of 89× 96 mm2.

2.2. Random forcing of gravity waves
The waves are forced at the large scale through the random motion of the paddle.
The electrical signal sent to the shaker is obtained by band pass filtering an initial
white noise between 4 and 6 Hz. The resulting excitation is random in amplitude
and phase and has an autocorrelation time of order 1 s. It generates waves belonging
to the gravity wave range, the corresponding wavenumbers given by the linear
dispersion relation being respectively k = 65.3 m−1 (λ= 96.2 mm) and k = 131 m−1

(λ = 47.9 mm). By enhancing the initial mixing of waves, this type of random
forcing is known to produce power-law spectra interpreted as gravity–capillary
wave turbulence in laboratory experiments (Falcon, Laroche & Fauve 2007; Herbert,
Mordant & Falcon 2010; Cobelli et al. 2011; Deike, Berhanu & Falcon 2012, 2014a).
At the small scale, surface tension dominates gravity as the restoring force for k
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808 M. Berhanu, E. Falcon and L. Deike

larger than the inverse of capillary length lc =
√
γ /(ρ g)≈ 2.5 mm. Capillary waves

are thus observed for k> kc = 404 m−1 (λc = 15.5 mm).
The paddle is parallel to the y axis, close to one boundary, and the resulting wave

field on the centre of the tank is thus mainly directed along the x axis and results
from the waves emitted by the paddle and also by the waves reflecting on the opposite
boundary. Due to the reflections on the walls, the wavelengths which are a divisor of
the container length (165 mm) are the eigenmodes of the square tank, corresponding
to possible standing waves. Using the linear dispersion relation (1.1), the eight first
eigenmode frequencies are: 2.79, 4.38, 5.53, 6.57, 7.60, 8.65, 9.75 and 10.90 Hz. For
each measurement, 8192 images are recorded, corresponding to a duration of 41 s.
Using the DLP method, the deformation of the free surface is reconstructed for each
image, providing the spatio-temporal wave-field h(x, y, t). The intensity of transmitted
light measured on the camera indeed decreases as a function of the local depth h
(Wright et al. 1996). After calibration, the free-surface deformation is obtained with
a horizontal spatial resolution of 0.5 mm, a vertical sensitivity of less than hundred
microns, even for high steepness of the surface, and a temporal resolution given by
the acquisition frequency of the camera (200 Hz). To characterize and compare the
measurements, we define the following parameters, the typical wave amplitude

σh ≡

〈√
1
S

∫
S

h2(x, y, t) dx dy−
(

1
S

∫
S

h(x, y, t) dx dy
)2
〉

(2.1)

and the typical wave steepness

σs ≡

〈√
1
S

∫
S
‖∇h(x, y, t)‖2 dx dy−

(
1
S

∫
S
‖∇h‖ dx dy

)2
〉
, (2.2)

where 〈·〉 denotes a temporal averaging and
∫
S a spatial integration on the surface

S . This computation of steepness, for a random field of waves, extends the classical
definition σhk for a monochromatic wave and evaluates the amplitude of nonlinear
effects in wave propagation. The set of experiments described here corresponds to
σh = 1.3, 2.1, 2.7, 3.1, 3.4 and 3.6 mm, and σs = 0.15, 0.19, 0.24, 0.27, 0.29 and
0.34. The global steepness of the wave field is above 0.1 and the nonlinearity level is
thus not small. The maximal forcing is set to avoid breaking events in the observation
area, for which the free surface becomes multivalued. Whereas waves with a such
steepness are intrinsically unstable, due to the limited size of the container, they are
experimentally observed in the field of view of the camera. In figure 1(b), σs is plotted
as a function of σh. The typical steepness is described well by the relation σhk, with
k the wavenumber obtained with the linear dispersion relation for f = 5 Hz, which is
the central frequency of the forcing range.

An example of the free-surface reconstruction is depicted in figure 2(a) for the
highest forcing amplitude σh = 3.6 mm at t= 1.51 s. In this example, a large gravity
wave appears in the centre of the observation area, propagating from left to right along
the x axis. A three-dimensional plot movie corresponding to the same measurement
is available in supplementary movie 1 at https://doi.org/10.1017/jfm.2018.467. By
plotting the map of the modulus of the free-surface gradient ‖∇h(x, y, t)‖ in
figure 2(b), to enhance the small-scale variations, a train of capillary waves on
the forward face become visible. The corresponding wave profiles along the x-axis
taken for y = 48 mm confirms this observation, for the wave height in figure 2(c),
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FIGURE 2. (Colour online) (a) Snapshot of the wave field h(x, y) at t = 1.51 s. σh =

3.6 mm and σs= 0.34. The colour scale is in mm. The wavemaker is parallel to the y-axis
and located at x = −12 mm. (b) Snapshot of the spatial gradient of the wave elevation
‖∇h(x, y)‖ at the same instant. The colour scale is dimensionless. A train of capillary
waves is visible on the forward front of the large carrier wave. (c) Wave profile h(x, y=
48 mm). (d) Blue: wave profile h(x, y= 48 mm) after a high-pass spatial filtering keeping
the capillaries (cutoff k=113 m−1). Red (light grey): slope profile of ‖∇h(x, y=48 mm)‖.

for the high-pass filtered wave height in figure 2(d) (blue) and the gradient profile
‖∇h‖ in figure 2(d) (red). This description corresponds to the standard picture
of generation of parasitic capillary waves by gravity waves (Zhang & Cox 1994;
Fedorov et al. 1998; Perlin & Schultz 2000). The capillary wave train of higher
group velocity remains visible for a duration of order 0.1 s, before exiting the
observation area or disappearing when the trough of the gravity wave is reached.
Due to the important reflections along the x axis, strong generation of parasitic
capillary waves is also observed when two gravity waves are crossing in the area
of observation or when transiently a standing wave is excited in the middle of the
square tank. In these cases, parasitic wave generation is not theoretically described
in the literature, which considers only propagative waves, but a similar experimental
observation was reported for standing waves of high amplitude (Schultz et al. 1998).
During a 41 s measurement, typically two hundred events of parasitic capillary
wave generation occur in our experiment. Due to the randomness of the forcing
and to the multiple reflections, it becomes hazardous to make a direct comparison
between theoretical models of parasitic wave generation (Longuet-Higgins 1963, 1995;
Fedorov & Melville 1998) and the statistical analysis of the turbulent random wave
field obtained with this forcing protocol.
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810 M. Berhanu, E. Falcon and L. Deike

2.3. Velocity field characterization
In similar conditions, but not simultaneously, the two-dimensional (2-D) velocity
field has been measured by particle image velocimetry (PIV) in the vertical plane
Oxz. 50 µm particles were used to seed the water. A vertical laser sheet produced
by a 2 W continuous laser illuminates the plane corresponding to the middle of the
tank. PIV fields are computed through the open access software PIVlab (Thielicke
& Stamhuis 2014). Due to the moving free surface, PIV would require the use
of a dynamical mask to avoid computing the correlation outside the water, which
implies a simultaneous measurement of the free surface in the vertical plane, as
was performed in experiments with a smaller free-surface displacement (Jamin et al.
2015). Due to the absence of a dynamic mask implementation, PIV is performed on
a window located 5 mm below the mean-free surface. 3195 images are recorded with
a fast camera during 12.78 s with a frame rate of 250 Hz. The 2-D velocity field
from PIV obtained for a forcing level corresponding to σh = 2.4 mm are depicted in
figure 3 and provides a qualitative complement to the 2-D free-surface deformation
measurement with DLP.

The velocity field u(x, z) appears to follow the structure given by the large
gravity waves. An instantaneous snapshot is displayed in figure 3(a). After temporal
averaging, the presence of the mean velocity field of one centimetre per second
becomes apparent, depicted by black arrows in figure 3(c,d). This observation may
be associated either with the transient excitation of a standing wave mode during
the measurement or nonlinear streaming induced by the wavemaker. In the top layer
the average horizontal velocity is found to be 〈ux〉 = 0.26 mm s−1. In contrast, the
average root-mean-square (r.m.s.) velocity 〈

√
u2

x + u2
z 〉 is larger and is depicted in

a colour scale in figure 3(c). The r.m.s. velocity decreases with the distance to
the free surface. The r.m.s. velocity follows an exponential law whose wavenumber
k = 82.4 m−1 belongs to the forcing range, showing that the velocity field is mainly
induced by gravity wave propagation.

Then the r.m.s. vorticity along the y axis, Ω = ∇ × u appears of significant
amplitude (about 2 s−1) in the top layer, close to the free surface. This observation
is unexpected because surface wave propagation is theoretically described only for
potential flows. Nevertheless, the large-scale picture shows that the random gravity
wave excitation is not associated with bulk hydrodynamic turbulence, as expected.
The top layer with high vorticity, despite not being directly in contact with the
free surface, could be related to the vortex generation by parasitic capillary waves,
as was reported (Fedorov & Melville 1998; Lin & Perlin 2001). The order of
magnitude is coherent with the estimation Ω ≈ 2(σhk)2ω (Longuet-Higgins 1992;
Deike et al. 2015b), by taking k ≈ 100 m−1 as the typical forcing wavenumber and
ω ≈ 2π5 s−1 the typical forcing pulsation. The horizontal motion of the paddle
generating the waves could also inject vorticity in the bulk. Finally, the average 2-D
kinetic energy per volume and mass unit Ech = 1/2〈u2

〉 of the flow is found to be
Ech ≈ 18× 10−4 m2 s−2, whereas the viscous dissipated power per volume and mass
unit DΩ = ν〈Ω

2
〉 ≈ 3.3 × 10−4 m2 s−3. The energy dissipated during a wave period

is thus smaller than the kinetic energy Ech. By fitting the decay of the vorticity with
z by a decreasing exponential, a typical scale lΩ = 1.59 mm is found. The potential
flow assumption should be thus valid for waves whose wavelengths are larger than
lΩ or 1/λ < 630 m−1. We assume in the following that the hydrodynamic flow is
mostly the potential flow induced by wave propagation.
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FIGURE 3. (Colour online) (a) Superimposition of an image used for PIV measurement,
with the velocity field found in water (green arrows) and the corresponding streamlines
(yellow) for σh = 2.4 mm. The width of the image is 121 mm. (b) Averaged vertical
profile of the r.m.s. velocity (blue circles). The black line displays an exponential fit e−k|z|

with k = 82.4 m−1. z= 0 corresponds to the free-surface position at rest. (c) Temporally
averaged velocity field (arrows) and r.m.s. velocity in a colour scale (mm s−1). The paddle
producing the wave is located on the left side. (d) Temporally averaged velocity field
(arrows) and temporally averaged r.m.s. vorticity field in a colour scale (s−1). A significant
vorticity is present in the top layer.
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FIGURE 4. (Colour online) (a) PDF (probability density function) of the temporal
fluctuations of the phase φ of η̃(k, t), for 21 equally spaced values of k= 2π(λ−1

x , λ
−1
y )

varying from (41.6, 45.5) to (874, 956) m−1. The black line is the uniform distribution
1/(2π). The case displayed corresponds to σh = 3.6 mm. (b) Colour map of the absolute
distance to the uniform distribution 〈|PDF(φ) − 1/(2π)|〉 as a function of λ−1

x and λ−1
y .

Except at large scale, for k close to (0, 0), the phases of free-surface deformation are
uniformly distributed, as the distance to the uniform distribution is close to zero.

3. Analysis of stationary regimes in Fourier space
3.1. Random statistics of the wave field

First, we aim to verify that there are no phase correlations in the wave field and that
waves propagate independently. To measure the phase of the waves, we perform a
spatial Fourier analysis of the field of free-surface deformation η = h(x, y, t) − 〈h〉,
as was done for bending waves in a plate in the study of elastic wave turbulence
(Mordant 2010):

η̃(k, t)=
1

2π

∫ Ly

0

∫ Lx

0
η(x, y, t)e−i(kxx+kyy) dx dy. (3.1)

The decomposition in a 2-D Fourier space define wave modes η̃(k, t) as a complex
function evolving in time for a given k, whose phase evolutions φk(t) are obtained
by taking the argument of η̃(k, t). For the highest-amplitude measurement, the
probability density functions (PDFs) of φ are given in figure 4(a) for a large number
(21) of equally spaced values of k = 2π(λ−1

x , λ
−1
y ) varying from (41.6, 45.5) to

(874, 956) m−1. The phase distributions fluctuate around the value 1/(2π), which
corresponds to the uniform distribution. For the duration of the experiments (41 s),
phases appear randomly distributed. To generalize this observation to all wave modes,
the temporal average of the absolute distance to the uniform distribution is plotted
in a colour scale in figure 4(b). Except in the centre at large scale, the random
distribution of phases holds. Still at large scale, we note a relatively higher level
along the axes, which could be caused by boundary effects.

The independence of wave modes at leading order is a substantial consequence of a
random distribution of wave phases. The statistics of the wave field in Fourier space
can therefore be described using only the power spectrum. This condition is verified
if the correlations of wave modes is written as:

〈η̃(k1, t)η̃(k2, t)〉 ∝ δ(k1 − k2), (3.2)
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FIGURE 5. (Colour online) (a) Magnitude of normalized correlation (see (3.3)) between
spatial Fourier modes η̃(k1, t) and η̃(k2, t), for k1/(2π) = (0.094, 0) mm−1 and variable
λ−1

2 = k2/(2π). σh = 3.6 mm. The white circle depicts the position of k1. (b) Same for
k1/(2π) = (0.094, 0.1024) mm−1. For k1 6= k2, the correlation is essentially zero at the
level of convergence. The finite size of the correlation peak could be due to the resolution
of the spatial Fourier transform due to the size of the images.

where δ is the Dirac delta function. This property is tested for two examples for the
measurement at highest amplitude (shown in figure 5), by computing the normalized
correlation between Fourier modes:

|〈η̃(k1, t)η̃(k2, t)?〉|√
〈|η̃(k1, t)|〉〈|η̃(k2, t)|〉

. (3.3)

For k1 6= k2, the correlation is essentially zero at the level of convergence. The finite
size of the correlation peak could be due to the resolution of spatial Fourier transform
due to the size of the images.

At the leading order, phases of wave modes appear uncorrelated, especially for the
scales of capillary wave propagation, i.e. λ−1 > 0.064 mm−1 (k > 100 m−1), which
justifies a description using mainly power spectra. At the third order, nonlinear wave
interactions are investigated using phase correlations in § 3.4. Note that the absence
of phase correlation related to the finite-size tank can appear as a surprising result.
Despite the random excitation, multiple reflections on the wall of the tank could build
phase correlations in the spatial Fourier space. But, due to viscous dissipation, we
show in appendix A that waves with k > 275 m−1 ( f > 10 Hz) are damped before
experiencing reflections on the walls. The significant dissipation may thus explain the
absence of wave correlations and of quantization of wavenumbers in a finite-size tank.

3.2. Experimental dispersion relation
The analysis at small scale of a random wave field is performed in a stationary regime
in the Fourier space (ω, k). The space and time power spectrum of wave elevation
Sη(ω, k) is computed from the set of free-surface images h(x, y, t) (η = h− 〈h〉), by
performing successively a 2-D Fourier transform in space, and a Fourier transform in
time, and then by taking the square modulus,

Sη(ω, k)=
1

LxLyT
|η̃(kx, ky, ω)|

2, (3.4)
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FIGURE 6. (Colour online) (a) Spatio-temporal spectrum of wave elevation Sη(ω, k) for
σh= 3.6 mm. (+) Experimental dispersion relation extracted from the maxima of Sη(ω, k).
Red (dark grey) dashed line: linear theoretical dispersion relation (6). White dashed line:
nonlinear dispersion relation with a= σh (3.8). Colour scale corresponds to log10(Sη(ω, k)).
(b) Spatio-temporal spectrum of wave elevation Sη(ω, kx) in the forcing direction with the
same parameters. (c) Spatio-temporal spectrum of wave elevation Sη(ω, ky) in the direction
perpendicular to the forcing with the same parameters. (d) Spatio-temporal spectrum of
wave elevation Sη(ω, k) for σh = 3.4 mm. The (∗) represent the centre (magenta) and the
approximate upper and lower limits (green) of the experimental dispersion relation. (e)
Typical correlation times τc extracted from the width of the dispersion relation, for σh =

3.6 mm (red +),σh = 3.4 mm (green ×) and σh = 2.1 mm (blue ∗). Dashed black line:
linear time 1/ω. Blue line: linear dissipative time. Black dashed thick line: power law
f−1/2. ( f ) Dependence of dispersion relation width W( f ∗) on the wave amplitude for f ∗=
30 Hz. Dashed horizontal line: δλ−1

= 1/L resolution due to the finite size of the image.

with

η̃(kx, ky, ω)=

∫ T

0

∫ Ly

0

∫ Lx

0
η(x, y, t)e−i(kxx+kyy+ωt) dx dy dt. (3.5)

The result is then converted into radial coordinates (k = ‖k‖, θ) and integrated over
the different directions of k to obtain the one-dimensional (1-D) spectrum.

Sη(ω, k)=
∫ 2π

0
Sη(ω, k, θ)k dθ. (3.6)

The spectrum Sη(ω, k) displayed in figure 6(a) reveals the spreading of wave
energy in time and space. For sufficiently large wave amplitude, the spectrum
appears continuous, without privileged scales, which constitutes one criterion of
turbulent regimes. By finding the maxima of Sη(ω, k) for each ω value, the
experimental dispersion relation is found. Wave propagation is indeed characterized
by a concentration of signal energy on a curve in the (ω, k) space. In this case
(with σh = 3.6 mm), we observe a small but significant departure from the linear
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Turbulence of capillary waves 815

dispersion relation (1.1), with an increase of frequency at a given wavelength. The
other measurements at lower amplitude show that this shift increases with σh (not
displayed here), arguing for a nonlinear mechanism. A similar nonlinear shift was also
reported independently in similar conditions (Aubourg & Mordant 2016). Moreover,
this dispersion relation shift is anisotropic. Sη(ω, kx) is plotted in figure 6(b) and
Sη(ω, ky) in figure 6(c). The deviation is only visible in the forcing direction x, for
which the spectrum is more intense. Typically for 1/λ= 0.1 mm−1, the frequency is
increased by 10 Hz or the inverse of the wavelength is reduced by 0.03 mm−1.

A complete explanation is still missing, but this observation might be explained
by the following mechanisms. First, a Doppler shift due to the presence of a mean
horizontal current u, which modifies the linear dispersion relation

(ω− u · k)2 =
(

gk+
γ

ρ
k3

)
tanh(kh0). (3.7)

The mean horizontal velocity measured using PIV for σh = 2.45 mm in § 2.3
was found to be 〈ux〉 = 0.26 mm s−1. The corresponding frequency shift for
1/λ=0.1 mm−1, which would be of the order of 0.03 Hz and would not be detectable.
Second, the shift could be explained by the nonlinear corrections explicitly computed
for monochromatic waves, in the gravity range as Stokes waves (Whitham 1999) and
in the capillary range as the Crapper correction (Crapper 1957). Considering these
two corrections, the dispersion relation reads

ω2
=

gk[1+ (ak)2] +
γ

ρ
k3

[
1+

(
ak
4

)2
]−1/4

 tanh(kh0). (3.8)

By taking the amplitude a equal to σh, the magnitude of the shift is reproduced. But
this estimation does not take into account the strong decrease of wave amplitude
as k increases. The nonlinear correction appears too small to justify the shift
at moderate k, and does not explain the anisotropy. Another similar mechanism
could be related to the current induced by the Stokes drift due to large gravity
waves. A simplified estimation of the horizontal velocity due to the Stokes drift
reads us = ωkσh

2
≈ 39 mm s−1, with f = 5 Hz, k = 96 m−1 and σh = 3.6 mm. The

corresponding frequency shift at 1/λ = 0.1 mm−1 would be us/λ ≈ 3.9 Hz, which
is the correct order of magnitude. Finally, a frequency up-shift was also noticed
in a simplified numerical model studying capillary waves excited by gravity waves
(Watson 1999). The wave field was decomposed in the spatial Fourier space into
modes interacting through three-wave interactions. The shift of magnitude consistent
with our observation is interpreted as a modulation by longer gravity waves (a ‘drag’)
of short capillary waves, which are not bound waves. The capillary waves simulated
with this method are qualitatively close to parasitic capillary waves. The presence of
capillary wave trains may indeed explain the observed shift in experiments. We note
also that the model of Fedorov & Melville (1998) predicts an increase of the phase
velocity of parasitic capillary waves of class 2 (a pressure maximum is associated
with the crest), which can reach as much as 20 %, as a function of gravity wave
steepness. A nonlinear increase of phase velocity is indeed equivalent to a frequency
up-shift of the dispersion relation. Several elements thus indicate that the observed
shift is likely caused by the modulation of parasitic capillary waves by the long and
steep gravity wave.
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816 M. Berhanu, E. Falcon and L. Deike

Another important feature of Sη(ω, k) is the width of the experimental dispersion
relation. In comparison with elastic waves (Cobelli et al. 2009; Mordant 2010; Deike,
Bacri & Falcon 2013) and gravity wave experiments (Herbert et al. 2010; Cobelli
et al. 2011; Aubourg & Mordant 2016), the width of the dispersion relation appears
broad. In order to quantify this observation, we apply in k space for each frequency
value f ∗ a Gaussian fit:

Sη( f ∗, k)= A exp

[(
−(k− kDR( f ∗))

2πW( f ∗)

)2
]
. (3.9)

We extract the width of the dispersion relation W( f ∗). In figure 6(d), above the
spectrum Sη(ω, k) for σh = 3.4 mm, the fit is displayed with magenta stars at each
frequency for the central kDR( f ∗)/(2π) corresponding to the dispersion relation
and also with green stars for kDR( f ∗)/(2π) ± W( f ∗)/2. We observe in figure 6( f )
that W( f ∗) increases with the wave amplitude, showing that the nonlinear effects
contribute to the wave broadening. The figure is displayed for f ∗ = 30 Hz, but
a similar behaviour is observed for other frequencies in the capillary range. The
horizontal dashed line shows the spatial resolution δ(1/λ)= 1/(2 L) with L= 96 mm
the size of the window of observation.

The substantial width of the dispersion relation can be interpreted in several ways.
In the presence of parasitic capillary wave generation, a significant broadening of
the dispersion relation for such a steepness level could be caused by modulation
by Doppler effect of the frequencies of capillary waves by the orbital velocity
field (Fedorov et al. 1998; Fedorov & Melville 1998; Watson 1999). However, by
considering a r.m.s. velocity of 50 mm s−1, estimated from PIV measurements (see
§ 2.3), and injecting this typical value in the Doppler-shifted dispersion relation
(3.7), a broadening of order 10−3 mm−1 is found, whereas the measured width W
is of order 10−2 mm−1. The width of the dispersion relation is therefore better
interpreted as a correlation length due to the finite size of the wavepacket at a given
frequency, as discussed in Miquel & Mordant (2011). To facilitate the discussion,
we convert this correlation length into a correlation time τc( f ∗) = (vg2πW( f ∗)/2)−1,
with vg = ∂ω/∂k the group velocity. This finite lifetime of the wavepacket is due
to wave viscous dissipation and to nonlinear wave interactions that distribute the
energy of the waves through the scales. τc is plotted in figure 6(e) for three-wave
amplitudes as a function of the frequency and is compared to the viscous dissipative
time τdiss = (

√
2
√
νωk/4)−1 (see § 6.1) and the linear time 1/ω. τc is found between

1/ω and τdiss. Despite τdiss being found around 40 times larger than 1/ω in the
capillary range, τc values are about five times 1/ω and τc evolves nearly as 1/f .
The correlation time is close to the smallest possible value. The wave would not be
defined if τc < 1/ω. Moreover, τc is usually interpreted as a typical time of nonlinear
interaction (Miquel & Mordant 2011). From the dimensional analysis of the quadratic
interaction term for pure capillary waves (Deike et al. 2013), this nonlinear time
reads: (τNL)

−1
∼ ε1/2(γ /ρ)−1/4f 1/2. Here, the evolution of τc as a function of f follows

relatively well the f−1/2 power law in the range 25< f < 100 Hz for the two highest
amplitudes, which is consistent with the interpretation of τc ∼ τNL.

Weakly nonlinear models of interacting waves suppose a time-scale separation
1/f � τNL� τdiss. Nonlinear exchanges of energy must occur on a typical time much
smaller than the viscous decay time and much larger than the wave period (otherwise
the wave blows up, i.e. disappears in a strongly nonlinear manner). Here, τc ∼ τNL
is approximately 8 times smaller than τd and five times larger than 1/ω. Therefore,
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FIGURE 7. (Colour online) Spectrum Sη(ω,λx
−1,λy

−1) for fixed f = 10, 20, 40 and 80 Hz,
respectively (log10 colour scale) showing the anisotropy of the wave field at high forcing
amplitude (σh= 3.6 mm and σs= 0.34). The anisotropy due to the forcing is still present
at high frequency. Dashed black circle: linear dispersion relation of (1.1). Wave amplitudes
are larger in the direction of forcing (x-axis), revealing anisotropy in the entire frequency
range.

the broad width of the experimental dispersion relations shows that the wave regimes
are strongly nonlinear in terms of energy exchanges. A correlation time equal to the
period corresponds typically to a number of visible crests ∼5, which is coherent with
capillary parasitic wave generation with few visible ripples in the front of the long
gravity wave.

Note, we do not observe supplementary branches related to the occurrence of bound
waves, contrary to larger-size experiments studying the gravity wave turbulence regime
(Herbert et al. 2010). This is consistent with the parasitic wave generation mechanism,
for which in the range between 4 and 6 Hz, parasitic capillaries are found as free
waves (Perlin, Jiang & Ting 1993; Fedorov et al. 1998).

The directional properties of the wave field are investigated in figure 7 by plotting
Sη(ω, k) as a function of λx

−1 and λy
−1 for fixed frequency f . A strong anisotropy

of the wave field is observed along the x-axis, which is the forcing direction. This
anisotropy is conserved regardless of the frequency scales inside the capillary waves
range (see f = 20, 40 or 80 Hz). Capillary waves thus appear preferentially along
the same direction as the long waves, as it would be for parasitic generation. One
may suppose that superposition of several three-wave interactions for a random
excitation would restore the isotropy. However, dominant 1-D interactions were also
reported with waves close to the gravity–capillary crossover (Aubourg & Mordant
2015, 2016). This observation has been explained by quasi-resonant interactions, due
to the significant width of the dispersion relation. Moreover, viscous dissipation and
nonlinear interactions reduce the lifetimes of capillary waves. A short correlation time
should favour interactions with forcing waves, and thus should increase the anisotropy
of the wave field.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ite

 P
ar

is
 7

 D
id

er
ot

, o
n 

10
 A

ug
 2

01
8 

at
 1

0:
34

:2
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
46

7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.467


818 M. Berhanu, E. Falcon and L. Deike

3.3. Spatial and temporal spectra
By computing the spatial and temporal spectra of wave elevation, Sη(k) and Sη(ω),
at a sufficiently high wave amplitude, we evidence power-law spectra in the capillary
wave range, which would constitute the capillary wave turbulence cascade as reported
previously (Berhanu & Falcon 2013). They are derived from Sη(k,ω) by the relations:

Sη(k)=
∫ ωmax

0
Sη(k, ω) dω

Sη(ω)=
∫ kmax

0
Sη(k, ω) dk.

 (3.10)

From the Parseval–Plancherel relation, the signal energy from the spectra is given by:∫ kmax

0
Sη(k) dk=

∫ ωmax

0
Sη(ω) dω≈ σ 2

h . (3.11)

Due to the lack of the resolution at large scale, the last expression is only approximate.
When expressed as a function of λ−1

= k/(2π) or f = ω/(2π), the correspondence
between spectra is written as: Sη(λ−1)= (2π)Sη(k) and Sη( f )= (2π)Sη(ω). The power
spectra Sη are also referred by the acronym PSD (power spectrum density). The spatial
spectrum Sη(λ−1) is depicted in figure 8(a) for different forcing amplitudes. For high
enough wave amplitude, a power-law spectrum is indeed observed in the capillary
range, i.e. for k > kc = 1/lc or λ < λc = 2π

√
γ /(ρg) ≈ 15.5 mm, whose exponent is

close to −15/4, the value predicted by the wave turbulence theory. Departure from the
power law is observed at a scale λ−1

d , equal to 0.48 mm−1 for the highest forcing and
decreasing with wave amplitude. We note that λd is comparable to but larger than the
typical scale of the vorticity layer lΩ (see § 2.3). For λ−1 > λd

−1, viscous dissipation
balances nonlinear interactions (Zakharov & Filonenko 1967b; Deike et al. 2012) and
self-similarity is broken. The spatial Fourier spectrum is also useful to estimate the
steepness due to capillary waves only:

σsc =

(∫ kd

kc

k2Sη(k) dk
)1/2

. (3.12)

For σh= 3.6 mm, σsc≈ 0.15, when σs= 0.34. Therefore, the contribution to σs of large
gravity waves is larger than that of capillary waves, but the latter is not negligible, as
found also in field observations (Bréon & Henriot 2006; Melville & Fedorov 2015).
Moreover, this order of magnitude confirms that capillary waves are also in a nonlinear
regime.

The temporal spectrum Sη(ω) is shown in figure 8(b) for the same set of data.
Two estimations are given, the first by integration over the wavenumbers of Sη(ω, k)
(continuous curves) and the second by converting the spatial spectrum in the frequency
space (dotted curve) using the linear dispersion relation (1.1). Despite the shift of
the experimental dispersion relation, both estimations are consistent, the first having
a better resolution at low frequencies and the second reaching significantly larger
frequencies. This matching of the spectra through the dispersion relation shows the
consistency of our space–time measurements. As with the spatial spectrum, for high
enough wave amplitude a power law is observed for the temporal spectrum between
fc and fd, with an exponent close to the value −17/6 predicted by capillary wave
turbulence theory. We observe that outside the forcing range the frequencies of the
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FIGURE 8. (Colour online) (a) Spatial power spectra Sη(k) (power spectrum density
PSD) for different forcing amplitudes. From bottom to top: σh = 1.3, 2.1, 2.7, 3.1, 3.4
and 3.6 mm, and σs = 0.15, 0.19, 0.24, 0.27, 0.29 and 0.34. Solid black line is the
capillary prediction k−15/4. λc = 2π

√
γ /(ρ g) ≈ 15.5 mm is the crossover scale between

gravity and capillary waves. λd ≈ 2.1 mm is approximately for the highest amplitude,
the dissipative scale, below which viscous dissipation dominates nonlinear interactions.
(b) Temporal power spectra Sη(ω) for the same measurements. Solid black line is the
capillary prediction f−17/6. fc = 14.2 Hz and fd ≈ 204 Hz, are the equivalent of λc and
λd in the frequency space. Two estimates of the frequency spectrum are shown, the first
by integration over the wavenumbers of Sη(ω, k) (continuous curves) and the second by
converting the spatial spectrum in the frequency space (dotted curve) using the linear
dispersion relation (1.1).

1 2 3 4 1.0 1.5 2.0 2.5 3.0 3.5 4.0
–5

–4

–3
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FIGURE 9. (Colour online) (a) Sη(k)-exponents αs versus σh (fits from 0.094 6 λ−1 6
0.30 mm−1). Dashed line shows the theoretical value −15/4. (b) Sη( f )-exponents αt
versus σh (fits from 20 6 f 6 100 Hz). Dashed line shows the theoretical value −17/6.

eigenmodes (see § 2.2) do not appear in the spectrum, due to wave viscous dissipation
(see appendix A) and to the random forcing. A secondary peak in the spectrum is
located at twice the typical forcing frequency. Notice that fd ≈ 200 Hz for the highest
forcing, and like λd is interpreted as the balance between viscous dissipation and
nonlinear interactions.

For scales between λc and λd, power laws are fitted, Sη(k)∼ kαs and Sη( f )∼ f αt . The
corresponding values of αs and αt are given in figure 9. Except at the lowest excitation
amplitude, αs and αt do not depend on σh and are close to the predictions of wave
turbulence theory. Thus, as stated previously (Berhanu & Falcon 2013), the exponents
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FIGURE 10. (Colour online) (a) Three-wave coherence or bispectrum B( f1, f2, f3) in
colour scale, plotted for f2 = 21 Hz, for the highest forcing amplitude σh = 3.6 mm and
σs=0.34. A significant correlation level is observed along the line f3= f1+ f2 (dashed line),
revealing the presence of three-wave interactions. (b) Bicoherency level B( f1, f2, f3= f1+ f2)
for the same measurement. A strong level of three-wave correlation implies the forcing
waves and their harmonics. White curve displays the location of exactly resonant 1-D
three-wave interactions. The black solid bounds non-resonant interactions with a mismatch
1k= 50 m−1. Dashed line 1k= 100 m−1. Dotted line 1k= 300 m−1.

of the spectra in the capillary wave range are in agreement with the predictions of
capillary wave turbulence for σh > 2 mm.

Power-law spectra of capillary waves in time and space indicate self-similar regimes
of uncorrelated random waves, corresponding to an energy transfer from the large
scale to the small scale, where energy is dissipated. The turbulence of the capillary
waves denote these regimes resulting from nonlinear wave interactions, which are
not related to hydrodynamic turbulence. However, the substantial viscous dissipation
limits the inertial range ([λ−1

c , λ
−1
d ] or [ fc, fd]) to only one decade in the spectrum,

as observed in other experiments where capillary waves are forced by gravity waves
(Falcon et al. 2007; Deike et al. 2012, 2014a).

3.4. Wave correlations in time Fourier space
In a classic statistical description of a turbulent wave field, the spectra are built by
coexistence of numerous and simultaneous three-wave resonant interactions, which
on average transfer energy flux from the forcing scale to the dissipative scale. It is
assumed that, after averaging on a long time, only the waves verifying the resonant
conditions (1.2) and (1.3) can exchange substantial energy (Janssen 2004). To detect
the occurrence of three-wave interactions in the temporal domain, we track phase
correlations in the Fourier space between the waves forming a triad, through the
computation of the bispectrum B( f1, f2, f3) (Dudok de Wit 2003; Punzmann, Shats &
Xia 2009; Aubourg & Mordant 2015, 2016), which is defined by:

B( f1, f2, f3)=
|〈η̃(ω1)η̃(ω2)η̃

∗(ω3)〉|

〈|η̃(ω1)|〉〈|η̃(ω2)|〉〈|η̃(ω3)|〉
. (3.13)

In figure 10(a), for a given value f2 = 21 Hz and the highest wave amplitude (i.e.
the highest forcing), the occurrence of three-wave interactions appears as values of
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Turbulence of capillary waves 821

B( f1, f2= 21 Hz, f3) of order one, along the line f3= f1+ f2, i.e. the frequency resonant
condition. The same behaviour is also observed for other values of f2 and lower
forcing amplitudes. Then, to compare the respective weight of the different triads,
the bicoherency B( f1, f2, f3= f1+ f2) (Aubourg & Mordant 2015, 2016) is depicted in
figure 10(b) by assuming the frequency resonant condition for the same measurement.
In the top-right corner, correlation is set to zero for points where f1 + f2 > 100 Hz,
as the acquisition frequency is 200 Hz. Knowing that the forcing is performed in the
frequency range between 4 and 6 Hz, the bicoherency graph displays a periodicity
linked with this range and the harmonic values. Due to the relatively high amplitude
of the waves produced in the forcing range by the wavemaker, the triads involving
these waves are privileged. The pattern presents some resemblance to the one obtained
at high steepness for waves near the gravity–capillary crossover, as in Aubourg &
Mordant (2016). The analysis of the directional properties of the wave field in figure 7
shows that the main part of wave energy is due to waves propagating along the x-axis.
Following the approach of Aubourg & Mordant (2015, 2016), we investigate the role
of three-wave interactions when k1, k2 and k3 are parallel to Ox. First, 1-D exactly
resonant interactions are considered. The corresponding curve is depicted in white in
the bicoherency map in figure 10(b), and appears to correspond to some local maxima
of correlation. Then, a mismatch ∆k to the spatial resonant condition (1.2) is enabled.
The value of ∆k is estimated equal to the width of the dispersion relation due to
nonlinear broadening. In § 3.2, the experimental width W of the dispersion relation
was found to reach typically 0.04 mm−1 at f = 30 Hz, which gives 1k ≈ 280 m−1.
The domains of allowed non-resonant interactions are delimited and plotted with
black curves for 1k= 50, 100 and 300 m−1. For the largest mismatch, nearly all the
couples ( f1, f2) can be populated with 1-D three-wave interactions (i.e. couples located
below the dotted curve). Therefore, the large width of the dispersion relation shows
that, at high nonlinearity, three-wave interactions far from the resonance are possible.
The distinction between quasi-resonant and non-resonant interaction here becomes
arbitrary, as both are transferring energy. A non-resonant or quasi-resonant interaction
with a mismatch ∆k produces an energy transfer oscillating in space on a length
equal to (2π)/∆k. The wave packets have a typical length 1/W (autocorrelation
length) fixed by the width of the dispersion relation. If 1/W < ∆k, non-resonant
interactions could lead thus to a net energy transfer. This hypothesis is similar to the
results of Watson & Buchsbaum (1996) describing a wave field as interacting spatial
modes. One-dimensional non-resonant three-wave interactions reproduce qualitatively
parasitic capillary wave generation, with a typical mismatch of 400 s−1 from the
temporal resonant conditions |ω1 ±ω2 −ω3| = 0.

3.5. Wave correlations in spatial Fourier space
To complete our study of three-wave interactions, we perform a study of phase
correlations at the third order in the spatial Fourier space. We compute first the space
bispectrum to test the occurrence of three-wave interactions, then we use the spatial
bicoherence to test the resonant or non-resonant character given the linear dispersion
relation, as performed by Aubourg & Mordant (2016) and by Pan & Yue (2017). To
facilitate the comparison, we adopt their convention: wave 1 would be created by the
interaction between waves 2 and 3. The bispectrum is written thus:

Bs(k1, k2, k)=
|〈η̃(k2)η̃(k3)η̃

∗(k1)〉|

〈|η̃(k1)|〉〈|η̃(k2)|〉〈|η̃(k3)|〉
. (3.14)
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FIGURE 11. (Colour online) (a) Bispectrum Bs(k1, k2, k3) plotted on a log10 colour
scale as a function of k1 with k2/(2π) = (0.0569, 0) mm−1 (red ×) and k3/(2π) =
(0.0228, 0) mm−1 (green ×). A stronger peak of correlation is observed around k1/(2π)=
k2/(2π)+ k3/(2π)= (0.0797, 0) mm−1 (pinkE). The corresponding frequencies are 12.58,
6.32 and 17.74 Hz; thus this three-wave interaction is reasonably close to the resonance
(12.58+ 6.32= 18.9≈ 17.74 Hz). (b) Bispectrum Bs(k1, k2, k3) as a function of k1 with
k2/(2π)= (0.1365, 0) mm−1 (red ×) and k3/(2π)= (0.0910, 0) mm−1 (green ×). A peak
of correlation is observed around k3/(2π)= (0.2275,0) mm−1 (pinkE). The corresponding
frequencies are 34.25, 20.65 and 69.28 Hz; thus this three-wave interaction is non-resonant
(34.25 + 20.65 = 54.9 6= 69.28 Hz). (c) Bicoherence B(k1, k, k1 − k) plotted on a log10
colour scale as a function of k with k1/(2π)= (0.0797,0) mm−1. The black curves are the
loci of exact resonances according the linear dispersion relation. Non-resonant three-wave
interactions are thus significant and mainly directed along the x axis. (d) Bicoherence
B(k1, k, k1 − k) as a function of k with k1/(2π) = (0.2275, 0) mm−1. The black curves
are the loci of exact resonances according the linear dispersion relation. For a larger
wavenumber k1, three-wave interactions are also found to be mainly non-resonant and
directed along the x axis.

Two examples are given in figure 11(a,b) for the highest-amplitude measurement
by choosing the two vectors k2 and k3. If the spatial resonant condition is verified,
equation (1.2), a local maximum of correlation should be observed near k1 ≈ k2 + k3.
The lack of resolution at small wavenumbers due to the finite size of the images
limits the accuracy of the test. However, a repetition of identical experiments could
improve the convergence level. Nevertheless, a clear correlation peak is observed at
the sum wavenumber, showing a significant occurrence of three-wave interactions. By
computing the corresponding frequencies, given the linear dispersion relation (1.1),
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Turbulence of capillary waves 823

we can also test the temporal resonant condition (1.2). In the first case (figure 11a),
the sum frequency is reasonably close to f1, and the interaction is quasi-resonant.
But in the second case (figure 11b), the sum frequency differs notably from f1,
implying that the non-resonant interactions also contribute to the wave-field dynamics.
To generalize this statement, knowing that the level of three-wave interaction is
significant, we compute the bicoherence map defined by:

B(k1, k, k1 − k)=
|〈η̃∗(k1)η̃(k)η̃(k1 − k)〉|

〈|η̃(k1)|〉〈|η̃(k)|〉〈|η̃(k1 − k)|〉
. (3.15)

For a given k1, the condition k1 = k2 + k3 is automatically satisfied by taking
k2 = k and k3 = k1 − k. Expressed as a function of k, this statistical tool indicates
the position of wavenumbers which are participating more in the wave-field
dynamics. The temporal resonance condition can also be tested under the form
(ω1 = ω(k)+ ω(k1 − k)) using the linear dispersion relation. Two cases are displayed
in figure 11(c,d). The loci of exact temporal resonances are given by the black curves.
We observe that the three-wave interactions in our systems are mainly 1-D, directed
along the forcing axis (Ox) and non-resonant. A significant level of correlation is
indeed observed far from the black curves. The typical width of the dispersion
relation 1k/(2π) ≈ 0.05 mm−1 is not sufficient to assume these interactions as
quasi-resonant. The results are very similar for measurements at lower amplitude. We
also note that the lack of resolution in the k space limits the accuracy of the method
compared to the temporal bicoherence analysis, which is better resolved. Assuming the
linear dispersion relation, the non-resonant character of three-wave interactions is thus
clearly demonstrated. The physical situation differs strongly from the work of Pan &
Yue (2017) simulating pure capillary waves, where the bicoherence level is significant
only close to the exact resonance. In our experiments, as a deviation from the linear
dispersion is reported in § 3.2, a bispectral analysis simultaneously testing both
resonant conditions (1.2) and (1.3) by computing a space–time bicoherence (Aubourg
et al. 2017) would also be useful to evaluate the role of non-resonant interactions
and to detect a possible role of harmonics. However, a converged computation of
space–time bicoherence requires a large data set, and a such study would deserve a
systematic investigation.

4. Fluctuations of capillary wave turbulence
4.1. Temporal evolution of spatial spectrum

In the previous section, we have characterized statistically stationary out-of-equilibrium
turbulent states of interacting waves. To better isolate the mechanisms at play, we now
investigate the temporal behaviour of the wave field, by computing at each time the
spatial power spectrum of the wave elevation Sη(k, t) (averaged over the directions).
As previously discussed for the wave potential energy in Berhanu & Falcon (2013),
we observe in figure 12(a) that Sη(k, t) displays stochastic bursts transferring energy
towards small spatial scales, as a consequence of the random forcing. For the
displayed measurement, 196 bursts can be counted in a duration of 41 s, which is
coherent with a typical forcing frequency of 5 Hz. Indeed, most of the time, the
wave energy is confined near the forcing scales, but, from time to time, wave energy
is quickly transferred through all spatial scales. The autocorrelation time of Sη(k, t) is
found for k inside of the capillary range, of the order of 0.05 s and the corresponding
rise time is estimated to be about 0.02 s by computing the cross-correlation of
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FIGURE 12. (Colour online) (a) Temporal evolution of the spatial spectrum Sη(k, t) in
the (t, λ−1) space for the highest wave amplitude measurement, σh = 3.6 mm. Colour
scale in a log10 scale. Several bursts of energy are observed and affect a broad range of
scales. Black dashed vertical lines mark the specific times t∗ used in (b). (b) Instantaneous
spatial spectra Sη(k, t∗) for t∗ = 16.85, 16.94 and 17.20 s as dotted lines for the same
measurement. Continuous thick red line: spatial spectrum averaged over the duration of the
measurement 41.0 s. Black line indicates the power law k−15/4. The instantaneous spectrum
has a higher amplitude than the average spectrum during an energy burst and has a lower
amplitude between the bursts.

Sη(k, t) for k within the forcing scale and k in the capillary range. Such a short
time shows that the typical nonlinear time characterizing wave interactions has to
be smaller than the wave period for frequencies below 50 Hz. The hypothesis of
weak nonlinearity is thus experimentally violated, as was shown by the analysis of
the width of the dispersion relation in § 3.2. Moreover, we show three instantaneous
spatial spectra Sη(k, t∗) as a function of λ−1 in figure 12(b), for some typical values
of t∗. These spectra are compared with the spectrum obtained after averaging over the
duration of the measurement. This latter spectrum is identical to the one obtained in
figure 8(a) and is compatible with the power law k−15/4 in the capillary range. When
t∗ corresponds to a burst of energy, the spectrum is significantly higher in amplitude
than the average spectrum, whereas it is slightly smaller in amplitude outside the
bursts. The strong events seem to transfer energy directly from the forcing to the
capillary scales, then the slower relaxation between bursts appears to be closer to the
weak wave turbulent regime hypotheses. Similar observations have been reported for
surface gravity wave turbulence (Bedard, Lukaschuk & Nazarenko 2013). Fluctuations
of the filtered spectral amplitude appear as a succession of random bursts, interpreted
as wave breaking events, for which the instantaneous spatial spectrum is higher.

In order to quantify the intermittency of energy fluctuations Ek(t), the probability
distribution function is plotted in figure 13(a) for a typical capillary wave mode,
λ−1
? = 0.094 mm−1. The energy spectrum per density unit is first obtained from Sη(k),

assuming that the wave energy is on average two times the potential energy and
neglecting higher-order terms in the surface extension:∫

Ek(k, t) dk=
2
ρ

∫ [
1
2
ρgSη(k)+

1
2
γ k2Sη(k)

]
dk. (4.1)

In random regimes of capillary waves, a Gaussian distribution of wave amplitudes
corresponds to a decreasing exponential distribution of Ek(t), exp(−Ek/〈Ek〉). At low
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FIGURE 13. (Colour online) (a) Probability density function (PDF) of wave energy
E(k?, t)/〈E(k?, t)〉 for λ−1

? = 0.094 mm−1: (∗) moderate forcing (σh = 2.0 mm, σs = 0.19)
and (E) high forcing (σh= 3.6 mm, σs= 0.34). Dashed line is the exponential distribution:
exp(−Ek/〈Ek〉). (b) Deviation of the previous PDF from the exponential distribution,
evaluated by computing the fourth-order moment M4 = 〈E4

k〉 minus 6, the exact result for
the exponential distribution, as a function of the wave amplitude σh.

forcing amplitude, the PDF of Ek(t) follows the exponential distribution, whereas at
high forcing amplitude the PDF departs from the exponential distribution with an
increased probability of strong events. This deviation from the Gaussian statistics
observation defines the intermittency in the dynamics of random waves (Choi et al.
2005). It is attributed to the presence of large-scale coherent structures caused
by strongly nonlinear events (Nazarenko et al. 2010). To quantify the intermittent
behaviour, we compute the fourth-order moment M4 = 〈E4

k〉, a higher moment being
more sensitive to the contribution of extreme events. For an exponential distribution,
M4 is exactly equal to 6. The difference M4− 6 is plotted in figure 13(b) as a function
of wave amplitude σh. The departure from the exponential distribution increases with
amplitude and saturates for the last three measurements. This criterion shows that
capillary wave energy has an intermittent dynamics, due to the occurrence of strong
bursts transferring energy from large scales to small scales by a fast mechanism. This
fast and non-local process likely corresponds to the generation of parasitic capillary
waves, as shown in the next subsection.

4.2. Evidence of parasitic capillary wave generation
In the physical space, we interpret the occurrence of strong bursting events of
wave energy as the generation of parasitic capillary waves. In order to reinforce
this observation, a quantitative criterion on the wave-field analysis is needed.
As the theoretical works are only performed for propagating and non-decaying
monochromatic gravity waves, it appears difficult to make a direct comparison with
our experimental results. Nevertheless, an approximate criterion of resonance is given
by the equality of the phase velocity of the gravity wave and the phase velocity of
the produced parasitic capillary wave. Knowing that waves are forced in the frequency
range (4, 6) Hz, a corresponding range of parasitic wave generation can be found
from the expression of the phase velocity of the gravity–capillary wave vφ = ω/k,
using the linear dispersion relation (1.1), as schematized in figure 14(a). Expressed
as the inverse of the wavelength, the forcing range reads λ−1

∈ (10.4, 20.9) m−1 and
the parasitic capillary wave generation range is found to be λ−1

∈ (198, 382) m−1.
In their analysis of experimental parasitic wave generation, Fedorov et al. (1998)
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FIGURE 14. (Colour online) (a) Schematic illustration of the condition of capillary wave
generation by the parasitic capillary wave mechanism. Blue (dark grey) and red (light
grey), respectively the phase and group velocity of gravity–capillary waves as a function
of λ−1. The waves in the forcing range excite capillary waves having the same phase
velocity. (b) Spatial 1-D spectrum Sη(kx, ky = 0) as a function of λ−1

x and multiplied by
λ−1

x to facilitate the comparison with Sη(k) for two time values and σh = 3.6 mm. At
t = 1.510 s, corresponding to the image in figure 2, where a parasitic capillary wave
appears, the spectrum is populated in the range given by the condition on the phase
velocity. At t= 1.595 s, the spectrum is lower in the capillary wave range.

claim that the interval of parasitic wave generation is extended due to nonlinear
effects. Taking into account the nonlinear correction of the phase velocity of the
gravity waves treated as a Stokes wave, the latter range would be multiplied by
(1 + σ 2

s ), which leads to λ−1
∈ (221, 426) m−1 as a range of maximal excitation of

capillary waves. The Doppler shift due to the orbital current induced by the large
gravity wave on the capillary wave may be also taken into account. In the laboratory
frame of reference, the total range of observation of parasitic capillary waves is
obtained after multiplication by a factor (1 ± 2σs) (Fedorov et al. 1998), giving
λ−1
∈ (70.8, 716) m−1. These scales appear clearly excited for strong bursts of the

spatial spectrum displayed in figure 12(a). As the instantaneous steepness can be
higher than σs, a clear cutoff at a maximal wavenumber is not visible with a random
excitation. Moreover, a depletion of the spectrum in the intermediate range between
λ−1
= 20.9 m−1 and λ−1

= 70.8 m−1 is not observed. To make the comparison with
the work of Fedorov et al. (1998), we plot in figure 14(b) the 1-D spatial spectra
Sη(kx, ky= 0) along the x direction corresponding to the main direction of propagation
of the gravity wave displayed in figure 2, at the instant of parasitic wave generation
(t = 1.510 s) and after it. The interval (198, 382) m−1 of parasitic wave generation
from the criterion of equality of phase velocities is plotted by thick vertical dashed
lines. Capillary waves are indeed excited in the parasitic capillary wave range at
t = 1.510 s. Due to the finite size of the observation window, the exact wavelength
of the forcing is not resolved in the spectrum. Then at t= 1.595 s the spectrum has
a lower amplitude in the capillary wave range, but with a similar amplitude in the
forcing range and for λ−1 > λ−1

d , i.e. the dissipative zone.
In order to generalize this statement for more capillary wave generation events, a

video animation has been made and can be found in the supplementary materials
(movie 2). For a duration of 2.5 s, the wave-field gradient ‖∇h(x, y)‖ and the
instantaneous spatial spectrum (1-D kxSη(kx, ky= 0) in blue and directionally integrated
Sη(k) in green) are displayed in the same figure, showing their time evolution. At

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ite

 P
ar

is
 7

 D
id

er
ot

, o
n 

10
 A

ug
 2

01
8 

at
 1

0:
34

:2
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
46

7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.467


Turbulence of capillary waves 827

specific times, capillary wave trains are clearly visible on the crests of long steep
gravity waves. Simultaneously in the spectrum, the range of parasitic wave generation
experiences a sudden increase. The largest events correspond to frontal collisions
of two counter-propagating gravity waves. This last parasitic capillary generation
mechanism has been described experimentally for steep standing waves (Schultz
et al. 1998), but has not been the object of a theoretical study. It appears that the
bursts of intermediate amplitude are more prone to follow the classical scenario of
formation of parasitic capillary waves. Nevertheless, the parasitic wave generation
mechanism appears to be a process relevant for the frequency range and steepness of
forcing waves in our experiment. This mechanism transfers, by a strongly nonlinear
interaction, wave energy from the large scale to the small scale. However, the
available theoretical work does not seem applicable directly to a random field of
waves in a closed tank. Moreover, after averaging over a sufficient duration, the
spatial spectrum can be described as a power law in the capillary wave range. The
periods between the bursts with parasitic wave generation have a significantly lower
wave amplitude and steepness. A relaxation process on a longer time scale seems
to populate the spectrum continuously with direct and inverse transfer, to approach
the wave turbulent spectrum on average. This description is similar to the turbulent
cycle of gravity wave turbulence (Nazarenko et al. 2010), where strongly nonlinear
coherent structures distributing energy on a large range of scales coexist with a
randomly distributed background of waves, producing on average the self-similar
spectra. Thus, in this section, we have shown experimentally that the capillary
spectrum is built by short time events corresponding to parasitic capillary wave train
generation and corresponds to the wave turbulence spectrum. Between the bursts,
the capillary spectrum is below the wave turbulent spectrum. This latter spectrum is
only found after temporal averaging over a duration incorporating parasitic events
and wave relaxation between the bursts. Therefore, experimentally, the power-law
spectrum of capillary waves is primarily formed by parasitic capillary waves and not
by local interactions of capillary waves.

5. Comparison of experimental results with the wave turbulence theory
5.1. Context

For strong enough forcing, spectra of the wave elevation have been found in § 3 to
follow a power law whose exponents are in agreement with those given by the wave
turbulence theory. However, these spectra appear to be built on average by a random
succession of strong nonlinear events, for which parasitic capillary trains are emitted.
This statement differs from the classic picture of wave turbulence, where randomly
distributed weakly nonlinear three-wave interactions construct the spectra. We now
propose a more thorough comparison of our experimental results with the predictions
of the wave turbulence theory (Zakharov et al. 1992; Nazarenko 2011; Newell &
Rumpf 2011), which provides a statistical description of weakly nonlinear dispersive
waves. We briefly provide the theoretical results, justifying the later analysis of our
experimental data.

In a statistically stationary regime, power-law spectra are predicted in wave
turbulence theory. They correspond to a transfer of a conserved energy flux ε from an
injection scale to a dissipative smaller scale. For pure capillary waves, by computing
the contribution of resonant three-wave interactions, wave turbulence theory predicts
the wave action spectrum nk (Zakharov & Filonenko 1967b; Pushkarev & Zakharov

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ite

 P
ar

is
 7

 D
id

er
ot

, o
n 

10
 A

ug
 2

01
8 

at
 1

0:
34

:2
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
46

7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.467


828 M. Berhanu, E. Falcon and L. Deike

2000). nk expresses qualitatively the number of quasi-particles populating the scale
defined by the wave vector k.

nk =CKZ(γ /ρ)
−1/4ε1/2k−17/4. (5.1)

Using the assumption of an isotropic system, the exact value of the dimensionless
Kolmogorov–Zakharov constant CKZ can be found (Pushkarev & Zakharov 2000; Pan
& Yue 2017). To relate the wave action spectrum to the measured wave elevation
spectrum, a few steps are needed. First, the wave action spectrum is integrated
over the direction under the hypothesis of an isotropic system, which leads to:
nk = 2πCKZ(γ /ρ)

−1/4ε1/2k−13/4. The wave energy spectrum per density unit is defined
by Ek=ω(k)nk, where ω(k) is given by the linear dispersion relation of pure capillary
waves ω2

= (γ /ρ)k3. Averaging over several periods, the wave energy is written as
〈E〉 = 〈Ec + Epot〉 = 2〈Epot〉. For pure capillary waves in the weakly nonlinear limit,
Epot = (1/2)(γ /ρ)k2Sη(k). The spatial spectrum of the wave elevation can be thus
computed from the wave action spectrum. The temporal spectrum is obtained from
the spatial spectrum by using the dispersion relation for pure capillary waves and
performing a variable change in the relation:

〈η2
〉 =

∫
Sη(k) dk=

∫
Sη(ω) dω. (5.2)

Finally, we find:

Sη(k)= 2πCKZε
1/2(γ /ρ)−3/4k−15/4, Sη(ω)= 4π/3CKZε

1/2(γ /ρ)1/6ω−17/6. (5.3a,b)

We note that the values of dimensionless pre-factors differ in a recent theoretical
work (Pan 2017).

The spectra (5.3) can also be deduced from dimensional analysis, knowing that the
scaling on ε is set by the order of the resonant interaction (an N-wave process implies
an energy flux scaling under the form: ε1/(N−1)) (Connaughton, Nazarenko & Newell
2003), but without the values of the dimensionless constants CKZ .

Simulations of the Zakharov Hamiltonian formulation of water waves have been
first presented (Pushkarev & Zakharov 1996, 2000), and recent direct numerical
simulations have confirmed the validity and accuracy of the predictions given by the
wave turbulence theory (Deike et al. 2014b; Pan & Yue 2014) for pure capillary
waves and with a low dissipation level. By adding a weak level of broad-scale
dissipation, a numerical study of the decay of pure capillary wave turbulence (Pan &
Yue 2015) displays an exponential decay of amplitude and a decrease of the slope
of the capillary cascade. The role of nonlinear broadening has also been investigated
(Pan & Yue 2017) for numerical simulations performed in finite domains.

To approach the natural situation, a direct numerical simulation of turbulence of
surface waves, when capillary waves are excited by gravity waves, is of interest.
Recently, in a numerical study of air–water sheared flow, Zonta, Soldati & Onorato
(2015), Zonta, Onorato & Soldati (2016) observed that the spatial spectrum of
the surface deformation presents a power law whose exponent is compatible with
the value given by wave turbulence theory for capillary waves. In contrast with the
previous numerical studies, the complete dispersion relation of gravity–capillary waves
is implemented, but due to the shear forcing, the resulting wave field is anisotropic.
For the case with the strongest capillary effects, the conversion of gravity waves into
capillary ripples is supposed to occur through the parasitic capillary wave mechanism
(Zonta et al. 2016). These latter numerical results present some similarities with
our measurements. However, to determine quantitatively if wave turbulence theory is
relevant in these situations, a measurement of energy flux ε is necessary.
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Turbulence of capillary waves 829

5.2. Dissipation spectrum and estimation of energy flux
In order to estimate the energy flux, we follow the approach proposed by Deike et al.
(2014a) in a previous study of capillary wave turbulence using a local capacitive probe,
and compute the dissipation spectrum within the capillary wave spectrum. A similar
approach has been performed in the context of elastic wave turbulence experimentally
(Humbert et al. 2013) and numerically (Miquel, Alexakis & Mordant 2014). First, on
average over a large number of wave periods the kinetic energy Ec is equal to the
potential energy Epot. Assuming 〈E〉 = 〈Ec + Epot〉 = 2〈Epot〉, the spectrum of energy
per density unit Ek(k) is written as:∫

Ek(k) dk=
2
ρ

∫ [
1
2
ρgSη(k)+

1
2
γ k2Sη(k)

]
dk. (5.4)

Here the analysis is carried out by using spatial spectrum Sη(k) averaged over time,
but to facilitate the comparison with previous works using local probes, the results
are then expressed as a function of the frequency using the linear dispersion relation,
as was shown in figure 8(b). The dissipation spectrum is obtained by computing the
total dissipated power D from the dissipation rate of energy Γ at the frequency f :

D=
∫

Dη( f ) df =
∫

Ef ( f )Γ ( f ) df . (5.5)

For gravity–capillary waves at a frequency above 4 Hz, we assume that most of the
dissipation can be described by the linear inextensible film model (Lamb 1932; van
Dorn 1966; Deike et al. 2012; Henderson & Segur 2013). In the capillary range the
experimental dissipation rate δ is indeed well described by this model (Deike et al.
2012; Haudin et al. 2016). The energy dissipation is written as Γ ( f )=

√
2
√
νωk( f )/2.

It can be shown (Deike et al. 2012, 2014a) that the contributions of the tank walls
and bottom are negligible in the total dissipation for gravity waves of frequency
above 4 Hz, and even more for capillary waves. The dissipation spectrum is plotted
in figure 15(a). As stated previously (Deike et al. 2014a), most of the dissipation
occurs in the gravity wave range. Then the energy budget in the frequency space can
be written as:

∂Ef

∂t
+
∂ε

∂f
=−Dη( f ). (5.6)

This relation is adapted from a similar equation in the k space (Nazarenko 2011).
Consequently, after a temporal averaging suppressing the temporal dependency, the
energy flux at a given frequency ε( f ) reads:

ε( f ∗)=
∫ fm

f ∗
Dη( f ) df . (5.7)

Here fm ≈ 1800 Hz is the maximal frequency corresponding to the highest value
of k scanned in the spatial Fourier analysis. By convention, we impose ε( f ∗ = fm)
to be zero. As the analysis is performed after temporal averaging for a statistically
stationary regime, it is not necessary to consider unsteady energy transfer as in
Pan & Yue (2015). This estimation of energy flux ε( f ∗) obtained by integration
of the dissipation spectrum is shown in figure 15(b). As stated in previous studies
of wave turbulence, in the presence of dissipation, the energy flux ε( f ∗) decreases
with frequency and thus is not conserved inside the power-law capillary spectrum.
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FIGURE 15. (Colour online) (a) Wave dissipation spectrum Dη( f ) (see text for definition)
for different forcing amplitudes. From bottom to top: σh = 1.3, 2.1, 2.7, 3.1, 3.4 and
3.6 mm, and σs= 0.15, 0.19, 0.24, 0.27, 0.29 and 0.34. (b) Estimation of the energy flux
ε( f ∗) as a function of the frequency f ∗ obtained by integration of the dissipation spectrum
for the same measurements. The energy flux is not constant, showing that dissipation
occurs at all scales, even over the range of frequencies where a power-law spectrum is
observed.

In numerical simulations of capillary wave turbulence with broad-scale dissipation,
the varying nonlinearity level leads to smaller spectral slopes than the theoretical
values (Pan & Yue 2015). For elastic plate turbulence, experimentally (Humbert et al.
2013) and numerically (Miquel et al. 2014), non-conservation of energy flux due to
dissipation leads to a steepening of the spectra slope. A similar observation is reported
experimentally for gravity wave turbulence (Campagne et al. 2018). In contrast here,
and in a similar experiment (Deike et al. 2014a) for low enough viscous fluids, the
spectral slope remains close to the wave turbulence theory value (−17/6 for the
temporal spectrum). Due to the smaller container size and the higher excitation level,
the values of ε( f ∗) are found here to be two orders of magnitude larger than in Deike
et al. (2014a,b). We note that this estimation of the energy flux is valid only for a
statistically stationary measurement, as the formula providing the dissipation Γ ( f ) is
obtained after averaging over several wave periods (Henderson & Segur 2013).

To compare in more detail the experiments with the theoretical framework, we
estimate for each measurement an effective energy flux ε∗ for turbulence of capillary
waves by taking the average of ε( f ∗) between fc and fd. ε( f ∗) is nearly linear
with the total dissipated power D in the capillary range. In figure 16(e), ε∗ (blue
stars) is found to grow with the wave amplitude σh, as this quantity is an indirect
measurement of forcing amplitude. ε∗ is defined from the energy balance (5.6) and
Ef is a quadratic function of the wave amplitude, thus ε∗ should behave as σ 2

h . For
the range of measurements, ε∗ follows experimentally a scaling as σ 2.1

h , except for
the final point corresponding to the highest forcing amplitude.

Following the expressions of capillary wave turbulence spectra (5.3), compensated
spatial and temporal spectra can be computed. For neither the spatial and temporal
compensated spectra in figure 16(a,b) do we observe a satisfying collapse of the
different measurements. Even if we exclude the lowest amplitude measurement, there
is roughly a factor two between the spectrum for σh = 3.6 mm and the one for
σh = 2.1 mm. We note also that the estimation of energy flux ε∗ is indirect, and
relies on strong hypotheses concerning the dissipative processes, and thus remains
approximate in the experiments.
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FIGURE 16. (Colour online) (a) Spatial spectra Sη(k), compensated by the theoretical
expression (5.3) for varying wave amplitude (see figure 8), using ε = ε∗. (b) Temporal
spectra Sη(ω), compensated by the theoretical expression (5.3) for varying wave amplitude,
using ε = ε∗. The non-dimensional pre-factor, K, of the rescaled spectra can be evaluated
between the crossover scale (λ−1

c or fc) and the dissipative scale (λ−1
c or fc), see (5.10)

(c) Same plot as in (a) with ε = εE. (d) Same plot as in (b) with ε = εE. (e) Effective
energy fluxes in the capillary range ε∗ (defined in § 5.2, blue ∗) and εE (defined in
§ 5.3, red ×) for varying wave amplitudes σh. Dashed and dotted lines show the expected
scaling law ε∝ σ 2

h . ( f ) Non-dimensional pre-factor K (see (5.10)) obtained experimentally
from compensated spectra as a function of σh. ∗: K using ε = ε∗ (energy flux from the
dissipation spectrum). ×: K using ε = ε∗ (energy flux from energy fluctuations). The
non-dimensional pre-factor K varies with the forcing strength, in disagreement with the
capillary wave turbulence theory.

5.3. Estimation of energy flux from energy fluctuations

To consolidate the estimation of the energy flux, we propose here another method to
evaluate experimentally the energy flux, relying on the temporal fluctuations of the
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energy spatial spectrum Ek(t) deduced from Sη(k, t) (see § 4.1). The energy budget of
the capillary wave cascade written in the wavenumber space provides an alternative
theoretical method to compute the energy flux (Nazarenko 2011; Miquel et al. 2014;
Pan & Yue 2015):

∂Ek

∂t
+
∂ε

∂k
=−Dη(k), (5.8)

with Ek the spatial spectrum of energy per density unit (5.4), ε the energy flux
and Dη(k) the spatial dissipation spectrum. ∂Ek(k, t)/∂t can be obtained from the
instantaneous spatial spectrum Sη(k, t) (plotted in figure 12), and it would thus
be interesting to gain access to the fluctuations of the energy flux ε. However,
experimentally the dissipation rate Γ (k) at the scale k is estimated through the
inextensible film model, valid only after averaging over several periods. The
dissipation spectrum Dη(k) = Ek(k)Γ (k) is thus not resolved in time (with Γ (k)
the dissipation rate at the wavenumber k). However, the energy fluctuations could
provide a complementary estimation of the energy flux. We find experimentally that
the temporal r.m.s. value of energy fluctuations integrated over the wavenumbers has
the same order of magnitude as ε∗. This quantity is written as:

εE =

√√√√〈(∫ kd

kc

∂Ek

∂t
dk
)2
〉
, (5.9)

with kc the wavenumber corresponding to the gravity–capillary crossover, kd the
dissipative scale and 〈 〉 denotes a temporal average. εE is plotted as a function of σh
in figure 16(e) (red crosses) and compared with ε∗. We observe that εE has the same
order of magnitude as ε∗, but is systematically smaller. εE also roughly follows the
scaling in σ 2

h .
Then, replacing ε∗ by εE, we plot the corresponding compensated spectra in

figure 16(c,d). The compensated spectra are slightly better clustered than in figure 16,
but the ratio between the top and bottom curves is also of order two. This method
of estimating ε from the energy fluctuations is not completely justified theoretically,
because a rigorous estimation of the effective energy flux ε should balance dissipation
and energy fluctuations. However, these results suggest than on average these two
quantities have the same order of magnitude.

We note also that ε could be directly computed from the nonlinear interaction
kernel (Nazarenko 2011). This can be achieved in numerical simulations when having
access both to the time-dependent Fourier modes of the wave amplitude and the wave
potential. This is not available experimentally so far. In numerical simulation, such a
budget has been computed by Yokoyama & Takaoka (2014) in the context of elastic
plates.

5.4. Test of the scaling of spectra according wave turbulence theory
Using the two estimations of effective energy flux, ε∗ and εE, for turbulent capillary
waves, we plotted the compensated spectra in figure 16 according the theoretical
expressions given by the wave turbulence theory. From these energy flux estimations,
a good rescaling is not observed. Moreover, experimentally the hypotheses of the
wave turbulence theory (isotropy, weak nonlinearity, conserved energy flux and so on)
are not met. Therefore, we emphasize that we cannot evaluate the numerical values
of the Kolmogorov–Zakharov constant CKZ in our experiment from the compensated
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Turbulence of capillary waves 833

spectra. Nevertheless to summarize our results, we can estimate the non-dimensional
pre-factor of the wave elevation spectra using the wave action spectrum (5.1):

Sη(k)= 2πKε1/2(γ /ρ)−3/4k−15/4, Sη(ω)= 4π/3Kε1/2(γ /ρ)1/6ω−17/6. (5.10a,b)

We obtain K by taking the average of the spatial compensated spectrum (with
λ−1
∈ (94, 312) m−1 to take into account the increase of λ−1

d with σh) of the
temporal spectrum (average between f ∈ (15, 100) Hz) and of the temporal spectrum
derived from spatial measurements. Due to the approximate rescaling in frequency
or wavenumbers, the value of K for each spectrum is evaluated up to a factor two.
We plot in figure 16( f ) the average value between these three rescaled spectra as a
function of σh, in the case where the flux is given by the dissipation spectrum ε = ε∗

(blue stars) and in the case where the flux is given by the energy fluctuations ε = εE
(red crosses). In the case ε = ε∗, K is found to increase with σh. In the case ε = εE,
the values of K are systematically larger and more scattered. According to the wave
turbulence theory, the pre-factor K should not depend on the wave amplitude (which
is contained in ε) and the values of K should all collapse towards a constant. Our
experimental results demonstrate that at high levels of nonlinearity, with parasitic
capillary wave formation and with an important broad-scale dissipation, the spectra
are not quantitatively in agreement with the wave turbulence theory predictions,
although the experimental spectral slopes have the values given by the theory.

5.5. Applicability of wave turbulence theory in capillary wave experiments
Given the presented results, we discuss now the applicability of Zakharov’s theory
in capillary wave experiments. Several independent experiments have reported
observation of the spectra exponents given by the wave turbulence theory (Wright
et al. 1996; Henry, Alstrom & Levinsen 2000; Brazhnikov et al. 2002; Falcon
et al. 2007; Falcón et al. 2009; Xia, Shats & Punzmann 2010). Nevertheless, tests
of the energy flux scaling ε1/2 have been performed in only one experimental
study (Deike et al. 2014a) for a very low viscosity liquid (mercury). Most previous
laboratory works have tried to isolate capillary wave turbulence from the gravity wave
regime by using a parametric forcing (Wright et al. 1996, 1997; Henry et al. 2000;
Brazhnikov et al. 2002; Snouck, Westra & van de Water 2009; Xia et al. 2010),
by operating under microgravity (Falcón et al. 2009) or by studying waves at the
interface between two fluids (Düring & Falcón 2009; Issenmann, Laroche & Falcon
2016). In experiments where capillary waves are forced by random gravity waves, the
situation is puzzling. Spectra of capillary waves measured with local capacitive probes
verify the power law f−17/6 (Falcon et al. 2007; Deike et al. 2012, 2014a). However,
study of the decay of turbulence has shown that the decline of the capillaries follows
the viscous damping of the largest container eigenmode (Deike et al. 2012). A similar
observation was also reported for a parametric excitation with a cryogenic liquid of
low viscosity (Brazhnikov et al. 2002). Consequently, dissipation occurs at all scales
of the turbulent cascade leading to a non-conserved energy flux (Deike et al. 2014a).
This latter point constitutes a severe drawback of the applicability of wave turbulence
theory for capillary wave experiments, as the formalism of the theory relies on a
Hamiltonian description of the wave-field dynamics.

Here, our spatio-temporal measurements of free-surface deformation complete these
previous observations. Capillary waves are generated by nonlinear wave interactions
from the randomly excited gravity waves produced by the wavemaker. At a high
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834 M. Berhanu, E. Falcon and L. Deike

enough forcing amplitude, for the scales belonging to the capillary wave range,
spectra of wave elevation behave as power laws, defining the turbulence of capillary
waves. The exponents of spectra are in agreement with the wave turbulence theory
(−15/4 in k-space and −17/6 in ω-space). However, the level of nonlinearity given
by the wave steepness and the significant broad-scale dissipation suggests that the
experimental capillary wave turbulence probably does not follow the weakly nonlinear
mechanisms described in the theory. Due to the large viscous dissipation in capillary
scales, the level of forcing corresponding to a randomization of the initial conditions
corresponds to a high level of nonlinearity. Using two different methods, we show that
the time-scale separation is broken. First, the nonlinear times have similar values to
the linear time, i.e. the wave period. Then, by analysing the temporal fluctuations of
the spectra, we demonstrate that the wave energy transfers occur through successive
bursts, distributing energy quasi-instantaneously from forcing scales to a large range
of smaller scales. Between bursts, a relaxation process takes place which could be
closer to the weakly nonlinear theory. We interpret those strong nonlinear events in
the physical space as a manifestation of parasitic capillary wave generation. This
non-local wave interaction mechanism produces capillary waves from gravity waves
commonly observed at the surface of the oceans. Evidence of parasitic capillary wave
trains are found in the experimental reconstructions of the wave field and, due to the
random forcing, capillary waves are excited on a broad range of scales. The process
generating the capillaries is strongly nonlinear and explains the short correlation time
scale observed in the capillary turbulent spectra.

Then, by estimating the dissipated power through the viscous wave damping,
we estimate the energy flux ε( f ∗) in the capillary wave range. This energy flux
is not conserved through the scales, again displaying the importance of viscous
dissipation and a strong disagreement with the hypothesis of wave turbulence theory
which supposes that dissipation is negligible in the inertial range, where power-law
spectra are expected (and observed). The rescaling of the wave spectra by the mean
energy flux for different excitation amplitudes is approximate both when considering
the spatial spectra (in figure 16a) and the temporal spectra (in figure 16b). These
observations confirm that the capillary wave turbulence experimentally obtained in
the strongly nonlinear regime is not described by the weakly nonlinear theory.

However, we have evidence of the presence of three-wave interactions in the
temporal and spatial Fourier spaces and the exponents of power-law spectra are
close to those given by the wave turbulence theory. How can we explain these
statements? We assumed that wave energy transfer occurs mainly through strong
and fast nonlinear events, which are interpreted as parasitic capillary wave generation,
when the forcing gravity waves are sufficiently steep. In fact, parasitic wave generation
can be described at leading order as a non-resonant three-wave process (Watson &
Buchsbaum 1996; Watson 1999). Moreover, it was found that the energy decay of
parasitic waves follows the law E(t)/E(t= 0)= [1+ t/τ ]−1 (Deike et al. 2015b), with
τ a characteristic nonlinear time. This temporal evolution in the decaying regime
is a direct consequence of the quadratic nonlinearity of the equations governing
free-surface waves. Then, the bispectral analysis shows clear evidence of three-wave
interactions in frequency space. Therefore, at the leading order, the wave energy
transfer occurs through three-wave interactions, which may be resonant or not.
This statement implies a energy flux scaling in ε1/2, which is only approximately
verified by plotting the compensated spectra (figure 16a–d) with ε estimated from the
dissipation spectrum or from the fluctuations of the energy spectrum. Consequently,
from dimensional analysis and the linear dispersion relation, the exponents of the
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Turbulence of capillary waves 835

power-law spectra for capillary waves in the turbulent regime are −15/4 in k-space
and −17/6 in ω-space, like in wave turbulence theory (Connaughton et al. 2003),
under the condition that nonlinearity is high enough to develop a self-similar regime
on a sufficiently large range, defining clear power-law spectra. Incorporation of
higher-order nonlinear interactions (four-wave, five-wave and higher processes), could
improve the description, especially in the rescaling of spectra by the estimated
average energy flux ε∗. This experiment with nonlinear random regimes of capillary
waves demonstrates that the verification of spectral slopes is not sufficient to test
accurately wave turbulence theory in experiments. Although difficult and approximate
in experiments, estimation of the energy flux appears necessary.

6. Experimental constraints on capillary wave turbulence observation
Wave turbulence theory fails to describe quantitatively random regimes of capillary

waves in our experiments. We argue that this statement can be generalized to
other experimental or natural situations, where random capillary waves on Earth
are generated in water from gravity waves by nonlinear interactions, due to two main
reasons: significant viscous dissipation and the gravity–capillary wave crossover.

6.1. Effect of viscous dissipation
First, viscous dissipation is important for capillary waves and cannot be neglected.
The inextensible film model (van Dorn 1966; Henderson & Segur 2013) provides the
wave decay rate δ=

√
2
√
νωk/4 in deep-water conditions and is verified for capillary

waves. The transition between gravity and capillary waves occurs for a critical
wavenumber kc =

√
ρg/γ , which corresponds to a critical frequency fc ≈ 14 Hz. For

this frequency fc, from which the capillary wave range starts, the dissipative time
1/δc ≈ 0.69 s. This time can be interpreted spatially by computing the corresponding
dissipative length latt = vg/δ, with vg = ∂ω/∂k, which for fc gives latt c ≈ 0.15 m.
This length constitutes the typical distance travelled by a wave produced by the
wavemaker or a nonlinear interaction. If we consider the highest frequency of the
capillary power-law spectrum, fd = 200 Hz, then 1/δm ≈ 0.024 s and latt d ≈ 0.015 m.
The size of the tank being 0.165 m, it consequently appears impossible to obtain
a homogeneous wave field by exciting the waves in the capillary range, except
when the forcing is homogeneous, like when capillary waves are forced through the
Faraday instability. Finite-size effects are also often discussed as a quantization of the
wavenumbers in the tank, but we emphasize that this quantization occurs by multiple
reflections on the boundaries of the tank, like an N-wave interference process (see
appendix A). Moreover, the reflection coefficient in the presence of a contact line in
the capillary regime is not well documented, but a recent study (Michel, Petrelis &
Fauve 2016) shows that is lower than one. Damping by the meniscus and the strong
surface dissipation by viscosity thus explain why no quantization in wavenumbers is
observed in capillary wave experiments, as can been seen in figure 6(a), because a
capillary wave disappears after travelling a distance of the order of 2latt c ≈ 0.3 m. A
small-sized experiment helps in obtaining a sufficient energy flux per surface unit ε
to observe power-law spectra, but for capillary waves the boundaries are almost not
felt. However this is difficult to quantify, the strong dissipation likely implies a strong
forcing amplitude to fill the spectrum in the capillary wave range, which explains
why, to obtain the self-similar wave turbulent regime, a steepness of the order of 0.2
is needed. Moreover, it is not efficient to produce capillary waves directly through the
wavemaker, because they would be observable only in the vicinity of the wavemaker
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836 M. Berhanu, E. Falcon and L. Deike

due to the viscous damping. The capillary waves are then produced from gravity
waves by nonlinear wave interactions.

The substantial viscous dissipation thus occurs at all scales and implies that energy
flux is not conserved through the scales. Consequently, the constant-flux solutions of
wave turbulence theory cannot be applied directly to the experimental field of random
capillary waves. To take into account the decay of energy flux through the capillary
scales, an average energy flux ε∗ (or εE) can be used to rescale the spectra. When
a low-viscosity liquid like mercury is used the rescaling is acceptable (Deike et al.
2014a), but here with water, using the same method, the rescaling is less convincing.

6.2. Effects of gravity–capillary wave crossover
The nonlinear conversion of gravity waves into capillary waves is also problematic
in applying wave turbulence theory to experimental capillary waves. The power-law
spectra are indeed obtained for self-similar dispersion relations expressed also as
power laws. The analytically predicted spectra are thus expected either for pure gravity
wave or pure capillary wave turbulence, thus far from the crossover wavenumber kc.
Several experiments (Falcon et al. 2007; Deike et al. 2012, 2015a) in water or
mercury have shown an abrupt transition around fc between a gravity wave power-law
spectrum and a capillary wave power-law spectrum. However, for a given energy
flux ε, both spectra are incompatible as the values of the Kolmogorov–Zakharov
constants are fixed by the theory. For gravity wave turbulence, according wave
turbulence theory, the power spectrum of the wave elevation η(x, t) is written in
time as (Zakharov & Filonenko 1967a): Sη(ω) = C(gω)

KZ ε
1/3ω−4. The value of C(gω)

KZ
was analytically found approximately equal to 2.75 (Zakharov 2010). If we assume
that, at the gravity–capillary crossover fc, the gravity wave spectrum equals the
capillary wave spectrum, Sη(ω) = 4π/3CKZε

1/2(γ /ρ)1/6ω−17/6, with 4π/3CKZ ≈ 41
(Pushkarev & Zakharov 2000), then the same energy flux cannot be transferred
from gravity scales to capillary scales. A simple order of magnitude illustrates this
statement. For example, in gravity wave turbulence experiments, the energy flux was
found to be equal to ε = 1 × 10−4 m−3 s−3 for the gravity wave cascade (Deike
et al. 2015a). Continuity of the temporal spectrum Sη(ω) for ωc = 2πfc implies
that ε becomes equal to 6.9 × 10−7 m−3 s−3 in the capillary wave regime, a value
significantly lower. This result holds for other values of the energy flux. If we
assume that fc is a free parameter, continuity of gravity and capillary wave turbulent
spectra gives a gravity–capillary crossover at f = 1.65 Hz for ε = 1× 10−4 m−3 s−3,
which appears too small. The order of magnitude of fc would be found only for
an energy flux of order ε = 1 × 10−10 m−3 s−3. Therefore, only a small amount of
the energy in the wave system could be transferred to the capillary waves by a
wave turbulence mechanism assuming local interactions in k space. An estimation of
the injected power at large scales will thus fail to estimate the energy flux of the
capillary wave turbulence. Whereas it was proposed that, for small enough energy
flux (ε < (γ g/ρ)3/4 ≈ 4.3 × 10−3 m−3 s−3), gravity and capillary spectra could be
connected (Connaughton et al. 2003), it appears thus that, for given values of the
Kolmogorov–Zakharov constants, either energy accumulation is expected around fc or
energy transfer to the small scales occurs by non-local interactions, i.e. the involved
scales are significantly separated in frequency or wavenumber space. Our experiments
illustrate the latter case. Steep gravity waves produce short capillary wave trains by a
fast and direct mechanism at small scale, like the parasitic capillary wave generation
mechanism. As illustrated in figure 12(a), energy bursts quasi-instantaneously populate
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Turbulence of capillary waves 837

a large range of capillary scales. For a sufficient steepness we thus expect that
gravity waves nonlinearly generate capillary waves by direct non-local interactions,
whereas wave turbulence theory assumes local interactions in wavenumber space
(Nazarenko 2011). There have been a few statistical studies of gravity–capillary
waves, using a kinetic equation including three-wave interactions numerically (Watson
& McBride 1993; Watson & Buchsbaum 1996; Watson 1999; Dulov & Kosnik 2009;
Kosnik et al. 2010) and analytically (Stiassnie 1996). However, the resulting spectra
are consequently not expressed as power laws and so are more difficult to test
experimentally.

7. Conclusion
An experimental study of the turbulent regimes of capillary waves forced by steep

gravity waves is presented here, using a spatio-temporal measurement of free-surface
deformation. Gravity waves are generated by a wavemaker with a random forcing in a
small tank. Capillary waves are generated by nonlinear wave interactions, principally
by the transient generation of capillary trains in a way similar to the parasitic capillary
wave generation mechanism. In spatial Fourier space, capillary wave generation is
associated with intermittent bursts of energy quasi-instantaneously transferring energy
from the large to the small scales. After a temporal average, capillary waves appear on
average uncorrelated, justifying a statistical analysis based on the spatial and temporal
spectra of the wave elevation. At a high enough amplitude of excitation, for the scales
belonging to the capillary wave range, spectra of the wave elevation behave as power
laws, whose exponents are in agreement with the wave turbulence theory (−15/4 in
k-space and −17/6 in ω-space). However, due principally to the substantial viscous
dissipation and the significant level of nonlinearity, the wave turbulence theory fails
to describe these experimental measurements. The observed power laws may thus be
explained by dimensional analysis in the presence of a quadratic nonlinearity.

In this work, we experimentally characterize an example of strong wave turbulence,
which differs in the mechanisms at play from the weakly nonlinear wave turbulence
theory. In particular, capillary waves are mainly produced by the parasitic capillary
wave generation mechanism, which can be interpreted in a first approximation as a
strongly non-local and non-resonant three-wave interaction (Watson & Buchsbaum
1996). Taking into account higher-order nonlinear interactions could be necessary to
describe quantitatively parasitic wave generation. Moreover, non-resonant interactions
are often not considered in the study of random waves interacting nonlinearly, because
the contributions of non-resonant interactions in wave energy vanish for a sufficiently
large system or long observation times. Nevertheless, for capillary waves, due to
viscous dissipation, the lifetime of the wave packets is short and the tank size
is limited – therefore, the contribution of non-resonant interactions has no reason
to be negligible. The determination of the relative contribution between resonant
and non-resonant interactions could constitute a new direction in wave turbulence
study, beyond the weakly nonlinear limit. Such a study is indeed relevant in most
experimental systems with interacting waves. A similar statement could be drawn
in nature, for the small-scale spectrum of random sea, when capillary waves are
generated by the parasitic capillary wave generation mechanism.
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Appendix A. Effect of wave dissipation on finite size effects
Using a simplified model we study in this appendix the effect of viscous wave

dissipation on the wave quantization phenomenon, which is expected when the wave
field is confined in a finite-sized container. We consider a 1-D domain along Ox
between x = 0 and x = L, limited by rigid walls. An initial monochromatic surface
wave of wavenumber k and angular frequency ω is continuously injected at x = 0
with an amplitude A0. The motion of the wall creating the wave is supposed to
be sufficiently small as to be neglected. Due to linear viscous dissipation the wave
decays spatially at a rate β. The wavelength is supposed small compared to the typical
dissipation length 1/β and the system length. The initial free-surface deformation is
written using complex formalism η0(x, t) = A0e−β xei(ωt−kx). When the wave reaches
the position x= L, to zero the horizontal velocity at any time, it can be shown that a
reflected wave labelled 1 is created, propagating backwards with the same amplitude
as the incident wave. The wave 1 is then reflected at x= 0 to create the forward wave
2 and so on. The total free-surface deformation can be expressed in the stationary
regime by the sum:

η(x, t)= A0e−βxei(ωt−kx)
+ A1eβ(L−x)ei(ωt+kx)

+ A2e−βxei(ωt−kx)
+ A3eβ(L−x)ei(ωt+kx) . . . (A 1)

with the following relations between the wave amplitudes,

A0e−βLe−ikL
= A1eikL

A1e−βL
= A2

A2e−βLe−ikL
= A3eikL

. . .

 . (A 2)

Then the amplitudes of the forward and backward waves are written, respectively, as:

A2p = A0(e−2βLe−2ikL)p, A2p+1 = A1(e−2βLe−2ikL)p. (A 3a,b)

Consequently, η can be seen as the sum of two geometric sequences with the same
ratio e−2βLe−2ikL. By taking the infinite limit in the sum, like in a N-wave interference
problem, we obtain:

η(x, t)=
A0

1− e−2βLe−2ikL
(ei(ωt−kx)

+ e−βLe−2ikLei(ωt+kx)). (A 4)

The space and time average amplitude is obtained by taking the square root of the
product of η with its complex conjugate. After some algebra, we obtain:

〈η〉 =
√
ηη∗ =

 A2
0
1+ e−βL

1− e−βL

1+ 4
e−βL

(1− e−βL)2
sin2(kL)


1/2

. (A 5)
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FIGURE 17. (Colour online) (a) 〈η〉/A0 as a function of kL/π for different levels of wave
dissipation quantified by the attenuation length latt=0.2L (blue dashed line), latt=2L (cyan
dotted line), latt = 20L (green dash–dotted line) and latt = 200L (red plain line). For small
enough dissipation, wavenumber quantization for k multiples of π/L is found. (b) Half-
width at half-maximum of the resonant peak as a function of latt. (c) 〈η〉/A0 as function of
the wave frequency using the experimental parameters: container size, dispersion relation
and increasing dissipation rate with frequency. Wave-mode quantization disappears above
f > 10 Hz.

The dependency of 〈η〉 with the wavenumber k is plotted in figure 17(a) for
varying dissipation level. The attenuation length latt = 1/β is used to facilitate the
comparison with the system size. The solution is analogous to the resonance of a
cavity in which a wave is injected. When dissipation is small or latt large, resonance
occurs for the eigenmode of the system given by the condition k = pπ/L, with
p a positive integer. The peak amplitudes saturate due to the non-zero dissipation.
If dissipation is increased, the attenuation length decreases and the width of the
peaks increases, as can be seen in figure 17(b). For latt . 0.4L the width become
comparable to the distance between peaks and they become indistinguishable. 〈η〉 is
thus nearly flat for latt = 0.2L in figure 17(a). These results can be applied to the
experimental situation, by taking L= 0.165 m, using the dispersion relation (1.1) and
expressing latt = vg/δ, with δ=

√
2
√
νωk/4 the decay rate in deep water according to

the inextensible film model (see § 6.1). The average wave amplitude 〈η〉 is displayed
as a function of the frequency of the injected wave in figure 17(b). Resonance due to
the finite size of the tank becomes insignificant for f > 10 Hz, thus in the capillary
regime. This simple model shows that the quantization of the wavenumbers in a
finite-sized domain is a limit result for vanishing viscous dissipation in the presence
of forcing. The eigenmodes are indeed stationary wave solutions in the free regime
(without forcing by a wavemaker) and obtained by applying a Helmholtz equation on
the domain. With forcing and small dissipation, these modes are created physically
by an interference process due to multiple reflections of the waves on the domain
boundaries. In the presence of significant dissipation, the container modes are less
defined or even disappear completely when the waves are damped too much during
their propagation to feel the boundaries. Experimentally, energy dissipation at the
reflection in capillary wave regime, due to the motion of the contact line, increases
still further the total amount of dissipation, and the wave-mode quantization becomes
even less observable.
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