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We experimentally study resonant interactions of oblique surface gravity waves in
a large basin. Our results strongly extend previous experimental results performed
mainly for perpendicular or collinear wave trains. We generate two oblique waves
crossing at an acute angle, while we control their frequency ratio, steepnesses and
directions. These mother waves mutually interact and give birth to a resonant wave
whose properties (growth rate, resonant response curve and phase locking) are fully
characterized. All our experimental results are found in good quantitative agreement
with four-wave interaction theory with no fitting parameter. Off-resonance experiments
are also reported and the relevant theoretical analysis is conducted and validated.

Key words: surface gravity waves, waves/free-surface flows

1. Introduction

Resonant interactions between nonlinear waves are an efficient mechanism to
transfer energy between scales. For instance, three-wave interactions appear in various
systems involving quadratic nonlinearity, such as for optical waves, hydrodynamic
capillary surface waves, or elastic waves on a thin plate.

For hydrodynamic systems, experimental studies of three-wave interactions have
been investigated for capillary surface waves (McGoldrick 1970; Henderson &
Hammack 1987; Aubourg & Mordant 2015; Haudin et al. 2016), internal waves
in stratified fluids (Martin, Simmons & Wunsch 1972; Joubaud et al. 2012) and
inertial waves in fluids in rotation (Bordes et al. 2012). For wave systems involving
concave dispersion relation (i.e. when the wave frequency ω follows ω(k) ∼ kν

† Email address for correspondence: felicien.bonnefoy@ec-nantes.fr
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with k the wavenumber and ν < 1) or cubic nonlinearity, such as for surface gravity
waves in deep water, three-wave resonance conditions cannot be fulfilled. Four-wave
interactions may then occur if interacting waves fulfil the following resonance
conditions k1 + k2 = k3 + k4 and ω1 + ω2 = ω3 + ω4, the angular frequencies ωi

and wavevectors ki being linked by the linear wave dispersion relation ωi ≡ ω(ki).
Mainly for the sake of simplicity, special attention has been given to the case of two
degenerated mother waves, i.e. k2 = k1. Four-wave resonance conditions thus reduce
to

2k1 − k3 = k4,

2ω1 −ω3 =ω4,

}
(1.1)

meaning that two interacting large-scale mother waves (1 and 3) can give birth to
a smaller-scale daughter wave (4). Hereafter, we will focus only on surface gravity
waves in deep water of linear dispersion relation

ω(k)=√g|k|. (1.2)

Four-wave interactions studies started in the early theoretical works of Phillips
(1960) and Longuet-Higgins (1962). Surprisingly, there exist only few experiments
specifically devoted to studying such resonant wave interactions between water
waves. Longuet-Higgins & Smith (1966) and McGoldrick et al. (1966) were the
first to observe the generation of a daughter wave by wave interactions in the
degenerated case. They notably evidenced a linear growth rate of the daughter wave,
at short propagation distance, as predicted theoretically (Longuet-Higgins 1962). These
pioneering works were restricted to perpendicular mother waves with fixed and strong
wave steepness (ka= 0.1, with a the wave amplitude) within a relatively small basin
(3 m). In the same perpendicular configuration, Tomita (1989) confirmed the daughter
growth rate to greater distances within a larger basin (54 m), still for fixed, but
lower, mother-wave steepness (ka < 0.05). He also conducted slightly off-resonance
experiments (wavenumber a few % apart from the resonance). In all those experiments,
three degenerated waves of the interacting quartet are generated mechanically (mother
waves) and the fourth one (daughter wave) is growing due to four-wave interaction.
Finally, the non-degenerated case was conducted recently to observe finite amplitude
effects on the resonance condition leading to persistent wave patterns (Hammack,
Henderson & Segur 2005; Liu et al. 2015). In Liu et al. (2015), an experimental
investigation of steady-state resonant waves is carried out for short-crested waves. A
nonlinear steady-state quartet is obtained theoretically in the resonance condition by
means of the homotopy analysis method. This quartet is then mechanically generated
and the steady regime is indeed observed along the propagation in the basin. These
experiments confirm the existence of steady-state resonant waves. In these experiments
of Liu et al. (2015), the generated wave field consists of the four waves involved in
the quartet plus some required higher-order waves, and therefore no daughter wave is
expected in this case. More recently, Waseda et al. (2015) investigated experimentally
the case of resonant interactions in the presence of an underwater current. Most of
these observations were supported by a dynamic model for nonlinear wave interactions
(Zakharov 1968; Krasitskii 1994). Note that another type of four-wave interactions
involving collinear waves was extensively studied experimentally in the case of
modulational instability (Benjamin–Feir instability) and focused on the growth of
side-band satellites (Lake & Yuen 1977; Su et al. 1982; Shemer & Chamesse 1999;
Tulin & Waseda 1999). Such an instability is not observable in our configuration.
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Here, we performed experiments to study resonant interactions between two oblique
surface gravity waves in a large basin in the degenerated case. Like Longuet-Higgins
& Smith (1966), McGoldrick et al. (1966) and Tomita (1989) we generate three
mother waves of a resonant quartet and we observe the growth of the fourth wave –
the daughter wave. For the first time however, our experiments are carried out with
mother waves crossing with an acute angle instead of perpendicular mother waves.
The mother-wave frequency ratio, their interaction angle and steepnesses are control
parameters. We fully characterized the generation of a daughter wave for resonance
conditions (growth rate, resonance response curve with angle, and phase locking
between resonant waves), as well as for out-of-resonance conditions (detuning factor).
All our measurements are found in quantitative agreement with four-wave interaction
theory with no fitting parameter, provided that the mother-wave steepnesses are small
enough (ka < 0.1). We also provide theoretical explanations of the phase-locking
mechanism and the off-resonance detuning factor from the dynamical equations of
Zakharov (1968). The article is organized as follows. We first recall the resonant
interaction theory, a perturbative approach only valid for short times (Phillips 1960;
Longuet-Higgins 1962), and then we present the main predictions of the dynamical
equations. Details of the derivation are given in the supplementary material available
online at http://dx.doi.org/10.1017/jfm.2016.576. We introduce the experimental set-up,
report the experimental results for resonant conditions, and for out-of-resonance
conditions, before drawing our conclusions.

2. Perturbation approach of the resonant interaction theory

Phillips (1960) and Longuet-Higgins (1962) have investigated four-wave degenerated
resonant solutions of (1.1) for deep-water waves. A 3D representation of the solutions
for a given wavevector k1 is shown in figure 1 (see Aubourg & Mordant (2015) for
gravity–capillary waves). The dashed black line is exactly the classical figure-of-eight
given by Phillips (1960). The angle between a pair k1 and k3 on the figure-of-eight is
denoted θ . The figure of eight is symmetric with respect to the k1 axis and either the
frequency ratio r=ω1/ω3 or the angle θ may serve as a unique parameter to describe
the figure-of-eight. A typical example quartet is drawn in blue vectors for the mother
waves and magenta for the daughter wave; it corresponds to the maximal growth rate
for r= rm = 1.258.

Longuet-Higgins (1962) studied theoretically the degenerated resonance in a
perturbation approach considering that the mother-wave amplitudes are unaffected
by the growth of the daughter wave. Longuet-Higgins (1962) showed that the
daughter-wave amplitude at resonance ares

4 follows

ares
4 = ε2

1ε3dG(r), (2.1)

where εi are the steepnesses defined by εi = kiai, ai the wave amplitude, d is the
distance from the wavemaker along the direction of the daughter wave and G a
theoretical growth rate depending on the frequency ratio r = ω1/ω3. Note that the
resonance conditions (1.1) in deep water provide for each r a unique angle θ ; G
may then be defined as a function of r or θ via r(θ). The resonant daughter wave
is expected to grow linearly with distance and (2.1) remains valid as long as a4� a1
and a3. The growth rate G is shown in figure 2(a), as a function of the angle θ . For
clarity, we have chosen positive angles for r > 1 and negative angles for r < 1. The
growth rate is maximum for θ = θm= 25◦ (r= rm= 1.258); we locate our experimental
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FIGURE 1. Solutions for four-wave resonances of surface gravity waves in the degenerated
case of conditions (1.1). The dark-grey surface corresponds to ω(k3), i.e. (1.2) with k3 =
(kx, ky) and the red (light-grey) surface to the difference 2ω(k1)−ω(2k1− k3) for a given
k1. Resonance conditions (1.1) are located on the intersection of both surfaces (white solid
line). Dashed line at the bottom of the axes corresponds to the projection of the white
line. Example vectors are given for f1 = 0.9 Hz, f3 = 0.714 Hz and θ = θm = 25◦.
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FIGURE 2. (a) Theoretical growth rate G(θ) of the daughter wave for the degenerated
case (dash-dotted lines) and experimental tests studied in this paper: set A (blue circle),
set B (red solid thick line) and experiments in litterature (black star). (b) Figure-of-eight
with wavevectors. (c) Location of the experimental tests studied in this paper: resonant
experiments: same convention as in (a) with letters A and B, off-resonance experiments:
set C (green dashed line).

work around this angle θm to obtain a significant daughter-wave amplitude; the angle
θ ranges from −15◦ to +40◦ in our experiments. The black star on the graph
of figure 2 identifies the parameters used for the experiments of Longuet-Higgins &
Smith (1966), McGoldrick et al. (1966) and Tomita (1989), which were all performed
at θ = 90◦.

In Longuet-Higgins (1962), we can infer from the sine function describing the
daughter wave and the cosine functions describing the mother waves that the phase
of the daughter wave is locked to −π/2 with respect to the mother waves.
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Observation of resonant interactions among surface gravity waves

For out-of-resonance mother waves, Longuet-Higgins (1962) assumes that the
daughter-wave resonant growth rate is modified by a factor sin(1kd)/1kd, which
was confirmed by later experiments (Longuet-Higgins & Smith 1966; McGoldrick
et al. 1966), 1k being the wavenumber mismatch in resonance conditions (1.1). The
Hamiltonian formulation given below provides a simple explanation for such a factor.

3. Hamiltonian formulation of the resonant interaction theory

Here, we use the framework of the approximate Hamiltonian theory of Zakharov
(1968) with the formalism from Janssen (2009) in order to explain the off-resonance
mismatch factor. The details of the derivation are left to the supplementary material in
Bonnefoy et al. (2015). We apply the Hamiltonian theory to a resonant degenerated
interaction with two mother waves (1 and 3), present initially, and a daughter wave (4)
which grows in time. The wave action amplitude is B(k, t) = B1(t)δ(k − k1) +
B3(t)δ(k − k3) + B4(t)δ(k − k4), with the resonance condition 2k1 − k3 − k4 = 0, and
the linear frequency mismatch or detuning is 1ω = 2ω1 − ω3 − ω4. The Zakharov
equation leads to the following evolution equation for the wave action amplitudes
Bi(t) of the degenerated quartet

i∂tB1 = (Ω1 −ω1)B1 + 2T1134 exp(i1ωt)B∗1B3B4, (3.1a)
i∂tB3 = (Ω3 −ω3)B3 + T1134 exp(−i1ωt)B2

1B∗4, (3.1b)
i∂tB4 = (Ω4 −ω4)B4 + T1134 exp(−i1ωt)B2

1B∗3. (3.1c)

The interaction coefficients T1234 = T(k1, k2, k3, k4) are the kernels given in Krasitskii
(1994) or Janssen (2009). Nonlinear frequencies Ωi satisfy the following nonlinear
dispersion relations

Ω1 =ω1 + T1111|B1|2 + 2T1313|B3|2 + 2T1414|B4|2,
Ω3 =ω3 + 2T1313|B1|2 + T3333|B3|2 + 2T3434|B4|2,
Ω4 =ω4 + 2T1414|B1|2 + 2T3434|B3|2 + T4444|B4|2.

 (3.2)

In the early stage of the resonant interaction or for a non-resonant interaction, the
daughter-wave amplitude is assumed to be negligible with respect to the mother-wave
amplitudes. Equations (3.1a) and (3.1b) give constant magnitude and slowly evolving
phase for the mother waves while (3.1c) admits the following solution

B4 =−iT1134B2
10B∗30

sin(1Ωt/2)
1Ω/2

exp(−i(Ω4 −ω4 +1Ω/2)t), (3.3)

where the subindex 0 denotes the initial value and the total detuning is 1Ω = 2Ω1−
Ω3 −Ω4. Derivation of this solution is straightforward and left to the supplementary
material. Converting to wave amplitude by means of the relation ai =√2ki/ωiBi, we
can infer the following wave solutions.

At short times, when |a4|� |a10|, |a30|, we obtain constant mother amplitudes ai(t)=
ai0 (subindex 0 means initial value). The daughter-wave amplitude and phase are

|a4| = T1134
ω1

2k3
1

√
ω3k4

ω4k3
3
ε2

1ε3

∣∣∣∣sin(1Ωt/2)
1Ω/2

∣∣∣∣ , (3.4a)

arg a4 =−π

2
+ 2 arg a10 − arg a30 − (Ω4 −ω4 +1Ω/2)t, (3.4b)
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where the steepness is defined by its initial value εi= ki|ai0|. Equation (3.4a) provides
the evolution of the daughter-wave amplitude while (3.4b) gives the nonlinear
evolution of its phase.

At resonance (1ω=0) and at short times (1Ωt�1), we have sin(1Ωt/2)/(1Ω/2)
' t. Equation (3.4a) now becomes |ares

4 | = T1134ω1
√
ω3 k4/(2k3

1

√
ω4 k3

3)ε
2
10ε30t, which

corresponds to the same results as in Longuet-Higgins (1962). Equation (3.4b) shows
that the daughter-wave phase is phase-locked to arg a40 =−π/2+ 2 arg a10 − arg a30.

In the case of mechanically generated mother waves, the daughter-wave frequency
follows from the exact resonance condition ω4 = 2ω1 − ω3. It is necessary to replace
time t in (3.4) by d/cg4, where cg4 is the group velocity of the daughter wave and d
the distance in the daughter-wave direction. All the following results are valid in the
steady regime between the wavemaker and the daughter-wavefront. At resonance, the
theoretical amplitude of the resonant wave along the basin is the same as in (2.1) (the
link between G and T1134 is given in the supplementary material).

We consider now an off-resonance degenerated quartet with a linear frequency
detuning 1ω 6= 0. At the early stage of the interaction, when the daughter amplitude
is small compared to the mother amplitudes, expression (3.4a) shows that the daughter
amplitude evolves as a sine function. We may rewrite (3.4a) as |a4|= |ares

4 |sinc1Ωt/2.
Note that this mismatch factor involves the total detuning 1Ω , which consists of both
linear and nonlinear components. At longer times, the phase mismatch will change
from its initial 1ω value due to nonlinear dispersion. For off-resonant mechanically
generated mother waves, the direction θ4 of the daughter wavenumber k4 is yet
unknown; the condition for wavenumbers is not fulfilled and a wavevector mismatch
exists, 1k = 2k1 − k3 − k4. Although the direction of the daughter wave is not
specified, we assume that the fastest growing daughter wave is the one with minimal
detuning. In other words, the daughter wave propagates along the direction of 2k1− k3
and the corresponding mismatch is now 1k= |2k1 − k3| − k(2ω1 − ω3). From (3.4a),
the off-resonance amplitude of the daughter wave is given by the same expression as
in Longuet-Higgins (1962)

a4 = ε2
1ε3dG(r, θ)

∣∣∣∣∣sin 1
21kd

1
21kd

∣∣∣∣∣= ares
4

∣∣∣∣sinc
1kd

2

∣∣∣∣ . (3.5)

Note that the nonlinear detuning terms have been omitted here for clarity.

4. Experimental set-up

The experiments presented here are designed to test the resonance theory for wave
directions different from the perpendicular case studied in the 1960s and by Tomita
(1989). We mechanically generate bichromatic waves (mother waves 1 and 3) in
a rectangular wave basin and observe the birth of the daughter wave of frequency
2ω1−ω3 due to resonant interaction (see the supplementary movie available online at
http://dx.doi.org/10.1017/jfm.2016.576). The wave basin at Ecole Centrale de Nantes
has dimensions 50 m × 30 m × 5 m and its wavemaker consists of 48 independant
flaps that are hinged 2.8 m below the free surface. Figure 3(a) shows a top view of
the set-up. In order to avoid spurious reflections on the sidewalls, the motion of the
segmented wavemaker is controlled by means of the Dalrymple method (Dalrymple
1989). The Dalrymple method aims at generating the target wave field at a distance
Xd = 10 m from the wavemaker and yields a quasi-uniform wave field from the
wavemaker up to 25 m (see the grey zone of figure 3a); this is crucial for these
interaction experiments.
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FIGURE 3. (a) Wave basin showing the homogeneous zone (shaded area), the wave probes
(circles) and the wavevectors k1, k3 and k4 for the maximum growth rate case (arrows
respectively in green, red and blue); (b) frequency spectrum of wave height a(t) recorded
at d=21.5 m. Vertical dashed lines correspond to frequencies: f3, f1, f4, 2f3, f1+ f3, and 2f1.
Inset: temporal evolution of the wave height, a(t), dashed line is 〈a〉t' 0. Wave conditions
r= rm, θ = θm and ε1 = ε3 = 0.05.

The input parameters to the wavemaker are mother-wave frequency ( f1 and f3),
steepness (or amplitude a1 or a3) and direction (θ1 and θ3 with respect to the
basin main axis). The daughter-wave direction is defined as θ4 in the wave basin.
Frequencies for the mother waves are chosen to fit the basin capacities: fixed
f1 = 0.9 Hz (wavelength λ1 ' 2 m) and varied f3 = f1/r with r = 0.8–1.6. The
corresponding wavelengths λ3 ranged from 1.3 to 4 m. The angle θ = θ3 − θ1
between mother waves 1 and 3 was varied between −15◦ and 40◦ with a focus at
θm = 25◦ where the maximum growth rate of the daughter wave occurs (rm = 1.258,
see figure 2). In this case, we have θ4 = θ4m =−23.1◦.

Three sets of experiments are presented in the following, two at resonance and one
out of resonance. In the first set of experiments, (set A corresponds to the point A
in figure 2c), the scaling of the daughter-wave steepness ε4 is tested by varying ε1 ∈
[0.01; 0.1] at the resonance condition with maximum growth rate (that is r= rm) and
for fixed ε3= 0.05. In set B, the figure-of-eight is tested in the range θ ∈ [−15◦; 40◦],
for fixed steepnesses ε1 = ε3 = 0.07. This corresponds to the red line in figure 2(a)
and on the figure-of-eight in figure 2(c). Finally, in set C, we study out-of-resonance
conditions by fixing f1 = 0.9 Hz and θ = θm but changing k3 by varying r ∈ [1.1; 1.6]
around rm, again with fixed steepnesses ε1= ε3= 0.05. This corresponds to the dashed
green line in figure 2(c).

For cases A and C, wave directions in the basin are made symmetrical θ1=−θm/2
and θ3 = θm/2 to maximize the uniformity of the wave field. The direction of the
daughter wave is θ4m = −23.1◦, which corresponds to the cases A and C with
maximum growth rate when θ = θm. A linear frame supporting an array of twelve
resistive wave probes is set up in the direction θ4m (see figure 3a). The distance
between two successive probes is approximately 2 m. In all experiments, this linear
array of wave probes is indeed aligned along the direction of the daughter wave
θ4m =−23.1◦. The distance d to the wavemaker and measured along the direction of
the daughter wave ranges from d= 2.5 to 25 m.

For case B, the directions of the mother waves θ1 and θ3 were chosen in such a
way that the target angle θ is obtained and that the daughter wave is aligned with the
probe array.
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FIGURE 4. Amplitude of the resonant wave a4 for ε3 = 0.05 and r = rm. (a) Amplitude
a4 versus distance, d, for different ε1 × 103 = 10, 17, 28, 41, 56, 68 (from bottom to
top). (b) Rescaled amplitude of the resonant wave a4/[dε3G(θm)] as a function of ε2

1 for
different distances d = 9.9 (f), 14.9 (p), 19.9 (∗), and 24.9 (u) m. The dashed line of
unity slope is expected from (2.1).

The sampling frequency is 100 Hz. Wave heights were recorded during approxi-
mately 100 s, which corresponds to a steady regime of more than 50 wave periods.
Typical amplitudes are a1,3' few cm for mother waves and a4' few mm for daughter
waves.

5. Resonant wave conditions

We report here our results for resonant degenerated quartets near maximum
amplification (case A). A typical example of a temporal evolution of wave elevation
a(t) recorded by a probe is shown in the inset of figure 3(b). From the time series
measured at the wave probes, we select a steady-state window after the wavefront
passed the probe (time window is more than 50 periods long). A Discrete Fourier
Transform is applied to the windowed signal with a standard FFT algorithm (frequency
resolution is below 20 mHz). The main figure 3(b), shows the corresponding
amplitude spectrum for case A. The two mother waves were visible at frequency
f1 and f3. The peak at frequency f4 = 2f1 − f3 confirms the existence of the daughter
wave, but, as expected, its amplitude is smaller than those of the mother waves. This
is a first piece of evidence for a daughter wave generated by resonant interaction.
Note that harmonics at frequency 2f3, f1+ f3 and 2f1 are also visible, with amplitudes
yet lower than that of the daughter wave. They are the signature of second-order
bound waves accompanying the mother waves. The harmonics at 3f3 and 2f3 − f1
corresponding to the third-order bound waves are barely visible.

Figure 4(a) shows the daughter-wave amplitude a4 as a function of distance d for
different steepnesses. This amplitude is found to grow linearly with distance d, as
expected from (2.1), and to increase with the mother-wave steepness ε1. Note that
the experiments when ε1 is fixed and ε3 is varied (not shown here) show that the
daughter amplitude a4 grows linearly with ε3 as predicted. The rescaled daughter-wave
amplitude a4/(ε3dG(θm)) is then shown in figure 4(b) as a function of ε2

1 at different
distances d. A good quantitative agreement with the theoretical predictions of (2.1) is
observed, with no fitting parameter.

For a given probe at the far end of the homogeneous zone, we separate the two
mother waves and the daughter wave with appropriate bandpass filters around each
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FIGURE 5. (a) Temporal evolution of the individual phase ϕi(t) ≡ ki · xp − ωit + ϕi0 of
each wave i= 1 (——), 3 (– · –), and 4 (– – –). (b) Temporal evolution of the sine of the
interaction phase ϕ(t)= 2ϕ1−ϕ3−ϕ4. At resonance, the latter reduces to 2ϕ10−ϕ30−ϕ40,
which is constant (phase locking) and equal to π/2 during the experiment. Conditions
r= rm, ε1 = ε3 = 0.05 at distance d= 21.5 m.

component f1, f3 and 2f1 − f3. To wit, we compute the Hilbert transform of each
component and we obtain the wave envelope ai(t) and instantaneous wave phase
ϕi(t) ≡ ki · xp − ωit + ϕi0, where xp is the probe position. The phase of each wave
ϕi(t) is shown in figure 5(a) and obviously changes with time. In contrast, the
interaction phase defined by ϕ(t) = 2ϕ1(t) − ϕ3(t) − ϕ4(t) is constant with time, as
shown in figure 5(b). After the wavefront has passed the probes, the interaction
phase ϕ is locked at π/2. This phase locking demonstrated by our experiments is in
very good agreement with the phase locking predicted by (3.4b) for short distance
(i.e. a4 � a1 and a3). The steepness is small during this experiment, so the phase
locking is visible even on the most distant probes. This phase locking is a second
piece of evidence for the generation of the daughter wave by resonant interactions.

The figure-of-eight is now investigated in the vicinity of maximum growth rate
(the thick red line in figure 2a). In the dedicated experiments B, the mother-wave
angle θ is varied in the range from −15◦ to 0◦ in the case r < 1 (or f3 > f1) and
from 0◦ to +40◦ in the case r > 1. For each angle θ , the frequency f3 is chosen
so that k3 is located on the figure-of-eight (see figure 2b,c) in order to fulfil the
resonance conditions. Note that the correct choice of the directions θ1 and θ3 of the
individual mother waves in the basin is a key point in obtaining significant results. The
successful strategy is to ensure the direction of daughter wave 4 follows the line of the
probes. Figure 6 shows the rescaled daughter-wave amplitude a4/(ε

2
1ε3d) as a function

of the angle θ for different distances d at fixed steepnesses ε1 and ε3. This rescaling
allows one to measure experimentally the resonance response curve G(θ) predicted by
Longuet-Higgins (1962). For all values of θ , a good quantitative agreement with the
theoretical G(θ) is observed with no fitting parameter. This strongly extends previous
experiments (Longuet-Higgins & Smith 1966; McGoldrick et al. 1966; Tomita 1989),
which were carried out only for perpendicular conditions (θ = 90◦).

6. Out-of-resonance experiments

Let us now turn to experiments with out-of-resonance conditions for mechanically
generated mother waves. These conditions correspond to 2ω1 − ω3 − ω4 = 0 and
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FIGURE 6. Rescaled amplitude a4/(ε
2
1ε3d) versus angle θ for different distances d = 7.8

(f), 9.9 (u), 11.9 (p), and 13.8 (∗) m. Theoretical resonance curve G[θ(r)] for r < 1
(solid black line) and r> 1 (dashed red/grey line) from Longuet-Higgins (1962) (see also
figure 2a). ε1 = ε3 = 0.07. f1 = 0.9 Hz. 0.83 6 r≡ f1/f3 6 1.38. θm = 25◦.
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FIGURE 7. Rescaled amplitude a4/(ε
2
1ε3dG(rm)) measured at different distances d for

out-of-resonance conditions (ε1 = ε3 = 0.07 and f1 = 0.9 Hz). (a) Rescaled a4 versus
detuning 1k. Symbols correspond to different d= 7 up to 27 m (see arrows). (b) Rescaled
a4 versus normalized detuning 1kd/2. Solid line: absolute sinc function |sinc1kd/2| from
the Longuet-Higgins (1962) estimation or from (3.5).

2k1 − k3 − k4 ≡1k 6= 0. Although the direction of the daughter wave is not specified,
we assume that the fastest growing daughter wave is the one with minimal detuning.
In other words, the daughter wave propagates along the direction of 2k1 − k3 and
the corresponding detuning is now 1k ≡ |2k1 − k3| − k(2ω1 − ω3). We investigate
experimentally this case (set C) near the location of the maximum growth rate
at r = rm. To wit, we kept the same angle θ = θm and varied the frequency
f3 so that k3 can deviate from the figure-of-eight (see the green dashed line in
figure 2c). Figure 7(a) shows the normalized daughter-wave amplitude defined by
a4/(ε

2
1ε3dG(rm)) as a function of the detuning 1k for different distances d. We

observe a decrease of the resonance bandwidth with increasing distance, as expected
from the sinc term in (3.5). We rescaled all these curves on a single curve, as shown
on figure 7(b), by scaling the detuning by half the distance. We observe that all
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our measurements collapse on the sinc curve, showing a good agreement with the
estimation from Longuet-Higgins (1962) or from (3.5) rigorously derived.

7. Conclusion

We have presented experiments on resonant interactions of surface gravity waves
within the Ecole Centrale de Nantes wave basin (50 m long by 30 m large by 5 m
deep) in a degenerated case. Bichromatic mother waves were generated mechanically
by means of specific control of oblique wave generation (Dalrymple method). The
linear spatial growth of a resonant daughter wave was observed. The theoretical
and experimental results presented here extend the pioneering work done in the
1960s. Four-wave interaction theory is expressed in the framework of Hamiltonian
dynamic theory to demonstrate a phase-locking mechanism for resonant quartets and
estimate the daughter-wave amplitude in nearly resonant quartets. All these theoretical
results are supported by experimental observations of generated oblique mother waves:
the observed linear spatial growth rate of daughter wave scaling with mother-wave
steepness; the phase locking between resonant waves; the growth rate G satisfying
the law historically found by Longuet-Higgins (1962); as well as the off-resonance
response following the expected sinc curve.

The experiments presented in this article correspond to the early stage of resonance,
that is when k4ε

2d< 1. Indeed, for longer distance or greater steepness, we observed
other common features of nonlinear interactions at resonance (not reported in this
paper) such as the pumping of the mother wave by the resonant wave and the
decrease of the resonant-wave growth. For off-resonance conditions and stronger wave
steepness (ka> 0.1), a departure from the approximate off-resonance (3.5) is observed:
the distortion of the response curve (sinc) by a nonlinear detuning. These nonlinear
effects will be the subject of a further publication. The Hamiltonian theory may serve
as an extension of the theory in Longuet-Higgins (1962) to higher steepness, either
by analytical solutions (see e.g. Stiassnie & Shemer 2005) or numerical solutions
(Leblanc 2009). Finally, experiments with much greater steepness should make the
quantification of the departure from weakly nonlinear theory (Zakharov equation)
possible. It would also provide a better understanding of wave turbulence experiments
in strongly nonlinear regimes.
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