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Decay of capillary wave turbulence
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We report on the observation of freely decaying capillary wave turbulence on the surface of a fluid. The
capillary wave turbulence spectrum decay is found to be self-similar in time with the same power law exponent
as the one found in the stationary regime, in agreement with weak turbulence predictions. The amplitude of all
Fourier modes are found to decrease exponentially with time at the same damping rate. The longest wavelengths
involved in the system are shown to be damped by a viscous surface boundary layer. These long waves play the
role of an energy source during the decay that sustains nonlinear interactions to keep capillary waves in a wave
turbulent state.
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I. INTRODUCTION

Waves on ocean surface are the most common example of
wave turbulence. Wave turbulence focuses on the statistical
properties of a set of interacting waves where energy is
transferred by nonlinear interactions from the forcing scales
down to small scales at which energy is dissipated. A statistical
theory of wave turbulence was developed in the 1960s, the
so-called weak turbulence theory which exhibits such an
energy transfer in out-of-equilibrium situations [1,2]. This
theory has been applied to almost every context involving
nonlinear waves: astrophysical plasmas, surface or internal
waves in oceanography, Rossby waves in the atmosphere,
spin waves in magnetic materials, Kelvin waves in superfluid
turbulence, nonlinear optics, etc. This theory is based on
hypotheses such as those addressing weakly nonlinear waves,
infinite systems, and scale separations between energy source
and sink, which may limit its applicability to real systems.
In the last decade, the stationary regime of wave turbulence
has been studied in laboratory experiments (see Ref. [3] for a
recent review), and have shown that the validity domain of this
theory can be questionable. Nonstationary wave turbulence,
that is, once the forcing is stopped from a stationary state of
wave turbulence, has been much less studied although it can
provide crucial information for understanding how energy is
redistributed between modes during transients (e.g., during a
sudden change of wind for ocean waves) and how the stationary
regime of wave turbulence is reached.

Numerous studies have been performed on nonstationary
turbulent systems such as three-dimensional turbulence in
wind tunnels [4] and in rotating tanks [5] and two-dimensional
turbulence in plasma [6], soap films [7], and shallow water [8],
as well as in quantum turbulence [9]. For nonstationary wave
turbulence, theoretical [1,10] and numerical [11,12] efforts
have been performed, whereas experiments are scarce and
only concern capillary wave turbulence [13], or elastic wave
turbulence on a thin plate [14]. For elastic waves, better
agreement with weak turbulence theory has been obtained
compared to the stationary case where the forcing induces
anisotropy [14]. For the decay of capillary wave turbulence,
theoretical works have predicted a self-similar solution in time
for the energy spectrum [15,16] that is compatible with the
observations on decaying capillary wave turbulence on the
surface of liquid hydrogen [13].

In this paper, we report on an experimental study of freely
decaying gravity-capillary wave turbulence on the surface
of various fluids. The frequency spectrum of the capillary
wave amplitude is found to be self-similar during most of the
decay. The spectrum exponent of this nonstationary regime is
found to be close to the predicted exponent of the stationary
regime. Moreover, the energy within the system and all the
Fourier modes are found to decay exponentially with time.
This is unusual in decaying turbulent systems where energy
is supposed to decay as a power law in time [1,16,17]. The
longest waves present in the system are the most energetic
ones and are shown to be damped by viscosity on the
surface, with the inextensible film condition [18]. However,
these waves keep enough energy during the decay to sustain
capillary waves in a wave turbulent regime without gravity
wave turbulence. The amplitude of the capillary spectrum and
its cutoff frequency are found to decrease as two different
power laws of the total energy contained in the system. Finally,
freely decaying capillary wave turbulence can be seen as a
capillary wave turbulence in a stationary regime but with
a decreasing total energy and a decreasing inertial range
with time.

The paper is organized as follows. In Sec. II, the exper-
imental setup and protocol are described. The experimental
results are shown in Sec. III. The wave height power spectrum
is described and its properties are analyzed. The evolution of
the Fourier modes and of the cutoff frequency of the spectrum
are presented during the decay. The origin of wave dissipation
is discussed in Sec. IV, whereas Sec. V gives the conclusions.
Finally, additional experiments in the stationary case are
presented in the Appendix in order to compare stationary and
nonstationary regimes.

II. EXPERIMENTAL SETUP AND PROTOCOL

The experimental setup is close to the one used in Ref. [19].
It consists of a circular plastic vessel, 22 cm in diameter,
filled either with mercury or water to a height h = 25 mm.
Water and mercury are used as the working fluids to study the
role of the kinematic viscosity on decaying wave turbulence.
The properties of mercury (water) are density, ρ = 13.6 ×
103 kg/m3 (103 kg/m3), kinematic viscosity ν = 10−7 m2/s
(10−6 m2/s), and surface tension γ = 0.4 N/m (0.07 N/m).
Surface waves are generated by a rectangular plunging wave
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maker (13 cm in length and 3.5 cm in height) driven by an
electromagnetic vibration exciter driven by a random noise (in
amplitude and frequency) bandpass filtered typically between
0.1 and 5 Hz. The amplitude of the surface waves at a given
location is measured by a capacitive wire gauge plunging
perpendicularly to the fluid at rest [19]. The eigenvalues
of a circular vessel of radius R are given in Ref. [18], in
terms of wave numbers k. By using the dispersion relation
for gravity capillary waves ω2 = (gk + γ

ρ
k3) tanh kh (g being

the acceleration of gravity and ω the angular frequency),
the computed eigenvalue frequencies of a circular vessel,
corresponding to a wavelength close to R = 11 cm, are,
respectively, f a

R = 3.2 Hz for antisymmetrical modes and
f s

R = 3.9 Hz for symmetrical ones, whatever the working fluid.
To study freely decaying wave turbulence, a typical ex-

periment is as follows. First, surface waves are generated
during a long-enough time (�30 s) to reach a stationary wave
turbulence state. The forcing is then stopped at t = 0, and the
wave amplitude is recorded during a time T long enough to
observe the wave damping up to a still state. T is chosen equal
to 90 s for mercury and 40 s for water. The experiment then
is automatically iterated N times to generate statistics, and
results are averaged (ensemble average denoted by 〈·〉). We
have chosen N large enough to get convergence of the statistics
(N = 180 for mercury and N = 300 for water). To analyze the
different steps of the decay of the wave amplitude signal, the
signal is considered on short time intervals [t,t + δt] with
δt = 3.5 s for mercury and 2 s for water (temporal average
denoted by ·). Error bars in the following results have been
computed using various values of δt � T with 1 � δt � 5 s
and considering different sets of experiments in water or
mercury. Such a protocol allows us to study the statistical
properties of freely decaying capillary wave turbulence with
good accuracy.

III. NONSTATIONARY WAVE TURBULENCE

A. Temporal decay of the wave amplitude

Figure 1 shows the decay of the wave amplitude η(t)
on the surface of mercury as a function of time for one
single realization once the forcing is stopped at t = 0. The
envelope of the wave amplitude η(t) is roughly fitted by
η(t) = |η0| exp(−t/τ ) (see dashed line), where τ and |η0| are
two fitting parameters corresponding to the damping time and
to the absolute value of η at t = 0, that is, when the forcing
is stopped. Moreover, the wave amplitude during its decay
exhibits strong fluctuations around its zero mean value before
reaching its stationary still state. The inset of Fig. 1 shows
the temporal evolution of the averaged rms value of the wave

amplitude 〈ση(t)〉 ≡
〈√

η2
〉

computed during each short time

interval [t,t + δt] and then averaged over N experiments.
This rms value of the wave amplitude is found to decay
exponentially in time with the same damping time τ as above,
and is well fitted by 〈ση(t)〉 = 〈ση(0)〉e−t/τ (see dashed line
in the inset). Note that similar results are found for water, τ

being the characteristic damping time for a given fluid (τ = 5 s
for water and τ = 15.5 s for mercury). The variance 〈ση(t)〉2

will be considered as an estimate of the total energy within
the system. Indeed, the energy of gravity waves is ∼η2 and
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FIG. 1. (Color online) Decay of the wave amplitude, η(t), as a
function of time (solid line). Random forcing is working for t < 0
and is stopped at t = 0. Mercury. Dashed line corresponds to an
exponential fit η(t) = |η0|e−t/τ with τ = 15.5 s and |η0| = 3 mm.
(Inset) �, Temporal decay of the averaged standard deviation of
wave amplitude, 〈ση〉; −−, exponential fit 〈ση(t)〉 = 〈ση(0)〉e−t/τ ,
with τ = 15.5 s and 〈ση(0)〉 = 1 mm.

is greater than capillary energy. As a consequence, the total
energy is found to decay as e−2t/τ with a τ/2 damping time.

B. Time-frequency decay of the spectrum

To study the decay of the wave amplitude simultane-
ously in time and in frequency, we use a spectrogram
analysis, a well-known MATLAB signal processing tool.
Using short-time Fourier transform, the spectrum of the
wave amplitude at a time t∗ of the decay is computed as
Sη(f,t∗) ≡ ∫ t∗+δt

t∗ η(t)η(t + t ′)e−i2πf tdt over a short time in-
terval, [t∗,t∗ + δt]. Iterating in time all along the decay, we get
the full time-frequency spectrum Sη(f,t) or spectrogram as a
function of time and frequency. This also gives the temporal
evolution of the spectrum of one Fourier mode at frequency f ∗:
Sη(f ∗,t). The spectrum is then averaged over N experiments,

F
re

qu
en

cy
 (

H
z)

Time (s)

 

 

0 20 40 60
0

50

100

150

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

δt

f
a

R

FIG. 2. (Color online) Averaged spectrogram 〈Sη(f,t)〉 of the
wave amplitude during the decay as a function of frequency and
time. Color bar is a logarithmic scale of the spectrum amplitude.
Pixelization in time corresponds to the short time interval δt = 3.5 s.
f a

R is an eigenvalue of the vessel (see text) remnant of the forcing
frequencies (0.1–6 Hz).
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〈Sη(f,t)〉 and is shown in Fig. 2. A vertical section in
Fig. 2 at a time t∗ thus gives the wave amplitude spectrum
as a function of frequency at one moment of the decay
〈Sη(f,t∗)〉. A horizontal section in Fig. 2 at a frequency f ∗ thus
gives 〈Sη(f ∗,t)〉, the temporal evolution of the spectrogram
of one Fourier mode during the decay. In Fig. 2, δt = 3.5 s
is chosen to probe the spectrum for frequencies greater than
2/δt ≈ 0.6 Hz. Figure 2 shows that low frequencies are more
energetic than high ones all along the decay. It also shows that
high frequencies are damped faster than low ones. Finally, the
most energetic frequency (see arrow in Fig. 2) is 3.1 ± 0.1 Hz.
It corresponds to a fundamental eigenvalue of the vessel,
f a

R = 3.2 Hz that is within the remnant forcing frequencies.

C. Temporal decay of the power spectrum

Figure 3 shows the temporal evolution of the power
spectrum 〈Sη(f,t∗)〉 as a function of the frequency at different
decay times t∗. It corresponds to different vertical sections
of the spectrogram in Fig. 2, the top curve corresponding to
the beginning of the decay, just after the forcing is stopped.
Time increases from top to bottom, and corresponding curves
display the dynamics of the decay in three main phases:
(i) a remnant of the forcing at the early beginning of the decay,
(ii) a self-similar decay lasting most of the decay time, and
(iii) a purely dissipative phase at the end.

(i) Remnant of the forcing (t∗ < τ/3 
 5 s). The power
spectrum just after the forcing is stopped (top curve) is similar
to the the one observed in the stationary regime [19]. Two
frequency-power laws are observed, one corresponding to
the gravity wave cascade (∼f −5.3±0.2 for 6 < f < 20 Hz)
and the other to the capillary wave cascade (∼f −2.9±0.2 for
20 < f < 130 Hz). Crossover between the regimes occurs
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FIG. 3. (Color online) Averaged power spectrum 〈Sη(f,t∗)〉 at
different times t∗ of the decay. From top to bottom, t∗ = 2, 5.5, 9,
16, 26.5, 37, 47.5, 58, and 68.5 s. Dashed lines are power laws fits
∼f −5.3 for gravity (6 < f < 25 Hz, top curve only) and ∼f −2.9 for
capillary waves (25 < f < 100 Hz). Black arrows indicate the cutoff
frequencies fc of the capillary wave cascade. Red (light gray) dashed
arrows indicate vessel eigenvalues: f a

R and f s
R remnant of the forcing

frequencies (0.1–6 Hz), and their harmonics 2f a
R and 4f a

R (see text).
(Inset) The rescaled wave height power spectra 〈Sη(f,t∗)〉/〈ση(t∗)〉2.
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FIG. 4. Exponent α of the frequency power law spectrum of
capillary wave turbulence as a function of time. One has α =
2.9 ± 0.2 during most of the decay (t < 3τ = 45 s). The dashed line is
the theoretical prediction for stationary capillary wave turbulence [1].

at fgc ∼ 20 Hz, while dissipation occurs at higher frequency
(f > 130 Hz).

(ii) Self-similar phase (τ/3 < t∗ < 3τ 
 45 s). All spectra
have the same shape in the capillary regime and exhibit
〈Sη(f,t∗)〉 ∼ f −α with an exponent α that does not depend
on time. Indeed, all frequency power law fits are parallel
in the capillary frequency range. Figure 4 shows that the
exponent α is roughly independent of time for 0 < t < 3τ

with α = 2.9 ± 0.2. This value is in good agreement with the
theoretical value 17/6 
 2.8 for the exponent of the stationary
capillary wave turbulence [1]. Note that no gravity power
law is observed during the self-similar decay of capillary
wave turbulence. Moreover, at high frequency, the power law
spectrum directly reaches the noise level during the whole
self-similar phase. The intercept between the power law and
the noise level defines a cutoff frequency of the spectrum
and this cutoff is found to decrease continuously during the
self-similar decay (see black arrows in Fig. 3). Thus, the high
frequencies vanish first.

(iii) Purely dissipative phase (t∗ > 3τ ). At long times, no
power law is observed in the capillary and gravity frequency
ranges. The spectrum has a rounded shape for every frequency.

Similar qualitative results are found when water is used
as the working fluid. For both fluids (water and mercury),
one has the self-similar decay of capillary wave turbulence
during τ/3 < t < 3τ with τ the characteristic damping time
of each fluid, whereas the gravity cascade quickly vanishes
when t > τ/3. The time τ/3 can be interpreted as the time
needed to “forget” the forcing conditions or a memory time of
the forcing. Although there is a decreasing of the inertial range
during the self-similar decay of capillary wave turbulence
(see Fig. 3), all spectra are found to perfectly collapse when
rescaled by the variance of the wave amplitude fluctuations,
〈Sη(f,t∗)〉/〈ση(t∗)〉2, as shown in the inset of Fig. 3. The
capillary power law cascade is visible up to 3τ . This time
corresponds to the “lifetime” of the cascade where more than
99% of the total energy of the system has been dissipated.
Indeed, since ση ∼ e−t/τ , one has σ 2

η (3τ )/σ 2
η (0) = e−6. Thus,

we speculate that there is not enough energy within the
system to sustain nonlinear interactions and the cascade
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FIG. 5. (Color online) Cutoff frequency as a function of time.
First set of experiments: δt = 1.95 s, �; 3.5 s, �. Second set: δt =
1.95 s, ◦. The solid line is an exponential fit fc ∼ e−at/τ , with a = 0.38
a fitting parameter and τ = 15.5 s the damping time for mercury.
(Inset) Same for water. First set, �; second set, �; and third set,
◦; δt = 1.5 s. The solid line is an exponential fit fc ∼ e−at/τ , with
a = 0.38 a fitting parameter and τ = 5 s the damping time for water.

phenomenology breaks down. Moreover, since the gravity
wave cascade vanishes after a time τ/3, we believe that the
energy level necessary to sustain gravity wave interactions is
much higher than that of capillary waves. Finally, note that
two peaks are visible at low frequency in all spectra of Fig. 3
(3.1 ± 0.1 and 3.8 ± 0.1 Hz). These frequencies correspond
to vessel eigenvalue modes, f a

R = 3.2 Hz and f s
R = 3.9 Hz

(Ref. [18] and Sec. II), with wavelengths close to the vessel
radius R. Note also that harmonics of the vessel eigenvalue
2f a

R and 4f a
R are also observed close to the end of the decay

(see Fig. 3).

D. Cutoff frequency of the capillary spectrum

The cutoff frequency fc of the capillary spectrum is shown
in Fig. 5 as a function of time for different sets of experiments.
fc is defined when the spectrum departs from its power law
fit [phase (i)] or when it reaches the noise level [phases (ii)
and (iii)] (see black arrows in Fig. 3). The cutoff frequency
is found to decrease roughly exponentially with time fc ∼
e−at/τ with a = 0.38 ± 0.06 a fitting parameter, τ being the
characteristic damping time obtained previously for mercury
or water. Since 〈ση〉 ∼ e−t/τ , one has fc ∼ 〈σ 2

η 〉0.19±0.03 during
the whole decay for both fluids. Therefore, the cutoff frequency
is a power law of the amount of energy in the system. This result
is compatible with the one obtained in the case of stationary
wave turbulence (see the Appendix).

E. Temporal decay of the Fourier modes

Figure 6 shows the temporal evolution of the amplitude of
the Fourier modes 〈Sη(f ∗,t)〉 as a function of time for different
f ∗. It corresponds to different horizontal sections of the spec-
trogram in Fig. 2. This allows us to compare the total energy
in the system 〈ση(t)〉2 ≡ 〈η2(t)〉 = ∫ ∞

0 〈Sη(f,t)〉df with the
amount of energy contained in one single Fourier mode at
f ∗,

∫ f ∗+δf

f ∗ 〈Sη(f,t)〉df = 〈Sη(f ∗,t)〉δf , with δf = 0.24 Hz
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FIG. 6. (Color online) Decaying of the total energy 〈ση(t)〉2 (�)
and of the Fourier modes 〈Sη(f ∗,t)〉 as a function of time. Each solid
line corresponds to a mode at frequency f ∗: both top f s

R = 3.2 Hz
and f a

R = 3.8 Hz; from the third from the top to the bottom f ∗ = 13,
23, . . . ,93 Hz, with 10-Hz steps. Dashed lines are exponential fits
∼e−2t/τ for τ/3 < t < 3τ (slow damping) and ∼e−5t/τ for t < τ/3
(fast damping). Vertical dashed lines correspond to τ/3 and 3τ .

being the Fourier transform resolution. First, one observes
that the total energy in the system decays exponentially as
〈ση(t)〉2 ∼ e−2t/τ (see � and the dashed line fit in Fig. 6).
Second, excluding the beginning and the end of the decay, all
Fourier modes are found to decay exponentially with the same
time scale τ/2 within a 10% error bar. This is also the damping
time of the total energy (see parallel dashed-line fits). Thus,
the damping time is found to be independent of the frequency
for interacting waves. This result stands in stark contrast to
the one for noninteracting waves where the damping time of
linear sinusoidal waves is a decreasing function of the wave
frequency as a consequence of the viscous damping.

One might now wonder what feeds the capillary cascade
during the decay? The decay of the vessel eigenvalue modes
f a

R = 3.2 Hz and f s
R = 3.8 Hz are also displayed in Fig. 6 (both

top solid curves). As for any modes, these fundamental modes
both decay exponentially with the same damping time τ/2 as
the one of the total energy. Moreover, one also observes that a
large amount of energy is contained in these vessel modes. One
can estimate that roughly 70% of the total energy is contained
in frequencies between 3 and 4 Hz during all the decay. As a
consequence, long waves close to these modes play the role
of an energy source that feeds the capillary cascade during
the decay, and the relaxation of these modes characterize the
global decay of the system. The energy decay of these long
waves leads to a decrease of the inertial range of the capillary
wave turbulence (see Figs. 3 and 5).

Let us now focus on the decay of Fourier modes at the
very beginning and end of the decay. Fig. 6 shows that the
exponential decay of Fourier modes, within the capillary
inertial range, is faster for earlier times, t < τ/3, than for
τ/3 < t < 3τ , and seems also to be independent of the
frequency. The typical time ∼τ/5 of this fast damping could
be a measurement of the nonlinear time scale of gravity waves
and is found to be smaller than the damping time τ/2. The
fast damping is also related to the remnant of the forcing up
to a time τ/3 for which 50% of the total energy has been
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TABLE I. Physical fluid properties: density, ρ, kinematic viscosity, ν, and surface tension, γ [24]. Corresponding experimental damping
time τ from the temporal decay of the vessel mode of frequency 3.2 Hz.

Fluid ρ (kg/m3) ν (m2/s) γ (mN/m) τ (s)

Mercury 13 600 1.1 × 10−7 400 15.5 ± 1.5
Water 1000 10−6 73 5 ± 1
20% GW 1020 2 × 10−6 70 5 ± 1
30% GW 1050 3 × 10−6 70 4 ± 0.5
50% GW 1120 5 × 10−6 68 3.7 ± 0.4
Silicon oil V5 1000 5 × 10−6 20 4 ± 0.4
Silicon oil V10 1000 10−5 20 2.5 ± 0.4

dissipated. After this time, the gravity power law spectrum is
no longer observed, meaning that there is not enough energy to
sustain the gravity wave cascade anymore. The capillary wave
turbulence cascade is observed for longer because less energy
is needed, and this energy can come from the slow relaxation
of the long waves. For t > 3τ , less than 1% of the energy
remains in the system, and the capillary wave turbulence is no
longer observed in Fig. 3.

Note that when performing similar experiments with more
viscous liquids (aqueous solution of glycerol or silicon oil),
no wave turbulence regime is observed, the dissipation time
is found to depend on frequency (see Sec. IV) and is larger
than the total energy damping time τ/2. As mentioned above,
this behavior is expected when noninteracting waves are
dissipated by viscosity. As a consequence, decaying capillary
wave turbulence is not observed within these fluids because
the nonlinear interactions are too weak with respect to the
dissipation process.

IV. ORIGIN OF WAVE DISSIPATION

Dissipation of propagating waves in a closed basin has been
studied theoretically and experimentally by various authors
[18,20,21]. The wave height decay at a given frequency has
been found to be exponential whatever the nature of the viscous
dissipation. Let us define T the theoretical damping time that
depends on the frequency and the nature of dissipation. Viscous
damping in fluids can have different origins: bottom boundary
layer (TB), side wall boundary layer (TW ), and surface
dissipation. Two types of viscous dissipation by the surface
are generally considered: either due to the fluid viscosity at
the surface T −1

ν ∼ νk2 [18,21] or due to a surface boundary
layer with an inextensible film T −1

S ∼ (νω)1/2k [18,20]. The
latter comes from the presence of surfactants/contaminants at
the interface that leads to an inextensible surface where fluid
velocity should be canceled at the interface. Note that these
surface dissipations are incompatible since they corresponds to
two different kinematic conditions at the interface. The decay
rate for the wave of frequency f is defined by δ ≡ 1/(T 2πf ).
The theoretical decay rate for the various types of viscous
dissipation in a fluid of arbitrary depth h are [18,20,21]

δν = νk2

πf
, (1)

δS =
(

ν

4πf

)1/2
k cosh2 kh

sinh 2kh
, (2)

δB =
(

ν

4πf

)1/2
k

sinh 2kh
, (3)

δW =
(

ν

4πf

)1/2 1

2R

(
1 + (m/kR)

1 − (m/kR)
− 2k

sinh 2kh

)
, (4)

where R is the size of the circular vessel and m = 1 the
antisymmetrical modes and m = 0 the symmetrical ones.

To understand the origin of the wave dissipation in our
system, we have performed similar decay experiments with
various fluids: water, mercury, silicon oils, and aqueous
solutions of glycerol (denoted as x%GW with x the glycerol
percent) to vary kinematic viscosity over two orders of
magnitude. Properties of these fluids are listed in Table I.
Similar wave relaxation is observed whatever the working
fluid: The wave height decays roughly exponentially with
time, and so does its rms value 〈ση〉. The most energetic
mode f a

R = 3.2 Hz does not depend on the fluid used as
expected, whereas the exponential decay of this mode gives
the damping time τ for each fluid as shown in Table I. Figure 7
shows the experimental value of decay rate of the frequency
f a

R = 3.2 Hz as a function of the fluid kinematic viscosity
(� symbols), as well as the theoretical decay rates computed
for each type of viscous dissipation at the same frequency.
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FIG. 7. (Color online) Decay rate, 1/(τ2πf a
R ), of the wave mode

at f a
R = 3.2 Hz as a function of viscosity ν for various fluids (�).

Theoretical decay rate by viscous dissipation: ◦, surface boundary
layer, δS , from Eq. (2); +, bottom surface layer, δB , from Eq. (3);
�, wall surface layer, δW , from Eq. (4); and ×, viscous surface δν

from Eq. (1). The dashed line is the total theoretical dissipation δT =
δS + δB + δW .
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Clearly, the experimental decay rate scales as ν1/2 over two
decades in viscosity and not as ν1, as expected by the usual
viscous dissipation. In our experiment, viscous dissipations by
surface boundary layer and bottom boundary layer are the most
important while the usual viscous dissipation at the surface is
clearly negligible in the damping of the fundamental mode.
Friction at the lateral boundary is also negligible. Bottom
friction is quite important since the wavelength corresponding
to f a

R is close to the vessel radius R (and thus of the order of
2πh); so waves at this frequency are affected by the depth.
Finally, the total theoretical dissipation δT = δS + δB + δW is
found to be in good agreement with data both qualitatively
and quantitatively (see dashed line in Fig. 7). The fact
that viscous dissipation by a surface boundary layer takes
over the usual viscous relaxation was previously observed
in laboratory experiments with water [20,22,23], and is also
realistic considering waves in a natural context. Indeed, if no
particular attention is paid (such as working in a clean room
with filtered fluid or fluid with low enough surface tension),
the surface dissipation by boundary layer dominates the νk2

dissipation [23]. Finally, note that the infinite depth condition is
satisfied for f > 10 Hz (i.e., λ < 2 cm and kh � 1), and thus
bottom friction becomes also negligible for capillary waves.
Consequently, in our experiments, the dissipation source for
capillary waves is due only to to viscous dissipation by a
surface boundary layer, and for larger waves mostly by surface
boundary layer since a small amount is also dissipated within
the bottom boundary layer.

V. CONCLUSION

We report on laboratory experiments on the decay of
gravity-capillary wave turbulence on the surface of various
fluids. We show that the spectrum of the capillary wave
turbulence keeps a self-similar shape during the decay, with a
frequency power law exponent close to the one of the stationary
regime. All Fourier modes are found to decay exponentially
in time with the same damping rate. A large amount of the
total energy within the system is contained in a few longest
wave modes (fundamental vessel eigenvalues) which also
decay exponentially in time due to viscous dissipation within
a surface boundary layer. Since a self-similar capillary wave
cascade is observed in time, it means that the typical time of
energy flux transfer through scales by nonlinear interactions is
small with respect to the natural damping time of the waves.
Such a self-similar cascade during the decay of capillary wave
turbulence has been predicted theoretically [16]. However,
the total energy is predicted to decay according to a power
law in time [16], which is a general result found in various
nonstationary turbulent flows [17]. Our wave turbulence
system thus exhibits an unusual behavior where a turbulent
cascade regime is observed with a total energy decaying
exponentially in time as a result of the viscous decay of the
longest wave modes. It can be interpreted as follows: The
energy necessary to sustain the capillary wave turbulence is
small with respect to the energy contained in the longest modes
that feed the capillary cascade. So even if the major part of the
energy is damped by a viscous process, there is still enough
energy cascading through the scales to maintain a capillary
wave turbulent state provided that the nonlinear time between

waves is shorter than the damping time. The amplitude of
the capillary spectrum and its cutoff frequency are found to
decrease as two different power laws of the energy contained
in the system. Both scalings are consistent with those of the
stationary regime. This means that freely decaying capillary
wave turbulence can be seen as a capillary wave turbulence in
a stationary regime but with the total energy and the inertial
range decreasing with time.
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APPENDIX: STATIONARY WAVE TURBULENCE

Let us compare the experimental results found in the
nonstationary case (see above) with those of the stationary
regime of capillary wave turbulence. To do this, additional
experiments were performed in a stationary regime with
decreasing injected energy. The experimental setup in the
stationary case is the same as described in Sec. II (see also
Ref. [19]) except that the wave maker is continuously driven
by a stochastic forcing (both in amplitude and frequency in a
range of typically 0.1 to 6 Hz). The wave height η(t) is then
recorded during 300 s, and its power spectrum is computed
over the whole duration of the signal recording. The force
F (t) applied by the shaker to the wave maker and the velocity
V (t) of the wave maker are measured to access to the injected
power I = F × V into the waves [19].

For such a stationary regime, one finds that mean injected
power I ∼ σ 2

η . Figure 8 shows the wave height spectra for

different forcing amplitude 5 � I � 30 mW. Whatever the
forcing, two power laws are observed: one in the gravity
wave regime, Sη ∼ f −5.2±0.2, and one in the capillary range
of frequency, Sη ∼ f −2.8±0.2, as previously reported [19]. The
inertial range of the capillary spectrum also increases when I

is increased. The power law exponent of the capillary regime
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is found to be independent of I , and the inset of Fig. 8 shows

that Sη ∼ I
1±0.2

, in agreement with previous experimental
results [19,25]. Since Sη ∼ If −2.8 and I ∼ σ 2

η , one thus has
Sη ∼ σ 2

η f −2.8 for the stationary regime which is the same
result as the one found experimentally for freely decaying
capillary turbulence (see Sec. III C).

In the stationary case, the cutoff frequency fc of the
capillary wave turbulence spectrum is defined when the
spectrum departs from its power law fit (see Fig. 8).
Figure 9 then shows that fc increases as a power law in I ,

that is, fc ∼ I
0.2±0.05

, leading to fc ∼ (σ 2
η )0.2±0.05, which is

the same result as the one found in the freely decaying case (see
Sec. III D).

Finally, note that in a stationary regime, the cutoff frequency
fc is generally estimated by balancing the nonlinear interaction
scale time τNL with the dissipative time scale τD: τNL(fc) ∼
τD(fc) [1,26]. However, here we have no measurement of τNL

at capillary scales. On the other hand, the cutoff frequency
of the capillary wave turbulence on liquid hydrogen has been
reported to scale as fc ∼ η

4/3
p , with ηp the wave amplitude at

the forcing frequency [26]. Assuming that ηp ∼ ση leads to
fc ∼ σ

4/3
η , and thus a 2/3 exponent for the variance which

differs from the 0.2 exponent found here. Several differences
between both experiments can explain this fact. In our case,
the stochastic forcing by a wave maker leads to a continuous
power law spectrum, whereas the parametric forcing at a
single frequency of Ref. [26] leads to a discrete spectrum
of peaks of decreasing maximal amplitudes. Moreover, the
dissipation nature is different since surface viscous boundary
layer is shown to be the main dissipative mechanism for
water waves whereas a νk2 dissipation is assumed for liquid
hydrogen [26].
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