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Résumé

Auto-organisation de particules magnétiques vibrées : structure, dynamique et transitions

Nous étudions l’auto-organisation dans un système modèle expérimental où l’agitation des par-
ticules et leurs interactions à distance sont en compétition. Ce système est composé de par-
ticules macroscopiques sphériques ferromagnétiques douces dans une cellule horizontale quasi-
bidimensionnelle. Les particules sont agitées par vibration verticale de la cellule et acquièrent
un moment magnétique induit en présence d’un champ magnétique externe vertical. En ajus-
tant l’équilibre entre les forces dipolaires répulsives résultantes et l’agitation, nous provoquons
des transitions entre des états de types fluides et solides. A faible densité de particules, nous
examinons les phases et les transitions de phases rencontrées lorsque nous renforçons les inter-
actions entre particules : d’abord un gaz granulaire dissipatif, puis un état dont les propriétés
structurales et dynamiques s’approchent de celles d’un gaz idéal à l’équilibre thermodynamique,
et enfin un état ordonné où les particules forment un réseau triangulaire. Nous nous intéressons
aussi à l’auto-organisation du système à plus haute densité de particules, où nous observons un
état labyrinthique désordonné principalement composé de chaînes de particules en contact. Ces
chaînes, en zigzag entre la surface de la cellule et le couvercle, sont énergétiquement favorisées
par l’anisotropie des interactions dipolaires. Nous caractérisons la transition de l’état de gaz
granulaire vers cette phase labyrinthique. Enfin, nous explorons l’évolution temporelle de la
phase labyrinthique au moyen d’une trempe magnétique. Nous observons une nucléation ho-
mogène aux temps courts et une augmentation de la taille typique des chaînes via une relaxation
lente aux temps longs.

Mots-clés Milieux granulaires, systèmes hors équilibre, transitions de phase, états désor-
donnés, dynamique vitreuse.
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Abstract

Self-organization of vibrated and magnetized particles: structure, dynamics and transitions

We study self-organization in an experimental model system in which particle agitation com-
petes with remote inter-particle interactions. This system is composed of macroscopic spherical
soft-ferromagnetic particles in a horizontal quasi-two-dimensional cell. The particles are agitated
by vibrating the cell vertically and are magnetized as induced dipoles by an external vertical
magnetic field. By tuning the balance between the resulting repulsive dipole-dipole forces and
agitation, we trigger transitions between fluid- and solid-like states. At low particle density, we
examine the phases and phase transitions that occur as we strengthen the inter-particle inter-
actions: from a dissipative granular gas, to a state whose structural and dynamical properties
approach those of an ideal gas at thermodynamic equilibrium, to an ordered state in which the
particles form a triangular lattice. We also investigate the self-organization of the system at
a higher particle density, where we observe a disordered labyrinthine state mostly composed
of chains of particles at contact. These chains, buckled between the top and bottom plates,
are energetically favored due to the anisotropy of the dipole-dipole interactions. We character-
ize the transition from the granular gas state to this labyrinthine phase. Finally, we explore
the temporal evolution of the labyrinthine phase by applying a magnetic quench. We observe
homogeneous nucleation at short times and coarsening via slow relaxation at long times.

Keywords Granular media, out-of-equilibrium statistical mechanics, phase transitions, dis-
ordered states, glassy dynamics.
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Introduction

From sand to coffee beans to boulders, granular materials are ubiquitous in our daily life.
Grains can be made of diverse materials, they have shapes of an extremely wide variety, and
sizes that span several orders of magnitude, as illustrated in Fig. 1. Granular materials compose
Earth’s soil in large part, and for that reason take part in numbers of natural phenomena such as
avalanches, landslides, erosion and dune migration —whose understanding is not only exciting
from a fundamental perspective, but also crucial for obvious safety and strategical reasons. Out
in space, grains aggregate to form planetary rings and celestial bodies from asteroids to natural
satellites. Grains are also fundamental to many industries from pharmaceutical to construction,
from agricultural to mining to chemical, and thus hold a key role in global economy. Overall, it
is fascinating that some physical processes are as much relevant for the packing of cat biscuits,
as for the formation of comet 67P/Churyumov–Gerasimenko in the Kuiper belt.

A granular material is an ensemble of a large number of discrete macroscopic particles. If,
in the laboratory, a “large number” sometimes means a few thousand particles, it is ideally –as
in most natural situations– about or more than 106 particles, which is typically the number of
sugar grains that you can load on a teaspoon. We refer to macroscopic particles, as Andreotti et
al. [3], for particles larger than 100µm, so that Brownian motion is irrelevant. For instance, it
is clear that thermal motion does not affect particles of typical size 1mm and velocity 1 cm.s−1,

(a) (b) (c)

Figure 1 Natural granular matter: a wide variety of sizes, materials and shapes. (a) Sand
pile at rest at temple Ginkaku-ji, Kyoto, Japan, of an approximate height 1.80m. Sand grain
typical size is 0.1-1mm; (b) Coffee beans, of a typical size 1 cm (photography by Arash Toossi);
(c) Boulders in Fontainebleau, France, typical size 1m.
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since their kinetic energy is about ten orders of magnitude larger than kBT . Ensembles of parti-
cles of sizes ranging between 1µm and 100µm are called powders, while smaller sizes belong to
colloids. For the former, van der Waals forces, capillary bridges and air drag are relevant, while
for the latter, Brownian motion is often the dominant process. Note that for granular particles
as for powders as for colloids, distance interactions of electrostatic or magnetic nature may also
be relevant.

When no cohesive or distance forces are at play, granular materials are seemingly all but
complicated: only external boundaries and gravity determine the properties of the material.
Yet, despite their scientific and technological importance, no unified description of the dynami-
cal behavior of granular media exists today. Compared to our knowledge of conventional solids,
liquids and gases, our understanding of granular media is indeed very poor, despite more two
centuries of research initiated by pioneering works by Coulomb (static friction, 1773), Fara-
day (convective instability in a vibrated powder, 1831), Reynolds (dilatancy, 1885), and other
distinguished researchers. In particular, there exists no counterpart for granular media of the
the Navier-Stokes equation, which provides a unified framework for describing the dynamics of
viscous fluids.

The two main reasons for the complexity of granular materials are: interactions are dissipa-
tive, and thermal motion is irrelevant; and as such, they fundamentally differ from conventional
materials. Indeed, grains interact through solid friction, which arises from micro-scale roughness,
and through inelastic collisions, both being dissipative, highly non-linear phenomena. Moreover,
in contrast with thermal systems whose agitation enables reaching equilibrium, where all possi-
ble configurations are visited according to their Boltzmann weight and where microscopic and
macroscopic quantities are related, in the absence of thermal fluctuations, a system is trapped
in multiple metastable, steady, out-of-equilibrium states.

The combination of these two aspects makes continuous energy injection mandatory for
grains to be agitated and for different configurations to be explored. This can be realized by
mechanical forcing at the boundaries (shearing or vibrating), or by bulk forces from external
fields (gravitational, electric or magnetic) or from flow of interstitial fluids (water or air) [4].
Then, energy injection is balanced by energy dissipation, which enables the system to reach ag-
itated, out-of-equilibrium stationary states. For instance, solid-, liquid- and gas-like states can
be generated in granular systems depending on the quantity and means of injection of energy
transferred to the grains: put a thin layer of sand on a plate; with no shaking, the ensemble of
grains is at rest and looks like a solid. Now weakly shake it vertically, then grains move collec-
tively and the system behaves like a liquid, a state in which non-trivial patterns may form [4]
as illustrated in Fig. 2(a). If now you shake the grains with an acceleration well above the grav-
itational acceleration, they will fly around and the system may seem like a gas. These different
states can even coexist under certain conditions, like in a granular avalanche, as illustrated in
Fig. 2(b): grains deep in the bulk stay at rest, while they flow within a surface layer, and some
may even be propelled in a ballistic motion above the surface layer [not visible in Fig. 2(b)].

A particularly interesting situation is when an ensemble of grains is strongly shaken in a
box. Then, if the density is low enough, the grains interact almost only via binary collisions,
and otherwise move independently. Even though these collisions are dissipative and energy is
continuously injected into the system, it looks like a molecular gas, and for that reason, it is
called a granular gas.

Based on this analogy, it is possible to define a granular temperature, Tg, from the kinetic
energy of the grains [6, 7]: Tg = 2

d

⟨
1
2 |v − ⟨v⟩ |2

⟩
, where d is the dimension of the system, v is the

velocity and ⟨·⟩ is an ensemble average. Note that this temperature measures the agitation of
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(a) (b)

Figure 2 Granular patterns and coexisting states. (a) Representative patterns in vertically
vibrated granular layers, in a liquid-like state, for various values of frequency and amplitude
of the vibration: stripes, squares, hexagons, spiral, interfaces, and localized oscillons (image
by Umbanhowar [4]). (b) A pile of mustard seeds tilted so as to create an avalanche. Particles
flow within a surface layer, while underlying seeds stay at rest (image from [5]).

the grains (typically mTg ∼ 10−10 J, with m ∼ 10−6 kg the particle mass), while the usual tem-
perature is relative to the thermal agitation of their microscopic constituents (kBT ∼ 10−21 J).
Then, by analogy to the kinetic theory of molecular gases, kinetic theories of granular gases
have been developed. Based on the inelastic Boltzmann equation, a first set of constitutive laws
has been obtained [8], and later generalized to describe more realistic systems, for instance by
using a velocity-dependent coefficient of restitution [7] and by including tangential friction [9].

However, several of the hypotheses necessary for obtaining these results —like assuming that
particles and flow have well separated scales, that energy input balances energy loss, and that
the density is low enough so that collisions are only binary— are strong hypotheses, which limit
the range of applicability of these results to only a small number of real systems. Hence, there
exists no unified description of granular systems in general [10], and even less is known about
system where cohesive or distance forces are at play.

Experiments and numerical simulations of three-dimensional granular gases have lead to the
discovery of a number of phenomena. These include the transition from a gas-like state to a
bouncing aggregate when the density is increased, called dynamical clustering [11] and its equiv-
alent with a motionless aggregate in low-gravity [12, 13], the segregation of particles by size [14]
and the breakdown of equipartition in polydisperse systems [15]. Yet, a strong limitation of
three-dimensional experiments is that, in general, measurements are restricted to the bound-
aries (e.g., pressure, impact velocities, impact times, etc.) while information on the bulk of the
system, and in particular on the individual particle trajectories inside the bulk, is unattainable.

In contrast, quasi-two-dimensional (Q2D) granular gases enable access to both particle po-
sitions and velocities at all times, making it possible to perform a more complete quantitative
analysis of the properties of such systems. A Q2D granular gas is typically composed of a few
to several thousand particles with a diameter of about 1mm that are made of hard materials
such as glass or metals. The particles are confined in an experimental cell with a fixed volume
defined horizontally by walls and vertically by two parallel plates, the lateral dimensions being
much larger than vertical extension (typically 10 cm vs. a few particle diameters). Except if
specifically required, the volume boundaries are made of conducting materials (like ITO, coated
glass or polycarbonate plates, metallic walls) so as to avoid electrostatic interactions.

Mechanical energy is continuously provided to the particles, most often by cell vibration [16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26], but sometimes by electrostatic shaking using an alternating



20 Introduction

electric field [27, 28, 29], and more rarely by air flow [30, 31]. Vibrating the cell vertically at
a period significantly smaller than the time-scale of the physical process of interest (e.g., the
typical time between two collisions), enables the transfer, on average, of the same amount of
energy to each particle. In other words, the vibrating cell acts as a “thermostat” that homo-
geneously “heats” the particles. The motion of each grain is then approximately stochastic,
but interactions between grains can make collective effects arise at the macroscopic level due to
the large size of the system (thousands of particles). It is then possible, for such systems, to
define “macroscopic state functions” such as granular temperature, density or pressure. More-
over, particle motion can be recorded by means of a high-speed video camera, so it is possible
to know the particle positions and velocities at all times. Then, as much information as in
molecular dynamics simulations is available, except for the vertical position of the particles;
however an advantage of experiments it that we can a priori run them for much longer times
than those accessible in numerical simulations. As such, Q2D granular media have been widely
studied during the last two decades not only for understanding granular physics itself, but also
as model systems for studying out-of-equilibrium statistical mechanics, nonlinear physics and
self-organization in many-body systems.

The phenomenology of Q2D granular systems whose particles interact solely via inelastic
collisions and friction is very rich. In a pioneering work, Olafsen and Urbach [16] explored the
clustering, ordering and inelastic collapse in a vibrated Q2D granular system, shortly after Gold-
hirsch on Zanetti [32] demonstrated numerically that clustering arises from density fluctuations
in non-vibrated “cooling” dissipative gases. These results motivated numerous works, leading to
the discovery of striking characteristic properties of granular gases. For instance, in a granular
gas, the particles’ velocity distributions deviate from the Maxwell-Boltzmann distribution, as
expected in systems at thermodynamic equilibrium with no correlations; instead, the velocity
distributions are non-Gaussian and exhibit high-velocity stretched exponential tails, as observed
experimentally [16, 17, 18, 19, 25, 33], in numerical simulations [34, 35, 36], and also predicted
by models on the randomly forced inelastic Boltzmann equation [37, 38] (albeit for larger veloc-
ities than those observed in the experiments [34, 39]).

Another characteristic phenomenon in Q2D granular gases is solid-fluid phase coexistence.
The work of Olafsen and Urbach mentioned above [16], for instance, shows the coexistence of a
gaseous phase with a hexagonally packed solid cluster formed by inelastic collapse, where there
is mechanical equilibrium between the two phases. Such a coexistence was observed again by
Losert et al. [40], in a system with an amorphous solid phase. When the shaking strength is
large enough so that inelastic collapse is not relevant, another type of solid phase can be ob-
served. Indeed, when the driving amplitude or particle density exceeds a critical value [22, 41], a
solid phase forms due to strong dissipative interactions between grains in the confined geometry.
Castillo et al. [42] have shown that this transition can be of either first or second order.

Other phenomena reminiscent of microscopic and colloidal systems include, among others,
caging effects [43], crystallization [44], and Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)-
type two-step melting of a hexagonally ordered solid phase [45].

It is interesting to note that Q2D granular systems with non-spherical particles also show
nice analogies with thermal systems. For example, Ben-Naim et al. [46] found that the opening
times of knots of polymer-like granular chains are well-described by a model of random walks
with hard-core exclusion, and Safford et al. [47] have shown that the statistical properties of a
similar vibrated granular chain are well described by standard models of polymers in equilibrium.

To summarize, Q2D granular gases display ordering effects and transitions that have inter-
esting analogies to phase transitions in microscopic systems. Yet, these transitions are solely



Introduction 21

driven by dissipative interactions at contact, namely inelastic collisions and friction, which have
no microscopic counterparts. At the microscopic scale, phase transitions have a fundamentally
different origin: the competition between thermal agitation and distance interactions (Coulomb,
van der Waals, dipolar magnetic interactions, etc.). An exciting idea is then to attempt to gen-
erate analogous transitions in a granular model system. A Q2D granular gas with distance
interactions between particles can take this role: the macroscopic counterparts of the atoms
(or molecules), thermal agitation and microscopic interactions are then respectively granular
particles, mechanical agitation, and distance interactions between the grains (electrostatic or
magnetic). Then, “macroscopic” phase transitions can be triggered by tuning the balance be-
tween distance interactions and mechanical agitation.

Blair and Kudrolli [21] were the first to study a Q2D granular gas with distance interac-
tions. They used permanently magnetized beads at low densities, hence creating a dipolar fluid,
and reported transitions from gas-like to clusters to networks states. In this case, interactions
are mostly attractive and chains of head-to-tail dipoles, rings and hexagonally ordered clusters
can form. In similar experiments but at a higher density, Oyarte et al. [48] characterized the
fluid-solid transition that occurs when the agitation strength is changed. Yet, in these granular
dipolar fluids, frictional effects are still very much present.

It appears that granular gases with repulsive distance interactions fit best to the task of
producing transitions analogous to microscopic phase transitions. Indeed, in the confined geom-
etry of Q2D systems, self-organization can arise from repulsive distance interactions. Using a
granular gas of charged particles weakly agitated, Coupier, Saint Jean and collaborators [23, 24]
studied the defect-mediated melting of a crystal seen as analogous to a 2D gas of electrons, or
Wigner crystal. More recently, Schockmel et al. [26] investigated the KTHNY-type two-step
crystal melting in a granular gas of induced magnetic dipoles weakly agitated and successfully
compared it to the analogous transition in a system of superparamagnetic colloids [49].

These first results are promising but are very few, hence the field of the study of “macro-
scopic” phase transitions with granular model systems is wide open. Given the great variety
of phase transitions observed at the microscopic scale, one can expect a comparatively large
quantity of self-organizing effects from distance-interacting granular systems, with, neverthe-
less, certainly some features arising from the out-of-equilibrium nature of the latter.

In this thesis, we aim at understanding the effects of magnetic dipolar repulsive interactions
on the properties of a granular gas. More specifically, we address the following questions: How
are the structure and dynamics of the granular gas changed by the magnetic interactions? Can
we trigger novel macroscopic fluid-solid transitions analogous to microscopic phase transitions?
If so, to what self-organized states? How can we control the properties of these states?

To tackle these questions, we perform experiments on a Q2D granular gas of spherical parti-
cles with induced magnetic moment. The originality of our experiments, compared to the other
Q2D granular gas experiments, lies in the combination of real-time control of the strength of
the particles’ magnetization, with accurate control of the processing pathway thanks to com-
plete automation of the devices. In contrast with Schockmel et al. [26], who generate magnetic
interactions the same way as we do but with a focus on crystal melting, we develop the general
understanding of the influence of distance repulsive interactions on the dynamics and structure
of granular gases, and compare it to an ideal gas. Furthermore, we demonstrate that disor-
dered labyrinthine phases arising from competing short- and long-range interactions are not
restricted to thermal systems and can be obtained in a macroscopic system of particles. Finally,
we evidence the non-stationary nature of the granular labyrinthine phase, and quantitatively
characterize the different processes occurring at short and long time scales.
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a
Outline of the manuscript

This thesis is composed of six chapters. In chapters 1, 2 and 3, we give technical information
regarding the experimental setup and the image and data processing, and provide some theoret-
ical tools. Chapters 4, 5 and 6 are dedicated to the results that we obtained in different regions
of the parameter space of the magnetic granular gas. We finally conclude and propose some
perspectives for future work.

– In Chapter 1, we introduce the devices and materials composing the experimental setup,
and we describe the automated protocol that we designed to perform the experiments;

– In Chapter 2, we specify the successive steps of the image analysis and explain the prin-
ciples of particle tracking. We also give some details about some key points of data
processing;

– In Chapter 3, first, we study the behavior of a permanently magnetized sphere and a
ferromagnetic sphere in a magnetic field, a part largely inspired from the reference book
of Jackson [50]; second, we analyze the interactions of two magnetized spheres with and
without gravity; and third, we provide a few theoretical tools used in Chapter 4, Chapter 5
and Chapter 6.

– In Chapter 4, we examine the magnetic granular gas at a low particle area fraction (about
20%), when the strength of the magnetic interactions is increased. We demonstrate that,
prior to the complete solidification of the granular gas into a crystalline state, the typical
properties of this dissipative out-of-equilibrium granular gas are progressively lost, to ap-
proach those expected for a usual gas at thermodynamic equilibrium. These results have
been published in EPL [1];

– In Chapter 5, we investigate the self-organization of the magnetic granular gas at a high
particle area fraction (about 50%), when the strength of the magnetic interactions is in-
creased. We show that the system solidifies into a large scale disordered labyrinthine phase
mostly composed of randomly oriented chains of particles in contact, despite the a priori
repulsive nature of the magnetic forces. We characterize quantitatively this transition
and explain the formation of the chains using a simple model. These results have been
published in Physical Review E [2]. We discuss this simple model in an additional section;

– In Chapter 6, we explore the time evolution of the granular labyrinthine phase. We show
that the formation of chains at short times is simply described by a nucleation process,
while at long times, the labyrinthine phase undergoes coarsening and a dramatic slowing
down of its dynamics.

During this thesis, I have also been involved in an international collaboration devoted to the
study of dynamical and statistical properties of granular matter in a low-gravity environment,
the Topical Team Space Grains of the European Space Agency [51]. The motivation for low
gravity is that dissipative collisions between particles are then the only interaction mechanism.
The experiments focus on clustering mechanisms, thermal fluctuations, convection, segregation
and physical phenomena related to excited granular systems. I contributed to the project during
workshops, and in particular to a work submitted for publication about segregation and pattern
formation in low gravity.
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Chapter abstract

Our experimental setup is designed to generate a quasi-two-dimensional granular gas of soft-
ferromagnetic, spherical particles that interact through tunable magnetic interactions. Particles
are mechanically agitated by vertical shaking of the experimental cell, and are magnetized by an
externally applied, transverse magnetic field. The horizontal motion of the particles is tracked
by means of a high-speed video camera, which gives us access to particle positions and velocities
at all times. The specific experimental protocol that we defined is implemented via a home-made
automation routine. Automation enables us to efficiently probe the large experimental phase
space as well as to perform repeated runs with a high level of accuracy.

1.1 Devices and materials

1.1.1 General overview

The experimental setup is mostly composed of an experimental cell of size about 10 cm×10 cm
containing a few thousand particles, an electromagnetic shaker for agitating them mechanically,
a pair of coils generating the transverse magnetic field, a circular L.E.D. array that lightens the
particles and a high-speed video camera recording the raw images from which the analysis is
performed, as shown in Fig. 1.1.

The particles that we use are chromed steel beads of diameter a = 1mm, which become
magnetized in presence of a magnetic field. These particles are trapped inside a horizontal,
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Figure 1.1 Experimental setup. (a) Schematic, side view. Soft ferromagnetic spherical
particles of diameter a are placed inside a quasi-two-dimensional cell of gap size e and total
area S0. The cell bottom plate is rough, while the top polycarbonate lid is smooth. The cell
is sinusoidally shaken in the vertical direction with a maximum acceleration Γ, by means of
an electromagnetic shaker. The cell is immersed in a vertical magnetic field of amplitude B
generated by a pair of coils. The particles magnetize and interact via repulsive forces in the
cell plane. A high-speed video camera records particle motion in the horizontal plane inside
the square region of interest of area S. A circular L.E.D. array provides lighting. (b) Picture
of the setup. (c) Zoom on the square experimental cell with particles inside.
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quasi-two-dimensional aluminum cell. The cell bottom plate is rough and opaque, while the
top lid is smooth and transparent. The vertical distance between the two plates, that is, the
gap size, e, is always larger than one particle diameter and smaller than two particle diameters:
a < e < 2 a. We performed experiments with two different cells: a square cell with a high
roughness and a fixed gap size, and a circular cell with a lower roughness and a tunable gap
size.

The injection of mechanical energy in the system is performed by means of an electromagnetic
shaker, which vibrates sinusoidally and vertically the cell. The latter is screwed on top of
a vertical, aluminum piston, which is itself fixed to the electromagnetic shaker. These three
components are joined together. We checked that measuring the vertical acceleration from an
accelerometer fixed to a moving part of the electromagnetic shaker and from another one fixed to
the cell provides identical values of the acceleration. When the cell is vibrated, the roughness of
the bottom plate scatters the incoming particles in all directions, therefore enhancing horizontal
displacements and collisions between the particles. At low density, the horizontal motion of
particles is Brownian-like, which is why such a system is called a granular gas.

The cell is placed at the center of a pair of coils generating a DC magnetic field in the vertical
direction, which is therefore transverse to the cell plane. The magnetic field has a slight radial
dependence and is maximum at the cell center. With respect to the cell center, we measured
a relative change of 2% at the boundary of the region of interest S, and of 3.5% at the border
of the cell S0, which are both indicated in Fig. 1.1(a) We consider therefore the particles as
being immersed in a transverse, homogeneous magnetic field. As such, particles can be viewed
as induced magnetic dipoles generated by the transverse magnetic field and whose momentum
are parallel and vertically oriented, as illustrated in Fig. 1.1(a).

The particles are lightened from the top through the transparent lid by a circular LED array.
A high-speed video camera records images from the top, which constitute the raw data exploited
for all analysis.

1.1.2 Particles

The particles that we use are chromed steel (alloy USA class AISI 52100, equivalent to French
class 100C6) bearing balls of a diameter a = 1mm, manufactured by Marteau & Lemarié [52].
Manufacturer’s grade 100 refers to accepted errors of ± 2.5µm on the diameter and of 2.5µm on
the sphericity, and to a roughness of 0.125µm. The manufacturer provides a ball unitary mass
of m = 4.07× 10−3 g with a density of ρ = 7830 kg.m−3.

Magnetization measurements

The magnetization-magnetic excitation diagram of a two-dimensional stack of balls of the same
class as our steel balls (AISI 52100) but of a diameter 1.2mm was measured by Shah et al. [53].
The authors concluded that these particles do not exhibit any hysteretic behavior and that as
such, they do not bear any remnant magnetic field. Note that the value of magnetic susceptibility
that they obtained, χ = 3.6, seems to have been used successfully in at least one magnetic
granular gas study [26], where experiments were compared with a model.

However, some experimental observations led us to suspect that the balls that we use bear
a remnant magnetic moment. Indeed, after immersing the balls in a magnetic field which was
eventually turned off, we observed aggregation and chain formation [Fig. 1.2(a)] as reported
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(a) (b)

Figure 1.2 Visualizing remnant magnetization in images from experiments with the circular
cell, with no shaking and no magnetic field (Γ = 0 and B = 0G). (a) Patterns displayed by
balls at rest after being immersed in a magnetic field of 120G; (b) Bead arrangement after a
demagnetization cycle (detailed in Section 1.2.4).
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Figure 1.3 Magnetization-magnetic excitation diagram for a chromed steel ball (AISI 52100,
diameter a = 1mm). (a) Full diagram displaying a linear regime and saturation at ±104 Oe.
The red circle shows the initial zero excitation data point. (b) Enlargement of −1000Oe<
H <+1000Oe, where the hysteretic behavior is clearly exhibited. The red line is a linear
fit from the data points showed on this plot, and leads to an estimation of the magnetic
permeability of the balls of µr ∼ 500.

for vibrated permanent magnetic dipoles by Blair and Kudrolli [21]. Such a configuration sig-
nificantly differs from the spatial distribution obtained with the same balls when they are not
magnetized [Fig. 1.2(b)]. To clarify that point, we measured the magnetization diagram for
a single ball. These measurements were performed using a Vibrating Sample Magnetometer,
by Vincent Dupuis at Université Pierre et Marie Curie. The complete results are shown in
Fig. 1.3(a) and the range −1000Oe < H < 1000Oe is enlarged in Fig. 1.3(b).

From these figures we see that the response of magnetization M to magnetic excitation H can
be considered linear in the range ± 1000Oe. Note that 1Oe of magnetic excitation corresponds
to 1G of magnetic field. Therefore, we can confidently run experiments with magnetic fields
lower than 1000G while staying in the linear regime. Second, we clearly detect a hysteretic
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behavior: as depicted in Fig. 1.2(b), the magnetization curves for the increasing (top blue curve)
and decreasing (lower blue curve) magnetic excitations do not match. Quantitatively, the shifts
correspond to about ± 30Oe, which leads us to the conclusion that the remnant magnetization of
the balls corresponds to an effective magnetic field of about 30G. To circumvent this problem,
one could either use increasing values of magnetic excitation for successive experiments, or
demagnetize the balls after every experiment using a higher magnetic excitation value than the
following one (see Section 1.2.4). In practice, we used both methods.

Magnetic susceptibility and magnetic permeability

From the data within the regime of linear response, we can extract a magnetic susceptibility
and a magnetic permeability for the ball. Indeed, linearly fitting the data within the ± 1000Oe
range, we obtain the linear curve [in red in Fig. 1.3(b)]:

yfit = p x+ yfit,0 (1.1)

with p = 3.06× 10−2 emu/g and yfit,0 = 3.08× 10−3 emu/g/Oe.
The effective magnetic susceptibility χeff relates the magnetization M to the magnetic exci-

tation H via the linear relation
M = χeff H, (1.2)

hence χeff corresponds to the slope of the magnetization curve, similarly to p, but is dimension-
less. Given that 1Oe= 103

4π A/m, and that we can convert the ordinate values in emu/g into
A/m by multiplying by m/Vb,cm3 × 103 with Vb,cm3 the volume of one particle in cm3, we can
relate χeff to p as:

χeff =
m

Vb,cm3

103 ×
(
103

4π

)−1

p, (1.3)

which yields
χeff ≈ 2.98. (1.4)

This value is very close to the limiting case χ∞
eff = 3 corresponding to an infinite magnetic

permeability, µ, as detailed in Chapter 3. Moreover, the effective susceptibility χeff and the
relative magnetic permeability µr are related through

χeff = 3
µr − 1

µr + 2
⇐⇒ µr =

3 + 2χeff
3− χeff

(1.5)

which leads to
µr ∼ 500 ≫ 1 (1.6)

therefore it is relevant to consider the magnetic permeability of these steel balls as infinite.

1.1.3 Experimental cells

We used two experimental cells made of “Dural” aluminum with a rough bottom and a smooth,
transparent lid. The first one is square, while the second one is circular.

Geometries and roughness characteristics

The square cell is made of a block of Dural of size 102mm× 102mm× 13mm on top of which
are four confining walls of a height 1.5mm and a width 6mm, as illustrated in Fig. 1.4(a). The
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Figure 1.4 Detailed schematics of the two cells. (a) Square cell, top and side views; (b) Cir-
cular cell, side and top views. The dash-dotted blue squares show the region of interest of area
S = 57mm×57mm.

bottom surface is of area S0 = 90mm×90mm. We fix a sticky sandpaper square sheet on the
bottom surface of the cell so that it provides roughness to the bottom surface the balls are
colliding on. This roughness was characterized by Maxime Costalonga by means of an optical
microscope at Université Paris Diderot, and is of RMS amplitude 20µm, i.e., about 100 times
larger than the particle roughness and about 50 times smaller than a particle diameter. Note
that although the confining walls are 1.5mm high, the height that can be explored by the
particles is slightly less than 1.5mm due to the thickness of the sandpaper.

The circular cell, as shown in Fig. 1.4(b), is composed of a disk of aluminum 122mm in
diameter and of a thickness 13mm. The confining walls are 1.1mm high and 6mm wide, so
that the bottom surface of the cell, of area S0, has a diameter 110mm. In order to tune the gap
size, we use slabs of stainless steel of various thickness (0.05mm, 0.10mm, 0.20mm, 0.25mm,
0.40mm and 0.50mm), cut into pieces of about 1 cm× 1 cm. We place them next to the screw
holes between the top of the confining walls and the polycarbonate lid.

For this cell, the roughness of the bottom surface was obtained by means of an abrasive
blasting operation: we propelled a stream of glass beads under high pressure against the Dural
surface. This process is called sandblasting. By impacting on the target surface, the propelled
beads deformed it and thus generated roughness. The bead size was of ∼ 10-100µm, enabling
us to generate a smaller roughness than the one of the sandpaper. We performed it at École
Normale Supérieure, with the help of Frédéric Lechenault and of José Da Silva Quintos.

For both cells, the vertical gap available for the particles is tunable between one and two
particle diameters. This way, particles can overlap partially, but never totally. Therefore it
makes sense to consider our system as being quasi-two-dimensional.
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Discussion

Choosing to design a circular cell after having used the square cell comes from two observations.
The first one is that when the cell containing the particles contains some angles, particle density
inhomogeneities related to this particular shape tended to appear: the density near the corners
and along the cell sides is not the same. Secondly, we ware interested in having a cell with
physical boundaries that are invariant by rotation, thus minimizing the influence of the self-
organization of the beads into disordered patterns.

A sandpaper sheet is coated with an abrasive material whose hardness is higher than that
of steel, while Dural aluminum is much softer. Consequently, the advantage of the sandpaper
sheet compared to the sandblasted surface is that it is not (or very little) modified by the impact
of the steel beads, while the aluminum roughened surface probably becomes smoothed out. On
the other hand, the advantages of the sandblasted surface are that, first, it does not make the
chromed steel bead dull, which is the case with sandpaper and can lead to particle detection
difficulties; and second, its flatness is better than that of the surface with the sticky sandpaper
sheet on it.

Lid

For both cells, the confined volume is vertically limited by a polycarbonate lid with an anti-
static coating. Linked to the ground, this lid releases the electrostatic charges that may be
temporarily carried by particles, allowing us to ignore electrostatic forces for the interactions
between particles. The lids are fixed to the aluminum cells by four screws in the square cell and
six screws in the circular cell, evenly spaced on the perimeter of the cell.

Area fraction of particles

Given that our system is quasi-two-dimensional, we can define a particle area fraction, which we
denote ϕ. With N the number of particles in the region of interest of area S and a the particle
diameter, the particle area fraction is

ϕ =
Nπa2

4S
. (1.7)

In our experiments, ϕ is not a constant because the region of interest does not include the
whole bottom plate surface, as illustrated in Fig. 1.4, and as such, particles can enter and exit
it. Hence, in the region of interest, the number of particles is not fixed, and it depends on the
experimental parameters such as the mechanical excitation and the external magnetic field. For
example, for experiments with a total number Ntot = 2000 balls in the square cell, N roughly
varies between 1200 and 700, implying changes on ϕ from 0.28 to 0.17. With 5000 balls, N varies
between 2700 and 1900, modifying ϕ from 0.65 to 0.45.

In the following, we will be also using the theoretical particle area fraction, ϕth, which we
define as

ϕth =
Ntotπa2

4Stot
(1.8)

where Ntot is the total number of particles in the cell and Stot is the surface of the cell. For
instance, in the case of the square cell, ϕth ≈ 0.194 for Ntot = 2000 particles, and ϕth ≈ 0.485

for Ntot = 5000 particles.
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1.1.4 Mechanical agitation

Technical description

A cell is vertically, sinusoidally vibrated by means of an electromagnetic shaker. We use an
electromagnetic shaker LDS V400 and an amplifier LDS PA100E. The input voltage in the
amplifier is controlled via an acquisition card (interface NI BNC-2120) itself controlled from
a Matlab routine. More details about the automation routine are given in Subsection 1.2.2.
We denote f the frequency of the alternating current delivered by the acquisition card to the
electromagnetic shaker through the amplifier.

Definition of Γ

The alternating current feeding the electromagnetic shaker is converted into a vertical, sinusoidal
displacement of the piston which connects the shaker to the experimental cell. Therefore the
cell moves vertically at a frequency f and with an amplitude A according to

z(t) = A sin(2πft). (1.9)

In all the experiments presented here, the frequency of mechanical excitation is f = 300Hz
and the amplitude A is of the order of 10µm. This value was chosen from the qualitative
observation that it optimizes particle mobility in the horizontal plane (tested in the square cell
only). The value of the amplitude A was calibrated as a function of the feeding current for both
cells (and therefore for both displaced weights) by means of an accelerometer fixed at the base
of the piston. The maximum vertical acceleration experienced by the cell is |z̈m| = (2πf)2A.
From this, we define the dimensionless acceleration,

Γ ≡ (2πf)2A

g
(1.10)

where g ≡ ∥g⃗∥ = 9.81m.s−2 is the magnitude of the gravitational acceleration. In our experi-
ments, Γ was typically 2 and it never exceeded 5.5.

Calibration and tests of reproducibility

We performed calibrations to relate the output tension from the acquisition card to the shaking
strength Γ obtained from the electromagnetic shaker. This operation was performed with the
amplifier potentiometer turned to maximum so that the results could be easily recovered later.
The results of the calibration operation depend on the weight of the displaced cell. For example,
Fig. 1.5 shows the calibration curve with the square cell mounted. Linear fits are satisfying, of
type Γ = facc

lin (Uout), with facc
lin a linear function with coefficients adjusted for a given cell, and

Uout the output voltage of the acquisition card.

We performed reproducibility tests for the shaker by performing several successive experi-
ments with the same vibration strength. The goal was to observe a possible effect of the heating
of the shaker on its vibrational characteristics. First, feeding with a voltage Uout = 0.45V
(generating Γ ≈ 2.75, a value that is higher than most acceleration values we used) during 15 s,
measuring Γ, then waiting at 0V for 5 s, and repeating, generated the following result: the rela-
tive change in Γ from a cycle of 1 experiment to a cycle of 30 experiments is smaller than 1%. A
test in which the 0V stage lasts 20 s instead of 5 s shows a relative change about twice as small.
When we reduce Uout down to 0.20V (i.e., Γ ≈ 1.25), no change in Γ is detected, whatever the
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Figure 1.5 Calibration of the ensemble {amplifier LDS PA100E + shaker LDS V400 Series}
with the potentiometer of the amplifier turned to maximum, for the square cell. Abscissa Uout
is the voltage in V going out of the acquisition card (input in the Matlab protocol routine)
which feeds the amplifier. Blue +’s: voltage in V recorded from an accelerometer fixed to the
piston (1V↔ 1 g). Red line: linear fit of the input voltage providing calibration for the shaking
strength Γ, whose equation is displayed on the plot.

number of experiments performed successively. We concluded that, within our common range
of Γ, heating of the electromagnetic shaker has negligible effects.

It is important to note that, even though a shift from calibration may happen, we would be
aware of it since we perform real-time recordings of the actual acceleration for every experiment.
More importantly, we will rely on the measured value of this parameter, instead of the value
expected from calibration.

1.1.5 Magnetic excitation

Technical description

In order to generate the external, vertical magnetic field in which the particles are immersed, we
use two coils mounted in series and placed horizontally above and bellow the cell. These coils
have an internal diameter of 75mm, an external diameter of 225mm, and a thickness of 30mm.
They are placed with a vertical separation of 45mm. They are fed a continuous intensity signal
by an amplifier Kepco BOP 36-12ML, which is itself controlled in voltage by the data acquisition
card programmed with a Matlab routine. All values of the generated magnetic field are smaller
than 500G (1G= 10−4 T), which can be produced with a current intensity smaller than 10A.
This allows us to work without cooling the coils. We obtain a satisfyingly homogeneous magnetic
field inside the region of interest (relative variation of about 2%) and across the cell (relative
variation of about 3.5%).

Calibration and tests of reproducibility

The experimental cells are not shielded and the magnetic field generated by the internal per-
manent magnet of the electromagnetic shaker is about 6G at the particle level. The calibration
of the generated magnetic field as a function of the voltage going out of the acquisition card is
shown in Fig. 1.6. The measurements of the vertical magnetic field are performed by means of
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Figure 1.6 Calibration of the coils generating the magnetic field using the Kepco amplifier.
Abscissa Uout is the voltage in V going out of the acquisition card (input in the Matlab protocol
routine) and feeding the amplifier. Blue +’s: magnetic field in Gauss recorded from a Hall
sensor placed above the center of the cell. Red line: linear fit of the input voltage providing
calibration for the transverse magnetic field B.

a Gaussmeter placed at the center of the cell. Since we are using moderate intensities, a linear
regime is obtained and thus the data are pretty well fitted by a linear function B = fbob

lin (Uout),
with fbob

lin a linear function specific to our setup.

As for the electromagnetic shaker, we test the reproducibility of the magnetic field generated
by the coils during a long series of experiments. Indeed the coils may actually heat a little,
and we would like to quantify this possible effect. Our protocol is as follows. First, we set Uout
so that the expected magnetic field was of 300G during 60 s, make a measurement of the real
magnetic field B, waited 120 s and repeat. Between the 1st run and the 15th run, the magnetic
field decreases linearly as the coils were being slightly heated, for a total relative decrease of
about 2%. An analogous test with an expected magnetic field of 200G reveals a linear decrease
of about 1%. When 100G is used, no decrease is detected. Therefore, heating does occur for
the magnetic field values used in our experiments (from 0G to more more than 400G), but only
changes of a few percents the obtained value compared to the expected one.

At any rate, as it was the case for the acceleration Γ, we perform real-time measurements of
the magnetic field B and use subsequently the measured value as a parameter.

Response to a magnetic quench

As we will see in Chapter 6, we will be interested in increasing the magnetic field very quickly.
To evaluate the maximum speed at which we can increase the magnetic field, we measure the
response of the coils (the Kepco amplifier has a much shorter response time) to increases of
magnetic field at different magnetic quenching rates,

αq ≡
dB
dt . (1.11)

The results are presented on Fig. 1.7. For αq = 3000G.s−1, we can consider the magnetic field
increase as linear and the oscillations in the transitory regime, at the end of the ramp, as being of
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Figure 1.7 Response of the coils to a fast increase of magnetic field from 0G up to 160G.
Grey dashed lines: expected magnetic field of the ideal response; Color curves: measured
magnetic field. (a) αq = 3000G.s−1; (b) αq = 3800G.s−1; (c) αq = 4600G.s−1. Each plot is
an average of B over 1000 successive tests.

low amplitude. This amplitude increases with αq, as shown on the example of αq = 3600G.s−1.
For αq = 4600G.s−1, the response of the coil is clearly nonlinear, preventing us from using such
magnetic quenching values. From these tests, we decide to never use magnetic quenching rates
αq higher than 3000G.s−1, and most often we stay below 1000G.s−1.

1.1.6 Control instruments

For all experiments, we perform real time measurements of the dimensionless acceleration Γ

and of the vertical magnetic field B. This way, we do not rely on the values expected from
calibrations, but instead are able to use values measured in real time as parameters.

Accelerometer

We perform acceleration measurements by means of a piezoelectric accelerometer fixed to the
piston linking the cells to the electromagnetic shaker. This accelerometer is from manufacturer
Brüel & Kjaer, Type 4393. We analyze the signal generated by means of a charge amplifier
from the same manufacturer, Type 2635, whose calibration is provided by the manufacturer. It
generates an output tension that is directly proportional to the measured acceleration Γ. We
record the acceleration signal via the acquisition card and using a Matlab routine, as detailed
in Section 1.2.2.

Magnetometer

We measure the magnetic field generated by the coils by means of a magnetometer equipped with
a one-directional Hall effect sensor (manufacturer FW Bell, model 5180). We use a horizontal
and a vertical sensor. The output voltage verifies the relation 100G↔ 0.1V and is recorded via
the acquisition card using a Matlab routine.

We mainly use the horizontal sensor, since it allows us to perform both video and magnetic
field measurements simultaneously. The positioning of the sensor with respect to the square cell
is illustrated on Fig.1.8(a); in the case of the circular cell, we place the sensor near the edge of
the cell as well. The difference of magnetic field measured at the cell center and at the edge of
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Figure 1.8 Hall effect sensor position and measurement of the inhomogeneity of the magnetic
field. (a) Position of the Hall sensor (brown stick on the upper right of the image) on the side
of the square cell so that we can perform magnetic field measurements while recording videos.
The white dashed square indicates the region of interest. The white circular reflection is the
L.E.D. array lighting system reflection. The green and yellow cable is linked to the Earth.
(b) Difference of magnetic field between measurements on the side and at the center of the cell
(blue dots) and linear fit (black dashed line).

the cell increases linearly with the magnetic field and corresponds to a relative difference of less
than 4%, as shown in Fig. 1.8(b).

1.1.7 Image acquisition system

All information about particle positions and velocities is extracted from high-speed video record-
ings.

We use a high-speed video camera Phantom V10 with a lens Tokina AT-X M100 Pro D
of fixed focal length of 100mm and an aperture a f/2.8, and a circular L.E.D. circular array
of diameter 140mm and a power 20W from manufacturer Creative Customer Satisfaction Inc..
Both are centered along the coil axis and above the cell, the camera being positioned at a vertical
distance of about one meter while the lighting system is installed about 20mm above the coils,
as visible in Fig. 1.1(b). We obtain a very good contrast between the reflection of the LED
array on top of the chromed particles and the dark sandpaper of the square cell. When using
the circular cell, however, the aluminum background being light, as visible in Fig. 1.2, we have
to use an additional band-pass filter (extensive details are given in Chapter 2). The region of
interest is square with side 57mm and centered around the cell center, as depicted in Fig.1.8(a)
on the example of the square cell. We exclude the cell borders from the region of interest in
order to get rid of the boundary effects, and to increase signal resolution at the same time.

We perform almost all measurements with a camera sampling frequency of facq = 780Hz,
and at a few smaller ones (for instance 4Hz and 10Hz). The exposure time is τe = 990µs and the
resolution is of 1152pix× 1152 pix (for a real surface of the region of interest of 5.7mm× 5.7mm).
The particles, of a real diameter of a = 1mm, have a diameter of about 20 pix in the pictures.
We record images in .mat Matlab format. For experiments at very short times, as in Chapter 6,
Section 6.4, we only record 2 images, while for some other experiments in the same chapter, we
use 18, 000 images (i.e., 23 s, which is close to the maximum of about 18, 800 images that we can
record on the RAM memory of our high speed camera).
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1.2 Protocol and automation

Following a well-defined protocol not only is necessary for ensuring the reproducibility of the
experiments, but crucially matters when studying disordered states, which will be our case (see
Chapter 5 and Chapter 6). As mentioned above, we developed a Matlab routine for controlling
and recording data from the main devices described in Section 1.1: electromagnetic shaker and
accelerometer, coils and magnetometer, high-speed video camera.

1.2.1 Principle of the protocol

Once a given number of particles Ntot is placed inside the experimental cell (i.e., the theoretical
particle area fraction ϕth is fixed) and the cell fixed at the center of the coils, we start running
sets of experiments.

Let us denote Γt(t) the time-dependant dimensionless acceleration and Bt(t) the time-dependant
magnetic field that are delivered, respectively, by the electromagnetic shaker and by the coils.
The protocol for a given experiment is shown schematically in Fig. 1.9:

1. We linearly increase the acceleration Γt from 0 to the target value Γ. This generates a
state of mechanically agitated grains, i.e., a granular gas. Increasing takes a time τi,1;

2. We wait a given time τw,1 while shaking (Γ). The goal here is to let the granular gas
homogenize;

3. We linearly increase the magnetic field Bt from 0G to a target value B1. Increasing takes
a time τi,2;

4. We wait a given time τw,2 while shaking (Γ) and applying the magnetic field (B1). This
may be used to homogenize a state of granular gas with interacting particles;

5. We linearly increase the magnetic field Bt from B1 to B0. Note that B0 refers to the target
value of the magnetic field, to which we will refer very frequently in this thesis. The rate
of increase of the magnetic field, or magnetic quenching rate, is αq = dBt/dt;

6. We wait a given time τ0 while shaking (Γ) and applying the magnetic field (B0). This
enables us to let the system undergo aging if it is in a non-stationary state;

7. We perform video recordings during a time τrec. The post-quench aging time is the duration
between the end of the ramp of magnetic field and the mean time of the recordings:
τag = τ0 + τrec/2;

8. We decrease Bt quickly and Γt slowly, so that Bt always vanishes before Γ does: this
enables us to randomize particles positions before turning off the mechanical shaking.

9. We let the devices idle during a given time τp. This may be used to let the shaker and the
coils cool down.

We loop on this sequence of commands with either identical parameters (i.e., in order to increase
statistics for a given set of parameters, to check reproducibility, etc.) or using different sets of
parameters.
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Figure 1.9 Experimental protocol. The blue dashed curve corresponds to the time-
dependant acceleration, Γt(t), whose plateau value is Γ. The plain red curve indicates the
time-dependant vertical magnetic field, Bt(t). B1 corresponds to the intermediate plateau
magnetic field, while the taget value of the magnetic field is B0. The increase of Bt from B1 to
B0 is performed at the rate αq = dBt/dt. The time between the end of the increase of Bt to
B0 and the mean time of the recording is τag, the aging time. The red shaded area corresponds
to the period of image recordings.

1.2.2 Automation routine

We wrote an automation routine which combines dialogues with both acquisition card and
high-speed video camera Phantom V10. We benefited from Matlab codes written by Leonardo
Gordillo for the Phantom camera and from pieces of code written by Luc Deike for the acquisition
card. This section concerns the technical description of this routine.

1. Input parameters.

(a) Main parameters: Γ, B1, B0 and αq.
(b) Timing parameters: τi,1, τi,2, τw,1, τw,2, τ0 and τp. The duration of step 5 of the

protocol, namely the increase of Bt from B1 to B0, is not a control parameter. It is
obtained from the difference |B0 −B1| and αq through:

τB1→B0 =
|B0 −B1|

αq
. (1.12)

(c) Number of frames, npic, and frequency of the recordings, facq. These parameters,
along with the waiting time of step 6, τ0, define the aging time:

τag = τ0 +
npic
2facq

. (1.13)

2. Running one experiment. This follows the protocol described in Section 1.2.1 and
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depicted in Fig. 1.9.

(a) On the acquisition card we open 2 output channels for controlling the two amplifiers
of the electromagnetic shaker and of the coils; and 2 input channels for recording the
signals from the accelerometer and from the magnetometer.

(b) As a background task, we send the signals corresponding to the expected dimension-
less acceleration Γt and to the expected magnetic field Bt. Then, we stay idle until
the time at which recordings must be started (the recording period is highlighted in
light red in Fig. 1.9);

(c) We start the high-speed video recordings as a foreground task, and start transfer-
ring the recorded frames from the camera to the operating computer as soon as the
recording is finished, i.e., while Γt and Bt are decreasing down to zero.

(d) We wait until the final waiting stage of duration τp (step 9) is completed, and save the
measurements from the accelerometer and from the magnetometer performed during
the video recordings.

(e) We start repeating, in a loop, as illustrated on Fig. 1.9 by the purple arrow.

1.2.3 In practice: running one set of experiments

Counting particles

In practice, first one has to pick up the number of particles Ntot required to obtain the desired
theoretical particle area fraction ϕth given by Eq. 1.8. Since we are dealing with thousands of
particles, it is not realistic to count them individually. Instead, we weigh a bunch of particles
using a high-precision weighing scale (Ohaus Adventurer Pro AV 264, precision of 10−4 g < m)
until we reach the required total mass mtot given by:

mtot = mNtot = mϕth
4Stot
πa2

. (1.14)

Lid and gap size

Once particles are placed in the cell, we fix the polycarbonate lid. When using the square cell,
we simply fixed it by means of four screws and performed experiments with a single gap size of
about 1.4 a (that is, the native gap size of 1.5mm minus the thickness of the sandpaper sheet).
With the circular cell, we use stainless steel slabs to tune the gap size (between about 1.3 a and
1.8 a), which we slip between the aluminum walls and the acrylic lid, next to each of the six
screws, as mentioned in Section 1.1.3.

Pre-checks

We screwed the cell on top of the piston fixed to the electromagnetic shaker. At this stage,
we perform the following checks, systematically, prior to starting the recordings via the Matlab
routine:

• Diverse checks.

– Centering the cell with respect to the coils, by eye, so that the magnetic field B is
minimum at the center of the cell.
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– Centering the camera with respect to the cell, within ±10 pix from the cell center.
The latter is identified either by a cross on a removable piece of paper placed on the
lid (square cell), or by a central mark from machining (circular cell).

– Zeroing the magnetic field B by placing the Hall effect sensor at the measurement
position, as illustrated on Fig. 1.8(a), and adjusting the potentiometer of the Kepco
amplifier so that the measured magnetic field is zero when 0G is requested in the
Matlab routine.

– Recording a picture with the camera lens covered, which will be used for calibrating
the camera sensor (this is the dark field picture mentioned in Chapter 2, Section 2.1.1).

• Horizontality of the cell. This is the finest adjustment to be implemented when using
our setup. The horizontality is extremely easily lost – even running a long series of exper-
iments can compromise due to vibrations.
The particles are very sensitive to small deviations from horizontality, thus we adjust it
very carefully. Indeed, when the cell is slightly tilted in one direction, particles migrate
accordingly and a density gradient appears. Instead, when horizontality is obtained, par-
ticle density is homogeneous across the cell (or, if a clustering effect is present, the density
is invariant by rotation).
This sensitivity to non-horizontality is probably due to the smoothness of our particles and
the low roughness of the cell lower surface (either sand paper or sandblasted aluminum).
However, note that the higher Γ (i.e., the higher the particle mechanical agitation) and the
higher B (i.e., the stronger the interactions between particles), the lesser the consequences
of a slight tilt of the cell.
We adjusted the cell horizontality by means of three screws levelling the thick aluminum
plate on which the electromagnetic shaker is fixed. First for a strong shaking strength,
we make adjustments by eye. Then we perform a similar adjustment for a lower values of
Γ, and so on, so as to refine horizontality. Once we have completed the adjustment for
Γ = 1.1 g, we assume the horizontality to be satisfying. Concretely, making this adjust-
ment took us between 5min and 1.5h.

Demagnetization

If the particles appear magnetized, for instance, if they arrange as in Fig. 1.2(a), we perform
demagnetization so that their remnant magnetic moment becomes negligible in the context of
our experiments. More information about remnant magnetic field and demagnetization methods
are given below.

Run

Finally, after all these verifications, we start a series of experiments.

1.2.4 Demagnetization method

When the particles are immersed in an external magnetic field, at the microscopic level inside
the bulk of the material, magnetic domains align with the magnetic excitation. In our case,
they align along the vertical axis. If the particles were paramagnetic, the magnetic domains
(or Weiss domains) would reorient randomly and the mean magnetization of every particle
would be vanishing, i.e., there would be no remnant magnetization. If the particles were purely
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Figure 1.10 Demagnetization of remnant dipoles. Particles bearing a remnant magnetiza-
tion are immersed in a vertical magnetic field oscillating at a low frequency fD = 4Hz, with
an initial amplitude of 400G linearly decreasing at a rate −1G.s−1.

ferromagnetic, the magnetic domains would keep their alignment, leaving the particles bear a
strong remnant magnetization after the magnetic excitation is turned off.

Our particles are soft-ferromagnetic, i.e., they bear a weak magnetization after having been
immersed in an external magnetic excitation. This is not convenient for us since for our mea-
surements at zero or low magnetic field, we need particles not bearing any other magnetization
that the one that we induce, if there is any. To remove the remnant magnetization, one has two
options.

On one hand, one can heat the particles up to the Curie temperature of the constituting
materials so that thermal agitation randomizes the orientation of the microscopic dipoles and
of the magnetic domains in the bulk of the materials. Above this temperature, the material is
paramagnetic. For stainless steel SUS 405, the Curie point has been measured between 710 ◦C
and 730 ◦C [54]. For our AISI 52100 particles, we expect the Curie point to be of the same order
of magnitude. Heating the particles at such a temperature is not an easy task –we did not use
this method.

On the other hand, it is possible to remove a material’s remnant magnetization by immersing
it in an oscillating magnetic field, which we denoteBdemag, of an amplitude that linearly decreases
from a high value compared to the highest magnetization experienced by the material, down to
zero [55]:

Bdemag = (−t+Bdemag,0) sin(2πfDt), (1.15)

where we used in practice, Bdemag,0 = 400G and fD = 4Hz, as illustrated in Fig. 1.10.

Following this protocol, the magnetic domains are periodically oriented up and down, gen-
erating disorder in the orientation of the microscopic dipoles which finally results in a vanishing
mean magnetization as Bdemag tends towards zero. The two pictures of Fig. 1.2 illustrate well
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the aspect of an ensemble of particles at rest before (a) and after (b) a demagnetization cycle is
performed. In practice, we apply this demagnetization protocol only when we run an experiment
with a magnetic field B0 lower than the previous experiment.

1.3 Personal contribution

The totality of the experiments presented in this thesis were performed using the experimen-
tal setup described above. We built it in the early stage of my PhD, and implemented minor
modifications and refinements along the way. When I began my work, the square machined alu-
minum cell was vertically mounted on an electromagnetic shaker via a piston, and the coils were
placed at a convenient height on a low Norcan aluminum structure. At this stage, preliminary
experiments could be run since all essential devices (experimental cell, electromagnetic shaker
and coils) were in place.

I reinforced the aluminum structure and extended it vertically so as to create a reliable at-
tachment point for the heavy high-speed video camera about one meter above the cell along the
axis of the coils. I also added pieces of rubber under the electromagnetic shaker and under the
aluminum structure in order to better reduce vibration transmission between them and the lab
bench on which I moved the setup. I fixed an accelerometer on the vibrating piston and a rack
and pinon system at the height of the cell to support and move the Hall effect sensor horizon-
tally. I connected both coils and shaker amplifiers, plus the accelerometer and magnetometer
amplifying devices, to an acquisition card for automation purposes, and, most importantly, I
developed the protocol and automation routine describe in Section 1.2.

I performed all the experiments and data analysis presented in this thesis unless otherwise
specified.
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Chapter abstract

The basic ingredients for all our analysis are the particles’ positions and displacements, i.e.,
their trajectories. The positions are obtained from images recorded by the high-speed video
camera, in which centers are identified with pixel accuracy using a cross-correlation technique,
itself eventually brought to a sub-pixel accuracy by means of a simple centroid method. Finally,
a tracking algorithm builds up individual particle trajectories from the particles’ positions on
successive frames. This particle tracking technique is highly accurate, relatively fast to imple-
ment, and highly reliable. Finally, we give some details on our methods of computation of some
key quantities such as collision rate, cluster detection, real-time measurement and numerical
assignment of particle vertical positions, and magnetic energy computation.

2.1 Image processing

Raw images are recorded using a high-speed video camera, as explained in Section 1.1.7. These
images are not directly usable for the centers’ detection, and eventually the tracking algorithm.
We need to start by calibrating these images according to the sensor’s offset and sensitivity, and
to additionally optimize them by an adjustment method optionally complemented by a high-pass
filter for removing large inter-particle bright patches. Only then can we look for the particle
centers, which we need to locate with the highest accuracy possible and within a reasonable
computational time. For this, as a first step, we determine the centers at a pixel accuracy by
cross-correlating the images with an ideal particle signal designed to closely fit the real one.
However, such a low resolution is not satisfying, hence we improve it by computing the centroid
of the intensities in the area surrounding each center. Finally, from these refined position data,
obtained for successive frames, we estimate the most likely frame-to-frame displacements of each
particle and rebuild individual trajectories.
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2.1.1 From raw to processed images

Calibration relative to the camera sensor

As recorded by the camera sensor without considering any calibration, a raw image does not
accurately reflect reality. Indeed, the sensor’s response to light is linear according to a gain
matrix, Ms, and a non-vanishing offset matrix, I0, both of which we have to measure. While
Ms is related to physical properties of the pixels and does not depend on the environmental
conditions, I0 varies, for instance, with the camera temperature. Therefore, Ms is measured
once and for all, but I0 is ideally measured prior to every experiment.

Let us denote Iraw a raw image and Ireal the corresponding real image (both being of size
1152pix × 1152pix for all our experiments). The real image is obtained from the raw image
through the operation:

Ireal = (Iraw − I0)./Ms (2.1)

where ./ is the term-by-term matrix division operator. This operation can be implemented via
two methods: either by using the software provided with the high-speed camera, or manually.

Using the Phantom Camera Controller (PCC) software to do this is the most straightforward
method if your recordings are performed via this software. Once PCC is started and prior to
recording, cover the camera lens and click once on the Current Session Reference (CSR) button.
This records a dark picture in the RAM memory of the camera, which is used as offset matrix I0
until PCC is turned off or another CSR measurement is done. The images that are then saved
are real ones, obtained from Eq. 2.1 with the gain matrix provided by the manufacturer and
stored in the internal camera memory, as default for Ms.

When controlling the camera without making use of the camera software, as it is the case
for us with our automation routine, one must proceed differently. Here we describe the protocol
that has to be followed so that one can explicitly implement Eq. 2.1 in a numerical routine with
Ms and I0 obtained manually. We acknowledge Leonardo Gordillo for his kind assistance and
for his routines performing the dialogue between Matlab and the camera Phantom V10.

The gain matrix, Ms, is computed once and for all following these steps:
1. Remove the lens of the camera and orient the sensor towards a uniformly illuminated field;

2. Tune the exposure time, τe, so that the signal gets close to saturation: the highest intensity
over all pixels must be lower than, but as close as possible to, 2nb− 1, with nb the number
of bits of the frame quality (for us nb = 8);

3. Record this raw picture, which we denote Iraw flat, for flat field;

4. With the same exposure time, generate a dark picture with the lens covered. This is the
offset picture I0,flat;

5. Now, according to Eq. 2.1, Ms can be computed as

Ms = (Iraw flat − I0,flat)./Ireal flat (2.2)

where Ireal flat is the real image of the flat white field, that is, the identity matrix of the
image size. Finally, we obtain the gain matrix as:

Ms = Iraw flat − I0,flat. (2.3)

An example of such a matrix is shown in Fig. 2.1(a).
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Figure 2.1 High-speed camera sensor calibration (a,b) and example of zoomed images from
experiments with the circular cell (c,d). Colorbars indicate signal intensity: 0 (resp. 1) corre-
sponds to an absence of signal from the pixel (a saturation of the pixel). (a) Gain matrix Ms;
(b) Example of an offset matrix I0; (c) Example of a raw frame Iraw (zoom), and (d) associated
real frame Ireal (zoom). Note the various ranges of the colorbars, revealing in particular the
improvement in contrast between (c) and (d).

For the offset matrix, set the exposure time τe to the value that will be used in the coming
recordings, cover the lens and record a picture: this is I0. An example of an offset matrix is
shown in Fig. 2.1(b).

Within the routine analyzing the images, insert a calibration section which computes for
every raw frame Iraw the real image Ireal according to Eq. 2.1, prior to any further frame
analysis. As an illustration of this image processing step, we show a portion of a raw image in
Fig. 2.1(c), and the associated real image in Fig. 2.1(d). Note that the patterning visible on the
raw image has disappeared on the real image, and that the different ranges of the two colorbars
reveal a better contrast on the real image. This latter image, Ireal, is used as a starting point
for the next image processing steps.

In practice, we implemented the manual method for all our experiments. We updated the
offset matrix I0 prior to every set of experiments, rather than prior to each and every experiment,
which, nevertheless, provided images of very good quality.
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Stretching with thresholds

Such images do not necessarily make the best use of the 256 grey-scale levels that are available
for our 8-bits frames. Indeed, particles may lose reflectivity and consequently reflect a signal
with a lower intensity than expected and significantly below the maximum value. In the mean
time, the background intensity level remains unchanged: darker than the particles for the square
cell coated with the sandpaper sheet, and lighter for the circular cell with sandblasted aluminum
surface. For the former, applying a lower threshold is possible, since the background is darker
than the particles but of non-zero intensity, while for the latter, this cannot be done without
losing particle signal.

Based on these observations, we stretch our images in order to optimize contrast. We map the
values in the real image Ireal to new values in a new, optimized image Iopti such that grey-scale
values between alow and ahigh map to values between blow and bhigh:

Iopti = M(Ireal; alow, ahigh, blow, bhigh) (2.4)

where the mapping operator, M, is defined for a matrix X and adjustment parameters alow,
ahigh, blow and bhigh as,

M(X; alow, ahigh, blow, bhigh) =
X − alow
ahigh − alow

(
bhigh − blow

)
+ blow. (2.5)

In practice, we always chose for ahigh a value close to the maximum value of the signal of
interest (i.e., the L.E.D. circular array reflection), blow = 0 and bhigh = 1 so that the generated
picture is optimized and normalized. For the square cell, the value taken for alow is slightly above
the grey level of the dark background, so it acts as a lower brightness threshold. In the case of
the circular cell, as we mentioned above, applying a lower threshold alow at the background level
would make the particle signal partially disappear. Therefore, we chose this threshold to be
zero. However, since we do need to remove this light background in order to be able to clearly
identify the particles, we implemented an additional filtering operation.

High-pass filter

This operation consists of applying a high-pass filter to optimized frames Iopti for experiments
with the circular cell only. The idea is to remove the bright patches between the particles while
leaving particle signals undeformed. In this section, we explain the general principle of band-
pass filters for images, whose high-pass filters are a sub-class, before concluding on the use we
make of them in our image processing.

The role of a band-pass filter is to remove both short wavelengths (e.g., pixel noise) and long
wavelengths (e.g., inter-particles light areas), while letting pass free the characteristic wavelength
of the signal of interest (e.g., the L.E.D. circular array reflection). To this end, we used the freely
available algorithm from Daniel Blair and Eric Dufresne [56] (itself a translation into Matlab of
IDL routines written by John Crocker and David Grier).

A band-pass algorithm performs two separate two-dimensional convolutions and finally sub-
tracts the one to the other, as we will see below. Two-dimensional convolutions are frequently
used in image processing because they can be used to implement filter effects such as sharp-
ening, smoothing, and detection of the edges. Here, we may be interested in smoothing short-
wavelength and enhance long-wavelength patterns.
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Figure 2.2 Graphical representation of a 2D discrete convolution described by Eq. 2.8. In
image processing, the input matrix F is the frame that is to be filtered, the flipped kernel G is
the filter to be applied to F , and the output matrix O is the filtered image (inspired by [57]).

The convolution of two continuous functions f and g defined in R2 is defined as:

f ∗ g = [f ∗ g] (x⃗0) =
∫
R2

f(x⃗)g(x⃗0 − x⃗) dx⃗ (2.6)

with ∫
R2

g(x⃗) dx⃗ = 1. (2.7)

The function g is called kernel, or filter, and its nature defines the type of filtering that is applied.
Note that on Eq. 2.6, g is flipped. The operation where g is not flipped is the cross-correlation
of f and g.

Digital image processing requires to consider a discretized version of Eq. 2.6. Let us consider
an image array F and a kernel arrayG, both of dimensionality 2 but of different sizes, respectively
M ×N and m× n. Note that the size of the kernel is usually similar to the size of the signal to
enhance (this is equivalent to considering it to be zero elsewhere), and is thus much smaller than
the size of the image. The array produced, O, is of dimension 2 as well and is of size M ×N .

Performing the discrete convolution consists of sliding the flipped kernel G over the image
F so that it explores all the positions where it entirely fits within the boundaries of the image.
To each kernel position (i, j) corresponds a single output value:

O(i, j) =

M∑
k=1

N∑
l=1

F (k, l)G(i− k, j − l) (2.8)

where G(x, y) = 0 if x ̸∈ [1,m] or if y ̸∈ [1, n], and,

m∑
i=1

n∑
j=1

G(i, j) = 1. (2.9)
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Figure 2.3 Examples of kernels in one dimension (1D). (a) Gaussian 1D kernel for smoothing
a noise of 1pixel; (b) Boxcar 1D kernel enhancing objects of a size of 5pixels.

A graphical representation of this operation is presented on Fig. 2.2. Note that there exist
different methods to tackle the problem of what happens at the edges of the image, but we will
not describe them here (more details can be found in reference books such as [58]).

The choice of the kernel G depends on the pattern that is being looked for and thus defines
the type of filtering that is performed. For instance, a Gaussian kernel of a size of a few pixels,
for which a one-dimensional example is shown in Fig. 2.3(a), is efficient at smoothing pixel noise,
while boxcar kernels of a given size, like in Fig. 2.3(b), are used for identifying patterns of a
similar typical size.

A band-pass operation consists of performing a convolution of the image with a short-
wavelength Gaussian kernel, KG, in order to smooth pixel noise, from which is subtracted
the convolution of the image with a long-wavelength boxcar kernel, KBC , so as to remove long-
wavelength patterns. The resulting image Ibp is obtained from the formula:

Ibp(x⃗0) =

∫
Iopti(x⃗) ∗ [KG(x⃗0 − x⃗)−KBC(x⃗0 − x⃗)]dx⃗ (2.10)

where the domain of integration is over the full region of interest.

In our images, background noise is actually low enough that we do not have to use a Gaussian
kernel, which has the advantage of leaving our images unsmoothed (concretely, we replace it in
the routine by the single-pixel identity kernel I1×1 = 1). However, we are very much interested
in removing the bright areas between particles, clearly visible in Fig. 2.1(d), hence we set the
half-width of the boxcar kernel to 5 pixels, as in the example of Fig. 2.3(b). Note that the target
size of 5pixels is significantly larger than the width of the peaks of the double-peak particle
signal, which is of 2–3pixels, the diameter of the double-peak signal being of about 10pixels.
Hence, particle signal quality is not degraded by the use of the high-pass filter.

In a nutshell, we apply to our images a high-pass filter with a threshold at about 10pixels,
which removes the bright patches between the particles while leaving particle signals undeformed.
The filtered images are systematically stretched through an operation similar to the one given
by Eq. 2.5, and using an operator M with as parameters alow = 0 and ahigh = 0.9 in order to
stretch lower intensities towards 1, and bhigh = 0 and blow = 1 so that the resulting image is
normalized. An illustration of the effects of the high-pass filter is shown in Fig. 2.4, starting from
a mapped image, Iopti = M(Ireal) [Fig. 2.4(a)], to obtain a filtered image, M(Ibp) [Fig. 2.4(b)].
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Figure 2.4 High-pass filter implementation. (a) Mapped real image Iopti = M(Ireal) from
Eq. 2.4; (b) Mapped band-passed real image M(Ibp) (see Eq. 2.10). The filter removes the
large bright patches while leaving particle signals untouched.

2.1.2 Particle center position at pixel accuracy

Images are now optimized for particle tracking. The first step towards getting particle trajec-
tories consists of obtaining, for every successive frame, the center of every particle. We start
by computing the coordinates of the centers with pixel accuracy, and in the next section we
will refine this measurement to reach a sub-pixel accuracy. We base our image analysis on a
convolution-based least-squares fitting particle detection routine written by Mark Shattuck [59]
and used for instance by Reis et al. [25], which we adapted to our signal characteristics.

Real and idealized particle signals

The L.E.D. circular array reflection on top of a chromed particle generates a circular signal, as
seen in previous pictures, and shown more specifically in Fig. 2.5(a). From the data points at
y = 556 on this plot (indicated by the horizontal white dashed line), we obtain a one-dimensional
version of the signal, as shown by the red curve in Fig. 2.5(b). We model this signal by means of
portions of hyperbolic tangents generating a double-peak curve, which is represented by the blue
curve in Fig. 2.5(b). The fitting parameters for this curve, I1D, are the peak-to-peak distance,
dfit, and the sharpness of the peaks, sfit,

I1D (x, dfit, sfit) = 2−

tanh


∣∣∣∣x+

dfit
2

∣∣∣∣
sfit

+ tanh


∣∣∣∣x− dfit

2

∣∣∣∣
sfit


 . (2.11)

By assuming that the particle signal is unchanged by a rotation, which is actually not
verified, as visible in Fig. 2.5(a), we extrapolate the one-dimensional idealized signal of Eq. 2.11,
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Figure 2.5 Real and idealized particle signals. (a) Zoom on a real particle of the image in
Fig. 2.4(b). The superimposed white dashed line indicates the line of pixels used for plotting
the “filtered” curve in (b); (b) Comparison of the one-dimensional real, filtered and ad hoc
idealized particle signals. The “filtered” curve is obtained from the data points of (a) along
the line y = 556; (c) Particle signal from Eq. 2.12 with dfit = 7.5pix and sfit = 2pix.

I1D(x, dfit, sfit), into the two-dimensional idealized signal,

I2D (r⃗, dfit, sfit) = 2−

tanh


∥∥∥∥∥r⃗ + ⃗d2D(dfit)

2

∥∥∥∥∥
sfit

+ tanh


∥∥∥∥∥r⃗ − ⃗d2D(dfit)

2

∥∥∥∥∥
sfit


 (2.12)

where
r⃗ = (x, y) , and ⃗d2D(dfit) = dfit

(
r⃗

∥r⃗∥
· e⃗x,

r⃗

∥r⃗∥
· e⃗y
)

(2.13)
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in the normal basis (e⃗x, e⃗y). The resulting signal with dfit = 7.5pix and sfit = 2 pix is shown
on Fig. 2.5(c). The comparison with the real particle signal shows good agreement, which will
be verified below when computing cross-correlations. In practice, in order to determine the
values of our fitting parameters, we compare one-dimensional versions of both these signals and
manually adjust the fitting parameters until we are satisfied.

Least-square fitting [59]

From I2D, we can compute the most likely position of a particle center using a least-square-
fitting method. To this end, let us first denote I the real processed image obtained once the
operations described in Section 2.1.1 are completed, and second, let us define a square distance
between this real picture and the two-dimensional idealized signal,

χ2(r⃗0, dfit, sfit) =

∫
[I(r⃗)− I2D (r⃗ − r⃗0, dfit, sfit)]

2 dr⃗ (2.14)

where the domain of integration is the full region of interest. Note that because our parti-
cle signals are well separated and our signal-to-noise ratio is very satisfying, we do not use
any weighing function, which can, however, be useful when one of these two condition is not
present [59]. Instead, we obtain a direct cross-correlation by developing χ2:

χ2(r⃗0, dfit, sfit) =

∫ [
I(r⃗)2 − 2I(r⃗)I2D (r⃗ − r⃗0, dfit, sfit) + I2D (r⃗ − r⃗0, dfit, sfit)

2
]

dr⃗ (2.15)

=

∫
I(r⃗)2dr⃗ − 2I ⊗ I2D +

⟨
I2D

2
⟩

(2.16)

where we used the cross-correlation operator, ⊗, defined for two functions f and g as

f ⊗ g = [f ⊗ g](x⃗0) =

∫
f(x⃗)g(x⃗− x⃗0)dx⃗ (2.17)

and
⟨f⟩ = 1⊗ f. (2.18)

Note that the cross-correlation defined by Eq. 2.17 is related to the convolution defined by
Eq. 2.6 through

f(x⃗)⊗ g(−x⃗) =
∫
f(x⃗)g(x⃗0 − x⃗)dx⃗ = [f ∗ g](x⃗0) = f ∗ g. (2.19)

In Eq. 2.16, the first term does not depend on r⃗0, and the third term depends on it only near
the edges of the image. Therefore, the only term that depends on r⃗0 in the region of interest
with a physical meaning is the second term, −2I ⊗ I2D. Given that I ⊗ I2D corresponds to
the cross-correlation between the real image and the idealized signal, it is maximum around the
particles centers, where, in return, χ2 is minimum.

Consequently, in order to find the particle centers, the first step is to find all the minima of
χ2. Among these minima, we remove those that correspond to noise and do not indicate particle
centers, by using a threshold on the value of χ2. Because of the high quality of our signal, we
never lose more than a few particles in every frame, i.e., typically 0.1%, if any. Most of the
time, especially when using the circular cell, which provides very high-quality images, it seems
that we do not lose a single particle in this operation. The accuracy at which the minima of χ2

are obtained is one pixel.
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Figure 2.6 Computing the center positions with pixel accuracy. (a) Real image Iopti with
centers superimposed (pixel accuracy, from χ2 minimization); (b) Normalized 1/χ2, where the
spikes indicate particle centers.

We present in Fig. 2.6(a) a real picture on which we superimposed + symbols indicating the
positions of the particle centers as computed from the least-square fitting method. The minima
of χ2, or equivalently, the maxima of 1/χ2 can be easily spotted in Fig. 2.6(b) where each spike’s
summit corresponds to a + in the picture on the left.

2.1.3 Particle center positions with sub-pixel accuracy

For the magnification that we use, one pixel corresponds to 1/20th of a particle’s diameter, that
is, about 0.05mm. Given the high acquisition frequency, facq = 780Hz, the displacement of the
particles between two frames is very small. Indeed, as we will see, the typical fastest particle
velocities are of about 10 cm.s−1, implying maximum frame-to-frame displacements of about
0.13mm; while most of the particles’ speed will be of the order of magnitude of 1 cm.s−1, thus
corresponding to 0.01mm frame-to-frame displacements. It is therefore obvious that we cannot
satisfy ourselves with an accuracy of 0.05mm on the center detection: we need to obtain a result
with sub-pixel accuracy, which should be significantly lower than 0.01mm.

One possibility: Minimization of χ2

Refining the least-square-fitting estimate can provide such an improvement. As proposed in [59],
one can minimize χ2 with respect to dfit, sfit and the x⃗n’s:

1. Find d⋆fit and s⋆fit such as 
∂χ2(x⃗0; d

⋆
fit, s

⋆
fit)

∂d⋆fit
= 0

∂χ2(x⃗0; d
⋆
fit, s

⋆
fit)

∂s⋆fit
= 0

(2.20)

2. Find x⃗⋆n’s such as
∂χ2(x⃗⋆n; d

⋆
fit, s

⋆
fit)

∂x⃗⋆n
= 0 (2.21)
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The author [59] performs these minimizations using Newton’s method and explains that he can
reach the impressive accuracy of 1/1000th of a pixel. However, this operation has a significantly
high computational cost. Give that a lower accuracy can meet our needs, we chose to use another
method.

Our method: Centroids of the intensities

Implemented by a home-made routine, this method consists of determining the position of a
particle center with sub-pixel accuracy by exploiting the circularity of a particle signal. Around
the particle center determined by least-square-fitting, we compute the position of the centroids
(x̄, ȳ) of the intensities of the real processed image I:

x̄ =

s
x I(x, y)dx dys
I(x, y)dxdy

ȳ =

s
y I(x, y)dx dys
I(x, y)dxdy

(2.22)

where the domains of integration are bounded to the circular region centered on the pixel-
accuracy position and with an adjustable diameter dbary, as depicted in Fig. 2.7(a) for dbary =

14pix. We chose this parameter dbary large enough so that the circular region includes all the
pixels having a significant grey level (i.e., we capture as much information as possible), but we
restrict it to be smaller than one particle diameter in order to do not include in the computation
the reflection of neighboring particles on the side of the particle of interest, which are clearly
visible when particles are close to each other (as is the case for the particle in Fig. 2.7). The
resulting center position determined at a sub-pixel accuracy is indicated by the red cross on
Fig. 2.7(b). Concretely, for most experiments, we chose dbary = 14pix, but this value depends
on the magnification that is used. This method was found to be significantly faster to implement
than the one performing χ2 minimizations which we briefly described above.

Accuracy

However, our method provided a lower accuracy. Estimating the accuracy of centroid algorithms
has been much debated. Recently, Puglisi et al. [33] estimated that the accuracy of such an
algorithm, for Gaussian blobs of diameter dblob of a few pixels, is given by

δg ≈ 1√
dblob

. (2.23)

Extrapolating this result to our double-peak, quasi-rotational-invariant particle signal leads
to estimating the accuracy on our positions as being

δ ≈ 0.27pix ≈ 0.013mm (2.24)

where we have taken dblob = 14 pix. This result is to be compared to the displacement of
a particle moving at a speed of 1 cm.s−1 during f−1

acq s, which is of 0.013mm too. Therefore,
according to this estimate, it is in principle impossible for us to measure velocities smaller than
1 cm.s−1. However, as we will see below, it seems that we can in reality access much smaller
velocities.

An extensive study tackling the question of detection accuracy for 1D, 2D and 3D Gaussian
signals is from Patwardhan [60]. The dependence of the error of the centroid algorithm for
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Figure 2.7 Zoom on a particle with sub-pixel centroid algorithm depiction. (a) Thick + is
the pixel accuracy center, the circle shows the limit of the domain of integration for computing
the centroid (see Eq. 2.22) which is centered on the thick + and is of diameter dbary = 14pix,
and small +’s show the pixels that are actually used in the calculation; (b) White + is the
pixel accuracy center, and the red cross is the computed centroid, i.e., the center at sub-pixel
accuracy. Note that the neighboring particles’ reflections (clear spots on the particle’s side)
are excluded from the circular domain of integration.

Gaussian signals is studied in particular as a function of the threshold level (i.e., the background
intensity level) and the signal diameter. In particular, the author demonstrates that for a 2D
Gaussian signal of diameter 14 pixels and of a threshold intensity of 10% of the maximum
amplitude, as it is approximately the case for us, the expected error is about 0.01 pixel. Again
extrapolating this result to our double-peak signal leads us to estimating our error as

δ ≈ 0.01 pix ≈ 0.0005mm (2.25)

which implies that we can detect the displacements of particles moving at velocities as low
as vmin = δ facq = 0.039 cm.s−1, i.e., of the order of magnitude of 0.1 cm.s−1, which seems
reasonable.

When the parameters controlling the sub-pixel accuracy detection (and specifically, dbary)
are not properly tuned and we do not reach the expected accuracy, one can clearly see that
particle displacements are not smooth but are discontinuous instead.

2.1.4 Particle tracking

We now have the positions at sub-pixel accuracy. From these, we aim at computing the individual
particle trajectories. Particle Image Velocimetry relies on the cross-correlation of the ensemble
of some seeding particle positions between successive frames. This Eulerian method provides
velocity fields but not individual particle trajectories. In contrast, Particle Tracking Velocimetry
(PTV) is a Lagrangian approach which gives access to individual particle trajectories.
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Principle

This technique relies on the estimation of the most likely displacement of each particle between
two frames and can be implemented in different ways. Whatever the specific method of imple-
mentation, the PTV analysis algorithm has to be given the ensemble of the center positions on
every successive frame. In this thesis, we used the open-source tracking algorithm written in
Matlab by Daniel Blair and Eric Dufresne [56], translated from the IDL tracking code by John
Crocker and David Grier [61].

The basic idea of this tracking algorithm is, in the case of a system with a fixed number of
particles, N , to look for the most probable set of N identifications between the N locations in
the two consecutive images. Note that this algorithm was originally written for tracking colloidal
particles. Therefore, it starts from the assumption that particle trajectories are Brownian, but
it still works well for other types of trajectories, as noticed by the authors themselves [61].

Implementation

The probability for a Brownian particle to diffuse a distance δB in the horizontal plane within
a time τ is

P (δB|τ) =
1

4πDτ
exp

(
−
δ2B
4Dτ

)
(2.26)

where D is the particle self-diffusion coefficient. For an ensemble of N non-interacting identical
particles, the corresponding probability distribution is the product of single particle results:

P ({δB,i} |τ) =
(

1

4πDτ

)N

exp
(
−

N∑
i=1

δB,i
2

4Dτ

)
. (2.27)

The most likely assignment of particle labels from one image to the next, is the one which
maximizes P ({δB,i} |τ), or equivalently, minimizes

∑N
i=1 δ

2
B,i. The authors discuss the applica-

bility of such a criterion to interacting particles, and conclude that if displacements between two
frames are small enough compared to the interparticle spacing, the algorithm still works well.

Criteria on facq

Consequently, a criterion which is sufficient, even though not necessary, is that typical particle
displacements ⟨δ⟩ must be significantly smaller than a particle diameter:

⟨δ⟩ = vmax
facq

< a (2.28)

where vmax is the maximum velocity of the particles. When this condition is verified, there is no
risk of misattribution of position assignments, hence trajectories are properly built. In practice,
we have vmax ∼ 10 cm.s−1 and a = 1mm, which leads to the condition facq > 100Hz. With
facq = 780Hz, not only are we making sure that the tracking algorithm will work well, but we
are also making it possible to observe collisions events, which are fast events. Two examples of
trajectories are presented in Fig. 2.8(a) and (b) for a filling fraction ϕ ∼ 0.5, a dimensionless
acceleration Γ ≈ 2, and a magnetic field B0 = 120G.
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(a)

(b)

Figure 2.8 Two examples of particle trajectories in the horizontal plane, from an experiment
with ϕ = 0.5, Γ = 2 and B = 120G, for 18, 000 successive positions at facq = 780Hz. (a) A
particle gets trapped in a potential well (red), escapes and gets trapped again in a neighboring
well (blue); (b) A particle with a more linear displacement. Note that a particle’s diameter is
about 20pixels. Changes of directions are due to collisions with the bottom and top surfaces,
as well as interactions with neighboring particles.
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Refinements

Refinements are implemented in the routine that we use. For instance, instead of scanning the
full region of interest, one can restrict the search to a limited region around the last known
particle position, say of size L. Analytically, this means using a single-particle probability
distribution P (δB|τ) truncated at δB = L. One can also allow a particle to disappear from the
region of interest for a given number of time steps, and connect its trajectory when it reappears.
If the particle disappears for too long, or if the new trajectory cannot be assumed to belong to
the same particle, then a new particle label is used and a new trajectory is built.

The latter feature is of particular interest to us. Indeed, our region of interest does not
encompass the full cell area, allowing particles to enter and exit it, and hence letting their
number vary as time goes. Another reason for which a trajectory can be artificially broken by
the tracking algorithm is blinking of the signal, which is encountered in anomalous particles
displaying an inhomogeneous reflectivity. We faced this problem when using the square cell,
because the sandpaper sheet tended to rapidly make particles dull. In contrast, the aluminum
cell allowed us to work with high-quality particle signals.

2.2 Data analysis

We give here some details about a few technical aspects of data analysis, regarding detecting
collisions and contact in clusters, measuring the vertical positions of the particles, and performing
a measure of the mean magnetic energy of the ensemble of particles.

2.2.1 Collision and cluster detection

Thanks to the high speed video camera, we are able to accurately resolve the approach of two
particles prior to a collision, and their subsequent separation too. Yet, the duration of a collision
remains very short, even when we do recordings at 780Hz, and the particles separate quickly.
In order to detect binary collisions, we wrote an algorithm applying a distance criterion: when
particles approach each other at a distance r smaller than a given distance dcoll, chosen by us,
then we consider that a collision has happened. Typically, we use dcoll = 1.03 a. Some measures
of collision rates are used in Chapter 4.

We perform the detection of clusters of particles, or ensemble of particles permanently at
contact, in an analogous way. The base of our code is a routine written by Peter J. Lu [62]. As
we will see in Chapter 5 and Chapter 6, in our system, particles which stay in contact are in a
buckled configuration, where particles are in contact with each other and alternatively with the
top or bottom plate. Then, the distance between two centers measured in the horizontal plane,
xg, is smaller than one particle diameter, a. The criteria that we apply to detect aggregated
particles, analogously to when detecting collisions, is that the distance between two particles, r,
is smaller than a given distance, dclus. Note that for the algorithm detecting clusters, dclus < a

due to the buckled configuration. In practice, we adapt dclus to the gap size of the cell: it is
comprised between the theoretical smallest value of xg (which is fixed by the gap size) and a.
For instance we use dclus = 0.88 a for a gap size e = 1.48 a. A cluster is defined as a continuum
of particles respectively separated by less than dclus. In order to do not consider as clustered
two particles that are simply colliding, we verify if the two particles are still at contact about
0.1 s after the first detection. If yes, then we consider that they form a cluster from the time of
the first detection.
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Figure 2.9 Example of particles at contact. The circular signal on the top of the particles
touching the bottom plate is partially reflected on the side of the particles touching the top
plate.

2.2.2 Vertical position of the particles

From real signal

Unlike in numerical simulations, in experiments on quasi-two-dimensional granular gases, the
vertical positions of the particles is generally not known. Indeed, there is no simple means to
measure them. Here, we explain how we can measure them under some specific conditions,
namely when they are part of a cluster.

As illustrated in Fig. 2.9, when particles are in contact in a cluster, the signal of the particles
touching the bottom plate, which we call down particles, is partially reflected on the side of the
particles touching the top plate, or up particles. By eye, the two types of particles are therefore
distinguishable. Now, how to automatize their assignment to either up or down type? We exploit
the signal reflection on the side of the up particles. For every particle, we perform a radial average
of the grey level of the image around the center. As illustrated in Fig. 2.10(a) for an up particle
and in Fig. 2.10(b) for a down particle, the obtained signals look similar. Yet, integrating the
area under the blue curve between the vertical dashed red line, indicating a distance set by
us, rpop, and the minimum of the grey level curve, indicated by the vertical blue dashed line,
makes possible to distinguish the two types of particles. Indeed, when we plot the distribution
of the integrated areas (to which a constant is subtracted), as shown in Fig. 2.10(c), two well
separated populations appear. Those with a small integrated area correspond to particles with
a low intensity signal, i.e., these are the down particles, while the other population is the one of
the up particles. The level of success of this operation relies, in particular, on the choice of rpop,
which we make by hand. An example of result of an operation of assignment of up and down
positions to all the particles is shown in Fig. 2.11.

Note, however, that the main limitations of this routine are, first, when the signals do not
have the required quality, and second, when particles overlap so much that the reflection on the
side of the up particles disappear partially. The latter problem is related to the value of the gap
size.

Virtually

In order to avoid the problem mentioned above on the impossibility of detecting a usable reflected
signal, and for the sake of speed of implementation, we designed another method. This technique
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Figure 2.10 Distinguishing up from down particles. (a) Example of radially averaged grey
level of an up particle; (b) Example of radially averaged grey level of a down particle; (c) His-
togram of the area integrated under the curves of radially averaged grey level, between the
arbitrary distance (chosen by the operator) marked by the vertical red line in (a) and (b), and
the minimum of grey level automatically computed and marked by the black dashed vertical
line in (a) and (b). The reflection on the side of the up particles induces a larger integrated
area than for the down particles, which generates two well separated populations: left, down
particles, and right, up particles. The vertical red line indicates the limit set by the operator
to define the two populations.

(a) (b)

Figure 2.11 Illustrating at the full cell scale the up and down positions of the particles in a
structure where all particles are in contact. (a) Real image; (b) Superimposed red (resp., blue)
dots indicate the up (down) position of the particles.

does not rely at all on the real images. Instead, it is based on data obtained from the algorithm
detecting the clusters, namely, the positions of the particles assigned to given clusters, and on
the observation that the greater part of the ends of the chains are down in measures from real
signal. This algorithm proceeds as follows. For a given cluster, first, it detects which particles
are chain ends, if there are any. Then, it randomly chooses one of these ends, and assigns to it the
down position, after which it assigns alternatively up and down positions from closest neighbor
to closest neighbor inside the cluster. We show the result of such an operation in Fig. 2.12, which
is taken from an experiment which also includes particles not attached to chains (black dots in
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Figure 2.12 Virtually allocating up or down position to particles. Red (resp. blue) circles
represent up (down) particles. Black dots are particles not attached to a chain. The algorithm
picks up one end of a chain, assigns to is the down position, and then assigns iteratively up
and down positions to the rest of the particles of the chain.

the figure). Note that such a method is approximative, but we consider that it is sufficient for
estimating, in particular, the mean kinetic energy of interaction of particles inside a phase with
particles in clusters.

2.2.3 Magnetic energy

The mean magnetic energy of interaction per particle, Em, is defined in Chapter 3: it is calculated
from the sum of all the pairwise energies of interactions of the particles. In practice, computing
such a sum is numerically very costly, and it is preferable to reduce the distance up to which
neighboring particles are considered to significantly interact with the reference particle. However,
one must be careful when choosing such a threshold, since it must be large enough so that
significantly interacting particles are not rejected from the algorithm. In our case, the measure
of Em increases up to approximately saturating for a distance of integration near 10 particles
diameters. Based on this result, we choose to compute the mean magnetic energy per particle
by using particles as far as 10 a.

2.3 Personal contribution

During this experimental PhD, aside from automating the experiments, as detailed in the end
of Chapter 1, I largely dedicated myself to image processing and data analysis. Even though I
benefited from a few crucial open source codes for particle detection and tracking, putting them
all together, complementing and adapting them to our various experimental conditions revealed
to be a substantial task. Moreover, I developed nearly all data analysis routines, some of which
are mentioned above.
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Chapter abstract

First, we describe the behavior of a particle immersed in a magnetic field, for a permanently
magnetized particle and for a particle with an induced magnetic moment. Second, we study the
interactions of two magnetized particles, in general and in the quasi-two-dimensional geometry
of our experiments. Finally, we provide some theoretical tools that we will use in Chapter 4,
Chapter 5, and Chapter 6. A brief description of the kinetics of granular systems is given in
Appendix A. For a more comprehensive description of the kinetics and of the complex micro-
scopic properties of granular matter —including elastic, viscous, adhesion and friction forces,
the dissipation of energy at the grain level and the meaning of the coefficient of restitution—
we suggest to the reader the reference books of Brilliantov and Pöschel [7] and of Andreotti et
al. [3].

3.1 Magnetization of one particle

This thesis’ work originality consists in using granular particles that can be magnetized and
interact at a distance in a tunable way, in contrast to classical dissipative granular particles.
Let us now first briefly demonstrate the relation between the magnetic scalar potential and the
magnetization, and then apply this result to the case of a permanent magnetic dipole and of an
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induced magnetic dipole. Most of the results of this section are inspired from Jackson’s Classical
Electrodynamics [50] and Griffiths’s Introduction to Electrodynamics [63].

3.1.1 Maxwellʼs equations and the magnetic scalar potential

James Maxwell published in the 1860’s the Maxwell’s equations describing how electric and
magnetic fields are generated and altered by each other and by charges and currents. In their
modern differential form, the Maxwell’s equations write:

∇ · E =
ρ

ϵ0
(3.1)

∇ · B = 0 (3.2)

∇× E = −∂B
∂t

(3.3)

∇× B = µ0

(
J + ε0

∂E
∂t

)
(3.4)

where ∇ = ∂
∂r is the partial derivative with respect to space, E(r, t) is the electric field

strength, B(r, t) is the magnetic field strength, ρ(r, t) is the electric charge density, J(r, t)
is the electric current density, ε0 ≈ 8.85 10−12 F.m−1 is the vacuum electric permittivity and
µ0 = 4π10−7 V.s.A−1.m−1 is the vacuum magnetic permeability. In the following, we will only
make use of Eq. 3.2 and Eq. 3.4.

In addition to these fields, let us define the magnetization field, or simply magnetization, M,
which is the vector field corresponding to the density of magnetic dipoles in a magnetic material:

M =
dm
dV , (3.5)

where dm is the elementary magnetic moment in the volume element dV .

Magnetic dipoles can be either permanent or induced. A permanent magnet is composed of
a material, or an ensemble of materials, which naturally remains magnetized and creates its own
persistent magnetic field, or remnant magnetic field, after it has been immersed in an external
magnetic field. A permanent magnet is made of a ferromagnetic material, such as iron, nickel or
alloys of rare earth metals. In contrast, the magnetic moment of an induced magnet only exists
when an external magnetic field is applied, and it vanishes when this magnetic field is turned
off. Hard ferromagnetic materials tend to keep their acquired magnetic moment unchanged, i.e.,
it decreases very slowly, while for soft ferromagnetic materials, it tends to decrease significantly
fast. The chromed steel balls that we use in our experiments are made of a steel alloy, AISI
52100, as detailed in Section 1.1.2, which is a soft ferromagnetic material. As we have seen in
Section 1.1.2, these particles lose rapidly most of their magnetization, but a small amplitude
remnant magnetic moment still remains when the external magnetic field is turned off.

From Eq. 3.4, it is possible to make a new field appear, which is called the magnetic excitation
field, H, and is related to the magnetic field B and the magnetization M through

B = µ0(H + M). (3.6)

For isotropic materials that do not bear a remnant magnetic moment, that is, whose mag-
netization cycle [B = f(H)] does not display any hysteretic behavior, there exists a linear
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relationship between M and H inside the material:

M = χm H, (3.7)

where the dimensionless quantity χm is called the magnetic susceptibility. This implies that
inside the material, B and H are linearly related through:

B = µ0µrH = µH, (3.8)

where µr ≡ 1 + χm is the relative magnetic permeability, and µ ≡ µ0µr is the magnetic perme-
ability of the materials.

Let us now consider a point of space either inside or outside the magnetized materials. Let us
assume that there are no current in the problem and that we are studying a steady state. Under
these circumstances, it can be shown from Eq. 3.4 that at any point of space, the magnetic
excitation is irrotational:

∇× H = 0. (3.9)

This leads us to the conclusion that there exists a magnetic scalar potential ϕm such as
H = −∇ϕm. This result, along with Eq. 3.2 and Eq. 3.6, implies that the magnetic scalar
potential at any point of space is given by the Poisson’s equation:

∇2ϕm = ∇ · M, (3.10)

where ∇2 is the Laplace operator.

3.1.2 Magnetic field generated by a uniformly magnetized sphere

Let us consider a sphere of radius σ, bearing a uniform permanent magnetization M = Mez

and surrounded by vacuum. Under these circumstances, Eq. 3.10 simplifies into

∇2ϕm = 0, (3.11)

which is Laplace’s equation. Here we use spherical coordinates, as defined in Fig. 3.1, for the
objects that we are studying are spheres. Moreover, M =Mez, hence our problem has azimuthal
symmetry. Consequently, Eq. 3.11 can be written as

∂

∂r

(
r2
∂ϕm
∂r

)
+

1

sin θ
∂

∂θ

(
sin θ∂ϕm

∂θ

)
= 0. (3.12)

This equation can be solved by separating the variables r and θ [63]. The general solution
that is then obtained is the linear combination of separable solutions:

ϕm(r, θ) =

∞∑
l=0

(
Alr

l +
Bl

rl+1

)
Pl(cos θ), (3.13)

where Al and Bl are constants and Pl(cos θ) are Legendre polynomials in the variable cos θ,
Pl(x) being defined as:

Pl(x) =
1

2ll!

(
d

dx

)l

(x2 − 1)l, (3.14)

which gives P0(x) = 1, P1(x) = x, P2(x) = (3x2 − 1)/2, etc.
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We can find the coefficients Al and Bl by imposing boundary conditions on the potential
ϕm:

• ϕm is finite inside the sphere, in particular when r → 0. Hence, Bl = 0 inside the sphere:

ϕm(r < σ, θ) =
∞∑
l=0

Alr
lPl(cos θ). (3.15)

• ϕm is finite outside the sphere, in particular when r → ∞. Hence, Al = 0 outside the
sphere:

ϕm(r > σ, θ) =

∞∑
l=0

Bl

rl+1
Pl(cos θ). (3.16)

• ϕm is continuous at the sphere boundary, that is, ϕm(r = σ−, θ) = ϕm(r = σ+, θ). Hence:

Bl = Alσ
2l+1. (3.17)

Let us now apply Eq. 3.2 in the integral form
∮

B · da = 0 to a Gaussian pillbox enclosing a
small piece of sphere surface and extending a little above and below this surface. We obtain for
the perpendicular component of the magnetic field, B⊥(r = σ−) = B⊥(r = σ+), which writes in
terms of H and M, using Eq. 3.6:

H⊥(r = σ+)−H⊥(r = σ−) = −[M⊥(r = σ+)−M⊥(r = σ−)]. (3.18)

From this equation, using the relation H = −∇ϕm, Eq. 3.15 and Eq. 3.16, we get:
∞∑
l=0

Allσ
l−1Pl(cos θ)−

∞∑
l=0

Bl

(
− l + 1

σl+2

)
Pl(cos θ) = −M cos θ. (3.19)

For l = 1, we find A1 =
M

3
and B1 =

M

3
σ3 ; and for all l ̸= 1, (2l + 1)Al = 0, that is,

Al = 0 = Bl. Consequently, the magnetic scalar potential ϕm writes:

ϕm(r, θ) =
1

3
Mr cos θ if r < σ (3.20)

ϕm(r, θ) =
1

3
M
σ3

r2
cos θ if r > σ (3.21)

Now, using the relation H = −∇ϕm and using the definition of the magnetic moment
m = 4

3πσ
3M, we obtain the magnetic excitation field for the uniformly vertically magnetized

sphere,

Hums = −1

3
M if r < σ (3.22)

Hums =
1

4π

[
−m
r3

+
3(m · r)r

r5

]
if r > σ (3.23)

According to Eq. 3.6, these equations yield the magnetic field generated by a uniformly
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Figure 3.1 Definition of the spherical coordinates (r, θ) in the vertical plane (x, z). Note that
the azimuthal coordinate is not represented here because the problem has azimuthal symmetry.
The reference ball is centered at the origin of the frame.

vertically magnetized sphere:

Bums =
2

3
µ0M if r < σ (3.24)

Bums =
µ0
4π

[
−m
r3

+
3(m · r)r

r5

]
if r > σ (3.25)

which reads in spherical coordinates,

Bums =
2

3
µ0M(cos θer − sin θeθ) if r < σ (3.26)

Bums =
1

3
µ0M

σ3

r3
(2 cos θer + sin θeθ) if r > σ (3.27)

Such a magnetic field is illustrated in Fig. 3.2(a), where both amplitude and field lines are
depicted.

3.1.3 Soft-ferromagnetic sphere in an external magnetic field

Let us now consider a ferromagnetic sphere of radius σ and magnetic permeability µ, which
initially does not bear any magnetic moment. We immerse this sphere in an external uniform
magnetic field B0 = B0ez. We aim at calculating the magnetization of the sphere and the
resulting total magnetic field, inside and outside the sphere.

At every point of space, the total magnetic field, Btot, is the sum of the magnetic field
generated by the magnetized sphere and of the external magnetic field:

Btot = Bums + B0, (3.28)

where Bums is given by Eq. 3.24 and Eq. 3.25. Similary, the resulting magnetic excitation writes,

Htot = Hums +
1

µ0
B0. (3.29)
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(a)
|Bums| (a.u.)

(b)

Figure 3.2 Magnetic fields and magnetic field lines. The black disk represent the particle
of diameter a = 2σ. The white lines are field lines. (a) Magnetic field generated by a uni-
formly magnetized sphere with M =Mez, namely Bums, as defined by Eq. 3.24 and Eq. 3.25.
(b) Magnetic field generated by a ferromagnetic sphere of infinite magnetic permeability in an
external field B0 = B0ez, namely Btot, as defined by Eq. 3.32 and Eq. 3.33.
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The induced magnetization of the sphere, M, depends on the external magnetic field, B0, and
of the way the sphere material responds to it, which is quantified by the magnetic permeability,
µ. In order to determine M, let us write the total magnetic field inside the sphere, Btot(r < σ),
as a function of the total magnetic excitation inside the sphere, Htot(r < σ), using Eq. 3.8,

Btot(r < σ) = µHtot(r < σ) (3.30)

which yields, using Eq. 3.24, Eq. 3.28 and Eq. 3.29,

M =
3

µ0

(
µ− µ0
µ+ 2µ0

)
B0. (3.31)

From this result, used in Eq. 3.24 and Eq. 3.25, and finally injected in Eq. 3.28, we obtain
the magnetic field inside and outside of the uniformly magnetized ferromagnetic sphere,

Btot =

[
1 + 2

(
µ− µ0
µ+ 2µ0

)]
B0 if r < σ (3.32)

Btot =

[
1− σ3

r3

(
µ− µ0
µ+ 2µ0

)]
B0 +

3σ3

r5

(
µ− µ0
µ+ 2µ0

)
(B0 · r)r if r > σ (3.33)

Materials whose magnetic permeability µ verifies, µ ≫ µ0 (or equivalently, µr ≫ 1), are
considered to be of infinite magnetic permeability. This is the case for our steel balls, for which
we measured µr ≳ 500 (see Section 1.1.2). For instance, the magnetic permeability of cobalt
99% pure ranges between 70–250, of nickel 99% pure between 110–600, and of iron 99.95% pure
between 10, 000–200, 000 [64], all being ferromagnetic materials. For paramagnetic materials
such as platinum or aluminum, it is usually much lower and closer to 1.

In the limit of infinite permeability, which in particular applies to our steel balls, the mag-
netization of the sphere writes from Eq. 3.31,

lim
µ→∞

M =
3

µ0
B0, (3.34)

and the total magnetic field becomes,

lim
µ→∞

Btot = 3B0 if r < σ (3.35)

lim
µ→∞

Btot =

[
1− σ3

r3

]
B0 +

3σ3

r5
(B0 · r)r if r > σ (3.36)

which writes in spherical coordinates,

lim
µ→∞

Btot = 3B0 (cos θer − sin θeθ) if r < σ (3.37)

lim
µ→∞

Btot = B0 cos θ
[
2σ3

r3
+ 1

]
er +B0 sin θ

[
σ3

r3
− 1

]
eθ if r > σ (3.38)

We show in Fig. 3.2(b) the magnetic field and magnetic field lines around a sphere of infinite
magnetic permeability. This represents well the magnetic field around one of the steel balls of
our system when it can be considered far enough from the other ones.
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3.2 Interactions between two magnetic dipoles

We focused so far on the magnetic field generated by a single particle, when it bears a permanent
or an induced magnetic moment. Our system is composed of an ensemble of particles bearing
induced dipoles and hence interacting with each others through dipolar interactions. Computing
the magnetization and potential interaction forces for an ensemble of induced magnetic dipoles is
a task that cannot be exactly done analytically and which we discuss at the end of this section.
Here we consider the case of two spheres with an induced magnetization resulting from the
applied magnetic field, B0, as defined in Eq. 3.31, and which do not influence each other, i.e.,
we assume that the amplitude of the magnetic field generated by each sphere, Bums, is small
compared to B0. We describe, first, the interaction of these two spheres in a general context,
and then, we study the consequences in the specific geometry of our experiments (some of our
results are similar to those found in [65]). In particular, we investigate the effect of gravity on
the stability of a pair of partially overlapping magnetized particles, which is a relevant situation
for our experiments, as we will see in Chapter 5 and Chapter 6.

3.2.1 Potential energy of one magnetized sphere in the magnetic field of another sphere

Let us consider two spheres bearing magnetic moments m1 and m2 in the spherical frame
centered on particle 1, as defined in Fig. 3.3. Particle 1 is called the reference particle, and
particle 2, the test particle. The potential energy of magnetic interaction for the test particle,
which is immersed in the magnetic field B1 generated by the particle of magnetic moment m1,
writes

Emag
p (r, θ) = −m2 · B1(r, θ). (3.39)

Using the formula of the magnetic field generated by a uniformly magnetized sphere, Bums,
given in Eq. 3.25, we write B1 in terms of m1 and obtain:

Emag
p (r, θ) = − µ0

4πr3
[3 (m1 · e12) (m2 · e12)− m1 · m2] , (3.40)

where e12 = er is the unit vector from the center of the reference particle (particle 1) to the
center of the test particle (particle 2).

As detailed in Section 1.1.2, in our experiments, particles are all made of the same ferromag-
netic material (chromed steel AISI 52100) and are of the same diameter, a = 2σ. It follows that
all of them have the same magnetic susceptibility χm, and same induced magnetic moments,
m1 = m2 = m along ez, when they are immersed in an external, uniform and vertical magnetic
field, and sufficiently far from each other. Assuming that these magnetic dipoles do not influence
each other even at short distances, we can write the potential energy of magnetic interaction for
any r > σ using Eq. 3.31,

Emag
p (r, θ) = −4π

µ0

σ6

r3

(
µ− µ0
µ+ 2µ0

)2 [
3 (B0 · e12)2 − ∥B0∥2

]
, (3.41)

which becomes, with B0 = B0 ez,

Emag
p (r, θ) = −4π

µ0
B2

0

σ6

r3

(
µ− µ0
µ+ 2µ0

)2 [
3 cos2 θ − 1

]
. (3.42)

The force to which is submitted the test particle when gravity is not considered, Fmag =
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Figure 3.3 Two magnetic moments m1 and m2 represented at the center of two spherical
particles in a spherical frame (r, θ).

−∇Emag
p , is therefore,

Fmag = −12π

µ0
B2

0

σ6

r4

(
µ− µ0
µ+ 2µ0

)2 [(
3 cos2 θ − 1

)
er + sin(2θ) eθ

]
. (3.43)

Now, taking into account the contribution of the gravitational potential energy of one ball
of a mass m, whose origin we take at z = 0, yields the total potential energy:

Etot
p (r, θ) = −4π

µ0

σ6

r3

(
µ− µ0
µ+ 2µ0

)2

B2
0

[
3 cos2 θ − 1

]
+mgr cos θ. (3.44)

The total force to which is submitted the test particle is given by Ftot = −∇Etot
p , that is,

Ftot =

[
−12π

µ0
B2

0

σ6

r4

(
µ− µ0
µ+ 2µ0

)2 (
3 cos2 θ − 1

)
−mg cos θ

]
er

+

[
−12π

µ0
B2

0

σ6

r4

(
µ− µ0
µ+ 2µ0

)2

sin(2θ) +mg sin θ
]

eθ.

(3.45)

In Fig. 3.4, we compare the potential energy landscapes without and with gravity, Emag
p and

Etot
p , and the related force fields, Fmag and Ftot.

As shown in Fig. 3.4(a), without gravity, the energy landscape and the force field are sym-
metrical not only with respect to the plane perpendicularly intersecting the figure at x = 0,
but also with respect to the equatorial plane of the reference particle (perpendicularly inter-
secting with the figure at z = 0). The two magnetic dipoles are purely repulsive in this plane,
purely attractive when vertically aligned and always tend to vertically align. From Eq. 3.43, it
is straightforward to show that, for θ ∈ [0, π], the radial force, Fmag

r = Fmag · er, is attractive
for θ < θmag

att ≡ arccos
(
1/

√
3
)
≈ 0.955 rad ≈ 54.7◦ and for θ > π − θmag

att . The polar force,
Fmag
θ = Fmag · eθ, vanishes along θ = θmag

top ≡ π/2 and is attractive towards the closest pole.
In contrast, with gravity, the energy landscape loses its up-down symmetry because the
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Figure 3.4 Potential energy landscapes and force fields around a reference ball as seen by a
second test magnetized ball, for B0 = 150G and µr = 500. Only the reference ball is drawn.
(a) Potential energy of magnetic interaction, Emag

p , given in Eq. 3.42 and field of the magnetic
force Fmag, given in Eq. 3.43; (b) Total potential energy, Etot

p , including gravity, given in
Eq. 3.44 and field of the total force Ftot, given in Eq. 3.45. Note that the center of the second
ball cannot access the region around the reference ball such as r < 2σ which is limited by the
dashed black circle.

gravitational potential energy increases upwards, as shown in Fig. 3.4(b). The symmetry with
respect to the plane perpendicularly intersecting the figure at x = 0 is conserved. An attractive
basin is formed around the top of the reference particle. Two unstable equilibrium positions ap-
pear at the two saddle points of the potential energy landscape, i.e., where the radial and polar
forces, respectively F tot

r = Ftot · er and F tot
θ = Ftot · eθ, simultaneously vanish. For θ ∈ [0, π/2],

we can show from Eq. 3.45 that F tot
r vanishes along the curve θtot

att given by

θtot
att(r,B0) = arccos

[
G(r,B0)

((
1 +

1

3G(r,B0)2

)1/2

− 1

)]
, (3.46)

with

G(r,B0) =
mgr4

18

[
4π

µ0
σ6B2

0

(
µ− µ0
µ+ 2µ0

)2
]−1

, (3.47)

while the radial force F tot
θ vanishes along the curve θtot

top such as

θtot
top(r,B0) = arccos [3G(r,B0)] , (3.48)

for r such as G(r,B0) < 1/3. By computing θtot
att = θtot

top, or equivalently, Ftot = 0 from Eq. 3.45,
we find that the saddle point of the energy landscape in the region θ ∈ [0, π/2] is located along
the line θ = θsp ≡ arccos (1/

√
5) ≈ 1.11 rad ≈ 63.4◦, a polar angle which does not depend on

B0, and at a distance rsp ∝
√
B0.

In the following, we consider that the test particle, which is not drawn in Fig. 3.4, not only
moves in the force fields that we discussed, but is additionally vertically confined. Note that we
will make use of the formula of θtot

top, but not of that of θtot
att.
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3.2.2 Consequences in the quasi-two-dimensional geometry of our experiments

Let us consider one ball placed on a horizontal surface and bearing a magnetic moment m, as
represented in Fig. 3.5. Let us now consider a second ball, of identical magnetic moment m, and
positioned at at contact with the first one, that is, at a distance r = a. The vertical position
of the second ball is limited by a second horizontal surface separated from the lower one by a
distance e. These two parallel plates represent the top and bottom physical boundaries of our
cells, which are respectively the polycarbonate lid and the lower rough surface (sand-blasted
aluminum for the circular cell, and sandpaper for the square cell, as detailed in Section 1.1).
As we explained then, we perform all our experiments with gap sizes, e, that are smaller that
two particle diameters, so as to do not allow more than a partial overlap between particles. A
gap size defines a vertical confinement of the particles, and therefore it constraints the range of
accessible polar angles. As illustrated in Fig. 3.5, to each value of e corresponds a minimum
polar angle, θmin, which is the polar angle between the two particles’ centers when the second
particle is positioned at contact and when it is touching the lid. This angle is geometrically
calculated as

θmin(e) ≡ arccos
( e
a
− 1
)
. (3.49)

The polar angle θ = 0 can only be accessed if e = 2a and corresponds to a complete overlap,
while θ = θmax = π/2 is accessible for any e ≥ 1 and corresponds to the largest accessible polar
angle. Therefore, the range of accessible polar angles for a given gap size is:

θmin(e) < θ < θmax =
π

2
. (3.50)

Let us now consider the second ball stuck at contact (r = a, that is, with its center on
the black dashed portions of circles in Fig. 3.6) and touching the lid, that is, at the minimum
accessible polar angle, θ = θmin(e) (as depicted in Fig. 3.5). Let us call this configuration buckled.
Will this ball stay in place, buckled, or will it fall instead? To answer this question, one must
carefully consider the geometry of the problem. With respect to the top boundary, that is, the
lid, the ball is stable in the buckled configuration if the horizontal force is oriented along −ex,
i.e., if Fx = Ftot · ex = Fmag · ex < 0, at contact. In the mean time, the other condition is that
the radial force, F tot

θ , be negative at contact, otherwise the ball would slide down along the first
ball.

From Eq. 3.45, we obtain the horizontal force,

Fx(r, θ) = −12π

µ0
B2

0

σ6

r4

(
µ− µ0
µ+ 2µ0

)2

sin θ
(
5 cos2 θ − 1

)
, (3.51)

which changes sign for the trivial angles θ = 0(π) and for the critical angle,

θx ≡ arccos
(

1√
5

)
≈ 1.11 rad ≈ 63.4◦. (3.52)

which is also the value of the polar angle along which the saddle point of the energy landscape is
found, namely θsp, as we saw in Section 3.2.1. More precisely, if θ < θx, Fx < 0, which stabilizes
the balls in the buckled configuration, while if θ > θx, Fx > 0. In Fig. 3.6, we show the potential
energy landscapes and the force fields without and with gravity, as in Fig. 3.4, but here in a
region corresponding to the geometry of our experiments, that is, with a gap size not exceeding
2 a, and with the reference ball placed on the “bottom”. We indicate the critical polar angle θx
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Figure 3.5 Different possible configuration at contact (i.e., r = a) for two balls with magnetic
moments. The polar angle θmin(e) is the minimum polar angle attainable when two plates are
separated by a gap e. The grey dashed circles represent two other possible configuration, θ = 0
being accessible only if e = 2a, while θ = π/2 can always be reached for e ≥ 1.
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Figure 3.6 Potential energy landscapes and force fields (a) without gravity, and (b) with
gravity, for B0 = 150G and µr = 500. The dashed black portions of circles are plotted at
a distance r = 2σ from the reference ball center and correspond to the possible positions of
the second ball center, when it is at contact with the reference ball. The horizontal dashed
black lines show the lowest possible positions of the second ball center, when it is touching
the bottom plate. The green dashed lines represent the vanishing horizontal force, Fx, given
in Eq. 3.51, and correspond to the polar angle θx = arccos(1/

√
5) given in Eq. 3.52. Fx is

negative on the top-left of this line.



76 Chapter 3 : Theoretical tools

0 0.5 1 1.5
3

-1.5

-1

-0.5

0

0.5

1

1.5

F
or

ce
(N

)
#10 -4

Fx

F3
F3;g=0

(a)

1 1.5 2
e=a

-1.5

-1

-0.5

0

0.5

1

1.5

F
or

ce
(N

)

#10 -4

Fx

F3
F3;g=0

(b)

0 0.5 1 1.5
3

-4

-3

-2

-1

0

1

F
3
(N

)

#10 -4

B0

(c)

1 1.5 2
e=a

-4

-3

-2

-1

0

1

F
3
(N

)

#10 -4

B0

(d)

Figure 3.7 Forces Fx and F tot
θ acting on a ball at contact (r = a), with µr = 500. The values

of gap size e/a in (b, d) are related to the angles θ in (a, c) by Eq. 3.49. (a, b) Fx is negative for
θ < θx ≡ arccos(1/

√
5) (resp. e/a > ex/a ≈ 1.45) for all values of B0. F tot

θ vanishes for values
of θ which depend on B0 when gravity is considered (here plotted for B0 = 150G). Without
gravity, F tot

θ is always negative. (c, d) F tot
θ for B0 from 0G to 400G with 50G increments.

The vertical grey dashed line indicates the value at which Fx vanishes, namely θx.

by the green line.
This angle is related to a critical gap size via Eq. 3.49, namely

ex ≡ e(θmin = θx) = a (cos θx + 1) ≈ 1.45 a. (3.53)

If the gap e is larger than ex, then Fx(r = 2σ, θ = arccos(e/a − 1)) < 0 and the buckled
configuration is stable with respect to Fx; else it is unstable.

On the other hand, the tangential force at contact,

F tot
θ (r = 2σ, θ) = −3π

4

B2
0σ

6

µ0

(
µ− µ0
µ+ 2µ0

)2

sin(2θ) +mg sin θ, (3.54)

vanishes for θ = θtot
top(r = 2σ,B0) = arccos [3G(r = 2σ,B0)], where θtot

top is given in Eq. 3.48 and
G(r,B0) is defined in Eq. 3.47, as we saw in Section 3.2.1. The value of θtot

top at contact hence
depends on B0.

In order to visualize the shapes and vanishing points of the horizontal and tangential forces
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Figure 3.8 Stability diagram of the buckled configuration for two magnetized balls with
gravity, but with no friction and no other neighbors. The configuration is stable when both
horizontal force, Fx, and tangential force, F tot

θ , are negative, i.e., inside the top-right region
of the graph. The equation of the purple curve indicating F tot

θ = 0 is Eq. 3.55. The vertical
dashed line for Fx = 0 corresponds to e = ex, given in Eq. 3.53.

at contact, Fx(r = 2σ, θ) and F tot
θ (r = 2σ, θ), we plot them as functions of the polar angle θ and

of the gap size e(θ = θmin) for various values of B0, as shown in Fig. 3.7. Fig. 3.7(a, b) show the
forces for B0 = 150G. The domain of stability of the buckled configuration corresponds to Fx < 0

and F tot
θ < 0 simultaneously verified, and it exists for this value of magnetic field, namely for

angles smaller that θx ≈ 1.11 rad, or equivalently for gap sizes larger than ex ≈ 1.45 a. However,
even though the horizontal force vanishes whatever the magnetic field B0 for the same angle θx
defined in Eq. 3.52 (i.e., for the same gap size ex given in Eq. 3.53), this is not the case of the
tangential force. Indeed, the value of the angle at which vanishes this force, θtot

top(r = 2σ,B0),
does strongly depend on the magnetic field, as illustrated in Fig. 3.7(c, d). If the magnetic field
is too low, there exists no angle such as F tot

θ < 0 and the buckled configuration is unstable with
respect to the tangential force F tot

θ . If B0 is high enough, there exists such an angle and it
increases with B0.

More quantitatively, we calculate the values of magnetic field, B0, for which F tot
θ vanishes

at r = 2σ and θ = θmin, as a function of the gap size, e, using Eq. 3.48 and Eq. 3.49,

Bc(e) =

 a5

e− a

mg

6

(
4π

µ0
σ6
(
µ− µ0
µ+ 2µ0

)2
)−1

1/2

. (3.55)

The buckled configuration is stable with respect to F tot
θ if B0 > Bc(e); it is unstable other-

wise.
Our results on the stability of two particles in the buckled configuration are illustrated and

summarized in the stability diagram in Fig. 3.8. The only stable region is the one where both
horizontal and tangential forces at contact vanish, namely on the top-right of the graph.
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3.2.3 Discussion: what is missing?

So far, our reasoning is based on the analysis of the magnetic forces for two magnetic moments
of constant value, generated from an external magnetic field, and perfectly vertically aligned.
There are here several points that should be should be discussed, among which the fact that the
magnetic moments actually influence each other through their demagnetizing field, that friction
may stabilize the particles in the buckled configuration, and that we neglected the presence of
other neighboring particles.

Induced magnetic moments are coupled

Two induced magnetic moments actually influence each other’s value and orientation, because
they influence their respective immersing magnetic fields. Let us give an example of this effect
using Eq. 3.36. This equation shows us that the presence of a ferromagnetic particle of infinite
magnetic permeability increases its surrounding magnetic field with respect to B0 at a distance
of one particle diameter, above and below it, as

lim
µ→∞

Btot(r = 2σ, θ = 0) =
5

4
B0, (3.56)

and decreases its surrounding magnetic field in the horizontal plane as

lim
µ→∞

Btot(r = 2σ, θ =
π

2
) =

7

8
B0. (3.57)

Therefore, at a point situated in the equatorial plane of a vertically magnetized particle,
at a distance of one particle diameter from its center, the magnetic field is 1/8th lower than if
no magnetic dipole was present. Hence, another ferromagnetic particle brought at this location
would have an induced magnetization lower than the one that would be obtained if it were
alone in the external magnetic field. Furthermore, its own presence would imply changes in
the magnetization of the first particle, and so on. In the end, both magnetic moment are
identical, but they have lower values than the ones expected if they were not influenced by
another magnetic moment. Hence the field of one particle at the location of the other particle is
called demagnetizing magnetic field. Note that when particles can vertically align, the opposite
effect occurs: the dipoles increase each other’s amplitude.

N neighboring magnetic moments

Now, when an induced magnetic moment is part of an ensemble of N induced magnetic moments,
magnetic interactions between them are coupled and nonlinear.

Let us start with the magnetization of a ferromagnetic particle i, which can be expressed as
a modified form of Eq. 3.7,

Mi = χm Hloc(ri), (3.58)

where Hloc(ri) is the local magnetic excitation at the position of particle i. Considering that
this particle is surrounded by N − 1 other particles influencing the local field Hloc, the latter
can be written as

Hloc(ri) = H0 +
∑
j ̸=i

Hums
j (ri) + Hcpl

j ̸=i(ri), (3.59)

where Hums
j is the field from the uniformly magnetized particle j ̸= i, and Hcpl

j ̸=i is an non-linear
coupling field between the N − 1 other magnetic dipoles and i. This non-linear coupling term



3.3 Diverse tools 79

and the second term of the RHS of Eq. 3.59 make determining Hloc analytically impossible.
However, it is possible to use self-consistent numerical methods for determining Hloc from the
ensemble of the Hums

j ’s, and reciprocally, when the coupling term is dropped off [66, 67] or when
it is not [68].

The magnetic interactions between an ensemble of induced dipoles are therefore extremely
complex. Yet, let us remark from Eq. 3.36, that in the horizontal plane (θ = π

2 ), the total mag-
netic field on the outside of a sphere of infinite magnetic permeability decreases as r−3. This
corresponds to a fast decay in space: the relative change of total magnetic field with respect
to B0, by one particle, is already as low as about 1% at a distance of two diameters from a
particle’s center. Therefore, it is tempting to consider that the demagnetizing effect acts only
for particles at contact.

For what concerns two magnetized particles in the buckled configuration, as studied in Sec-
tion 3.2.2, this coupling effect should be non-negligible, because particle centers are only sep-
arated by one particle diameter. However, note that depending on the polar angle θ at which
the particles are relative to each other, it would go from demagnetizing in the plane θ = π/2, to
magnetizing when they are vertically aligned, i.e., when θ = 0. In the former case, the particle
magnetic moments are lower and the buckled configuration less stable, which would be marked
by an upwards shift of the purple curve indicating F tot

θ = 0 in Fig. 3.8; in the latter case, this
configuration would be more stable, and the curve of F tot

θ = 0 would be shifted downwards.

Friction

Particle-particle friction, as well as particle-plate friction, may also play an important role in
the stability of the buckled configuration, because, by definition, in this configuration both
particle have contacts with one plate, in addition to touching each other. In fact, we will see in
Chapter 5, Section 5.5, that this assumption is relevant, based on the observation of particles in
this buckled configuration for gap values, e, lower than the critical value, ex, which corresponds
to the unstable region on the left part of the stability diagram in Fig. 3.8.

3.3 Diverse tools

3.3.1 Quantifying the competition between agitation and distance interactions: ε

In our system, self-organization arises from the competition between kinetic agitation and mag-
netic interactions. A parameter that measures the strength of the interactions relative to agita-
tion, is, as similarly defined in [26, 69],

ε ≡ Em

Ec
, (3.60)

where Em and Ec are defined as follows. Em is the mean magnetic energy per particle,

Em =

⟨
1

Np

Np∑
i=1

Np∑
j=i+1

Emag
p (rij , θij)

⟩
t

(3.61)

where ⟨·⟩t denotes a temporal average, Np is the number of particles used in the computation,
rij (resp., θij) the distance (the polar angle) between particles i and j (as defined in Fig. 3.3),
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and Emag
p is the potential magnetic energy of interaction of a pair of particles, given in Eq. 3.42,

Emag
p (r, θ) = −4π

µ0
B2

0

σ6

r3

(
µ− µ0
µ+ 2µ0

)2 (
3 cos2 θ − 1

)
, (3.62)

with µ0 (resp. µ) the vacuum permeability (the permeability of the beads), B0 the perpendicular
applied magnetic field, and σ = a/2 the particle radius.

The other quantity in Eq. 3.60 is Ec, which is the mean kinetic energy per particle in the
horizontal plane, also defined as the two-dimensional granular temperature in Appendix A,

Ec =
1

2
m

⟨
1

Np

Np∑
i=1

(
v2x,i + v2y,i

)⟩
t

(3.63)

with m the mass of a particle, and vx,i = vi · ex (resp. vy,i = vi · ey) the x-component (y-
component) of the velocity vector of particle i.

As long as the polar angle between the particles remains smaller than θmag
att = arccos(1/

√
3) ≈

54.7◦, which corresponds to a gap size e(θmin = θmag
att ) = a

(√
3 + 1

)−1 ≈ 1.58 a, Emag
p is positive.

This is the case of the very large part of our experiments presented below. Then, increasing the
external magnetic field, B0, leads to an increase of Em that scales as B2

0 . Therefore, unless Ec

increases faster than B2
0 (which we did not observe), parameter ε increases when B0 increases,

indicating a strengthening of magnetic interactions relative to mechanical agitation.

3.3.2 Characterizing the structure

A quantity that we are going to use in all three next chapters is the pair correlation function,
g(r), which is a measure of the probability of finding a particle center at a distance r from a
reference center.

Let us consider the ensemble of particles of diameter a depicted in Fig. 3.9. The reference
particle is pictured in dark grey. Computing g(r) consists in counting the number of particles
whose center is found in the shell at the distance r from the reference particle and of width dr

(in red in Fig. 3.9), to ensemble average and to proceed to a normalization operation, such as

g(r) =

⟨
Sp

2πrN2
p

Np∑
i=1

Np∑
j ̸=i

δ (r − rij)

⟩
t

(3.64)

where Sp is the full surface of integration, δ is the Dirac symbol, i is the reference particle index,
and rij is the distance between the reference particle and particle j.

For an ensemble of particles with no correlation, the pair correlation function vanishes below
the particle diameter, that is, g(r < a) = 0, and it equals 1 beyond it, that is, g(r > a) = 1. This
means that there is equiprobability at all r of finding a particle center. Now, if correlations exist
between the particles, g(r) is not flat anymore, and can take various shapes depending on the
nature of the correlations. The latter can be long-ranged, for instance if they are of electrostatic
nature, but can also be simply due tot the finite size of the particles.

We will also use the two-dimensional Fourier transform of the center positions, namely the
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Figure 3.9 Computing the pair correlation function, g(r), for an ensemble of particles of
diameter a, with increments dr.

static structure factor, S(k), which is defined as

S(k) =
⟨

1

Np

Np∑
j=1

Np∑
k=1

e−ik(rj−rk)
⟩

t

(3.65)

where k = kx ex + ky ey is the wave vector in the horizontal plane, ri (resp., rj) is the position
of particle i.

The comments that we made about the pair correlation function apply also to the static
structure factor. However, S(k) has the advantage that it is defined in the whole plane, and as
such it can be used for characterizing the orientational properties of the ensemble of particles,
as we will see, for instance, in Chapter 6.

3.3.3 Magnetic pressure

In the next chapters, we will sometimes use the term magnetic pressure, for referring to the
energy density carried by the magnetic field of the magnetized particles.

We calculate it in analogy with the pressure in molecular dynamics simulations [70]. From
the Virial theorem and in the limit of negligible collisions, we can calculate a pressure, P , in
an ensemble of particles of area fraction ϕ, of a thickness e (analogous to the gap size in our
experiments), characterized by a pair correlation function g(r), and interacting via a potential
U(r),

P = − ϕ2

πeσ4

∫ ∞

0
r2

dU
dr g(r)dr. (3.66)

If now we replace the potential U(r) by the potential energy of interaction of two magnetized
particles, Emag

p (r, θ), given in Eq. 3.42, with θ = π/2 and µ→ +∞, that is,

U(r) =
4π

µ0
B2

0

σ6

r3
, (3.67)

and if additionally we suppose that the system has no long-range correlations, that is, g(r <
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a) = 0 and g(r > a) = 1, we obtain the pressure

P = 12ϕ2
σ

e

B2
0

µ0
. (3.68)

Hence, P is proportional to the magnetic pressure used in the plasma physics, B2
0

2µ0
, up to

a dimensionless factor. For ϕ = 0.5, for instance, we have P = 314Pa with B0 = 100G, and
P = 5094Pa with B0 = 400G. The corresponding forces are much larger than the weight of
the particles. Consequently, at such a particle density, magnetic pressure significantly helps
stabilizing a pair of particles in the buckled configuration discussed in Section 3.2.2. Also, in the
confined geometry of our experiments, this magnetic pressure induces self-ordering effects even
in the absence of attractive force, as we will see in the next three chapters.

3.3.4 Characterizing the velocity distributions

The velocity density function (VDF) for a particle undergoing a Brownian motion is a Maxwell-
Boltzmann distribution, which yields Gaussian distributions for the velocity components on each
direction α (α = x, y or z), namely vα,

fG(vα) =
1√
2πσα

exp
[
−(vα − ⟨vα⟩)2

2σ2α

]
, (3.69)

where ⟨·⟩ denote an ensemble average and σα =
√

⟨v2α⟩ is the standard deviation of the α-axis
VDF.

For particles that are correlated, the VDF deviate from the Gaussian distribution. In par-
ticular, as briefly discussed in Appendix A, and in more details in the reference books [7, 3], for
granular gases, the VDF exhibit over-populated high-velocity tails.

A relevant quantity for characterizing such tails on a distribution is the kurtosis, or fourth
standardized moment, which is also called flatness and which we denote F ,

F =
(vα − ⟨vα⟩)4

σ4α
, (3.70)

where α = x or y for a quasi-two-dimensional granular gas.
The flatness of a distribution enables a good measure of the extreme events, that is, in our

case, the high-velocity events. For a Gaussian distribution, F = 3, while for a distribution that
displays high velocity tails, such as stretched exponential tails or exponential tails, as illustrated
in Fig. A.1, F is larger than 3. This is the case for granular gases [7, 3]. A distribution with
less extreme events than the Gaussian distribution has a flatness F < 3.
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Chapter abstract

A two-dimensional system of particles with tunable repulsive interactions is experimentally in-
vestigated. Soft ferromagnetic particles are placed on a vibrating rough plate and vertically
confined, so that they perform a horizontal Brownian motion in a cell. When immersed in an
external vertical magnetic field, the particles become magnetized and thus interact according
to a dipolar repulsive law. As the amplitude of the magnetic field is increased, magnetic repul-
sion raises and the rate of inelastic collisions decreases. Studying notably the pair correlation
function and the particle velocity distributions, we show that the typical properties of such a
dissipative out-of-equilibrium granular gas are progressively lost, to approach those expected
for a usual gas at thermodynamic equilibrium. For stronger interaction strengths, the system
gradually solidifies towards a hexagonal crystal. This new setup could consequently be used as
a model experimental system for out-of-equilibrium statistical physics, in which the distance to
the quasi-elastic limit can be accurately controlled.

4.1 Introduction

Statistical mechanics provides, with the assumption of thermodynamic equilibrium, a precise de-
scription of molecular gases composed of thermally agitated microscopic particles. In contrast, in
granular gases, macroscopic particles are mechanically driven. Since the collisions between these
particles are dissipative, energy must be continuously provided into the system from outside to
reach a stationary out-of-equilibrium state. In consequence, granular gases have been extensively
studied as a model system for out-of-equilibrium statistical physics [39] theoretically [38, 32],
numerically [71] and experimentally [16, 72, 17]. Two-dimensional granular gases, i.e., particles
lying on a horizontal plate vertically vibrated, were especially studied because particle trajecto-
ries can be reconstructed using fast imaging and tracking algorithms [16, 72, 17, 25, 33].

Nevertheless, as we stressed in the Introduction of this thesis, few studies investigated the
case in which non-contact interactions between particles compete with kinetic agitation and thus
introduce spatial correlations differing from those observed for an inelastic hard-sphere gas. In a
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granular gas composed of particles owing a permanent magnetic dipole, the anisotropic dipole-
dipole interactions lead to dipole alignment, then attraction and clustering [21, 73, 48]. In
contrast, physics differs strongly using ferromagnetic particles with a low remnant magnetic
field. As we saw in Chapter 3, when immersed in an external static magnetic field, such parti-
cles acquire an induced magnetization so that inter-particle dipolar interactions become tunable
by the operator. Applying this protocol to a granular packing, a first-order fluid-solid transi-
tion [74] and a surface instability due to competition between gravity and magnetic forces [75],
are observed. Now, if such particles are confined in a plane and immersed in an external perpen-
dicular magnetic field, the magnetic interactions between particles are purely repulsive, since
their dipoles are all aligned in the vertical field direction. At low packing fraction, low agitation
and high magnetic field, Schockmel and collaborators demonstrated that such a system forms
a hexagonal lattice [26]. As mechanical agitation is increased, crystal melting is observed, that
is, translational and orientational orders disappear, as in some other two-dimensional systems
of interacting particles [76, 77, 78, 79, 23, 24].

4.2 Motivation

To our knowledge, the influence of dipolar interactions on the particle velocity distributions has
only been studied in a case dominated by attractive interactions by Kohlstedt et al. [29]. Note
that the free-cooling, i.e., the evolution without external energy input, of three-dimensional
granular gases with electrostatic repulsions has been investigated theoretically and numeri-
cally [80, 81].

In this chapter, we study the effects of repulsive dipolar magnetic interactions on the struc-
tural and dynamical properties of a quasi-two-dimensional granular gas. We proceed as follows.
We start from the well-studied case of a two-dimensional granular gas [25, 33] where mechanical
agitation is provided to the particles by the vibration of a horizontal rough bottom plate. Then,
we immerse the system in a vertical magnetic field, which generates repulsive dipolar interac-
tions between particles. The rate of inelastic collisions between particles can be easily tuned:
increasing the amplitude of the magnetic field enhances magnetic repulsion and thus decreases
the number of inelastic collisions. As the dissipation rate due to inelastic collisions is propor-
tional to the number of collisions, the total dissipation in the system is reduced. We thus show
that the system undergoes a transition from a dissipative to a quasi-elastic state to a crystalline
state when the magnetic field is increased. Across the transition, we analyse quantitatively the
structural and dynamical changes by means of particle tracking.

In the context of this thesis, understanding how our system, as a low density granular gas,
responds to changes in the strength of magnetic interactions is a cornerstone from which we can
perform further investigations, in particular when density and gap size are varied, and novel
self-organized states are explored.

4.3 Main results

The experimental setup is described in details in Chapter 1, and illustrated in Fig. 1.1(a). We
perform all the experiments presented in this chapter with the square experimental cell, of side
9 cm and covered with sandpaper in order to provide roughness. In this cell we put N0 = 2000
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(a) (b) (c)

Figure 4.1 Snapshots of the magnetic granular gas in (a) the inelastic regime for B0 = 0G
(ε = 0); (b) the quasi-elastic regime for B0 = 127G (ε = 16.2); and (c) the hexagonal crystal-
like regime for B0 = 436G (ε = 283). The acceleration is Γ = 3.32 and the snapshot size is
3.5 cm×3.5 cm.

soft ferromagnetic particles, of a diameter a = 1mm, so that the particle area fraction for a
homogeneous spatial distribution, defined in Eq. 1.8, is ϕth ∼ 0.2. The gap size of this cell is
about 1.5 a. In order to reach an out-of-equilibrium steady state, this cell is driven sinusoidally
in the vertical direction by means of an electromagnetic shaker. The dimensionless acceleration,
defined in Eq. 1.10, is Γ = (2πf)2A/g, with f = 300Hz the frequency and A the amplitude
of the sinusoidal forcing, g being the gravitational acceleration. Two coils generate a vertical
magnetic field B0 perpendicular to the cell plane and spatially homogeneous across the cell
volume with a 2% accuracy. We record images of the system from the top by means of a high-
speed video camera in a square region of interest of side 5.7 cm, around the cell center and at
an acquisition frequency of 779Hz, as detailed in Section 1.1.7. We perform video recordings
once we estimate that the stationary state is reached, namely after a waiting time τ0 = 60 s, as
defined in Section 1.2.1. We detect particles individually and record their trajectories by means
of a tracking algorithm, as detailed in Chapter 2.

We performed two set of experiments with an increasing external magnetic field, of magnitude
B0 = |B0|, and respectively, an acceleration of Γ = 2.45 and Γ = 3.32. Immersed in the magnetic
field B0, particles become induced magnetic dipoles, as detailed in Section 3.1, which are parallel
and vertically oriented. In the range of parameters used for the experiments of this chapter,
interactions between these dipoles are purely repulsive. Then, since the potential energy of
interaction of two dipoles, Emag

p , increases proportionally to B2
0 (Eq. 3.42), so do the repulsive

forces. We tune the strength of repulsion via the magnetic field B0.

To each value of B0 corresponds a specific state of the magnetic granular gas, with its
own structural and dynamical properties. When no magnetic field is applied, the system is a
classical dissipative granular gas, as illustrated in Fig. 4.1(a) for B0 = 0G. As the magnetic
field is increased, magnetic repulsive interactions become stronger, the particle collision rate
decreases, and the system looks more similar to a liquid, as shown in Fig. 4.1(b) for B0 = 127G.
At high enough values of magnetic field, strong repulsion makes the system to organize into a
crystalline state in which particles are located at the nodes of a triangular lattice, as illustrated
in Fig. 4.1(c) for B0 = 436G.

The pair correlation function, g(r), defined in Section 3.3, is related to the probability to
find two particle centres separated by a distance r and as such it is convenient to quantify
the structural changes in the system. We show g(r) in Fig. 4.2(a) for characteristic values of
ε = Em/Ec and for Γ = 3.32. At ε = 0, g(r) displays a sharp peak at the contact value r = a, as



4.3 Main results 87

0 1 2 3 4 5 6 7 8
r=a

0

1

2

3

4

5

6

7

8
P
a
ir

co
rr

el
a
ti
o
n

fu
n
ct

io
n

g
(r

)

" = 0

" = 2.89

" = 16.2

" = 283

(a)

Control parameter ε = Em/Ec

K
u
rt
o
si
s
F

 

 

Dissipative Quasi−elastic Confined

10
0

10
1

10
2

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Γ= 2.45
Γ= 3.32

−6 −4 −2 0 2 4 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

vx/σx

P
D

F

 

 

Gaussian
ε = 0
ε = 2.89
ε = 16.2
ε = 283

(b)

Figure 4.2 Structural and dynamical characteristics of the magnetic granular gas for a vary-
ing repulsive strength ε = Em/Ec. (a) Pair correlation function for relevant values of ε, for
Γ = 3.32. For ε = 283, the peak positions for a hexagonal crystal are indicated by the vertical
black dashed lines as multiples of the lattice distance, namely r/a = 2.28, for factors 1,

√
3, 2,√

7, and 3. (b) Flatness of the velocity probability density functions (PDF) as a function of ε.
Inset: velocity PDF for different ε, for Γ = 3.32. The black curve is the Gaussian distribution.

in usual granular gases [16, 72]. This confirms that most collisions occur in horizontal planes and
validates the two-dimensional description. Collisions happening out of horizontal planes, when
viewed from the top, produce indeed a partial overlapping, leading to non-vanishing values of
g(r) for r < a. When ε is slightly increased, the amplitude of the first peak decreases to almost 1,
giving a nearly flat g(r) (see the blue curve for ε = 2.89). This shows that radial correlations
are then quasi-absent as for a non-dissipative perfect gas whose g(r) is zero for r < a and 1

elsewhere in the vanishing density limit. When ε is further increased, this feature is gradually
lost. Due to magnetic repulsions, g(r = a) decreases towards zero and a first peak appears
at r > a, indicating the appearance of a preferential distance between particles. A similar
transition of g(r) has been observed numerically for a three-dimensional repulsive granular gas
with a Coulomb interaction potential [80]. For high enough values of ε, the system structure
approaches the one of a hexagonal crystal [26]. In this case, once the lattice cell size is set to
the first-peak position, theoretical secondary-peak positions can be predicted from geometrical
calculations and are indeed found to be close to the measured values, indicated by the vertical
dashed lines in Fig. 4.2(a).

Structural modifications imply important changes on dynamics, especially on the particle
trajectories and velocity distributions. We show in the inset of Fig. 4.2(b), the probability
density functions (PDF) of velocities (x-component) normalised by their standard deviation,
vx/σx, with σx ≡

√
⟨v2x⟩, ⟨·⟩ denoting an ensemble average, for a fixed Γ and for different values

of ε. They are compared to the Gaussian distribution expected for a perfect gas at thermal
equilibrium. Identical results are found for vy due to system isotropy in the central region.
As predicted for an infinite system [82] and reported in other experiments [72, 17, 25, 33], at
ε = 0 the velocity distribution presents a deviation from the Gaussian. In fact, this behaviour
is expected for out-of-equilibrium systems, as Gaussian distribution is predicted for equilibrium
gases. The reported overpopulation of the high-velocity tails is characteristic of granular gases,
although there is no simple argument to justify it [39]. As ε is increased, the PDF become
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progressively closer to the Gaussian until ε ≈ 10 but then depart for higher values.
This behavior is better depicted by plotting the flatness of the velocity distributions, which

we defined in Section 3.3 as F = (vx − ⟨vx⟩)4/σ4x, and which is shown in Fig. 4.2(b). For a
purely Gaussian distribution F equals 3 and is larger for more spread distributions. A range
of significantly low values of F can be defined for 4 < ε < 30, where the granular gas can be
considered as quasi-elastic. Indeed, energy exchanges between particles should occur mainly
through magnetic repulsive interactions, which are dissipationless. Note that the lower bound
in ε is fairly consistent with the value ε = 2.89 separating the usual granular gas regime and the
one with negligible collisions, as can be seen in Fig. 4.2(b). For ε > 30, displacements become
progressively constrained by magnetic repelling and the system can be seen as an assembly of
confined particles [26]. F then increases with ε, highlighting a heterogeneity of velocities, as
particles are individually more or less confined.

4.4 Conclusion

We have studied the effects of tunable repulsive dipolar interactions on a quasi–two-dimensional
granular gas. For fixed dimensionless accelerations Γ and in a low density regime (ϕ ∼ 0.2),
we increased the magnetic field B0. The rise of the ratio ε between magnetic interaction and
kinetic agitation leads to a continuous phase transition from a dissipative granular gas state
at ε = 0, to a collisionless hexagonal nearly crystalline state at high ε. More interesting, in
the intermediate range of ε, structural and dynamical properties of the magnetic granular gas
display similar features to those expected for a molecular gas at thermal equilibrium (quasi-
Gaussian velocity distributions and nearly flat pair correlation functions). This transition from
a dissipative to a quasi-elastic granular gas, when B0 is increased, comes from the decrease
of the dissipative collision rate, which leads to the reduction of the total dissipation. Hence,
the two-dimensional granular gas is then closer to the quasi-elastic limit. We were thus able
to produce a macroscopic system whose distance to the quasi-elastic limit could be precisely
controlled through the applied magnetic field. We may also wonder how the results found here
with repulsive dipolar interactions can be generalised for other interaction potentials, like the
Coulombian one [80, 81].

Future studies with this new system could be useful to validate theoretical works about
out-of-equilibrium dissipative gases, by investigating velocity correlations and coupling with the
forcing viewed as a thermal bath [33, 83]. Another perspective is to apply a magnetic quench
to the system, in order to try to solidify it into a low-density disordered state, which could be
analogous to a colloidal glass [84]. Moreover, for denser regimes and for high ε, we observe other
complex disordered states, on which we focus in Chapter 5 and Chapter 6. Our experimental
system could indeed be used to mimic, at the macroscopic scale, geometric frustration [85, 86]
or topological defects [87] arising in various physical systems.

Let us mention two more perspectives. In granular gases, there is a break down of fluctuation-
dissipation relations [88] because the usual hydrodynamic shear viscosity must be replaced, then,
by a viscosity parameter present in the granular hydrodynamics equations [89]. Being able to
tune the interactions between particles in our system via the external magnetic field, B0, we
should be able to tune this viscosity parameter, and hence change the fluctuation-dissipation
relations depending on B0. How close to the result for Brownian particles can we approach
by tuning the magnetic field? An idea of experiment could be to locally perturb the otherwise
uniform magnetic field, wait for a steady state to be reached and then remove this perturbation
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and study the response and fluctuations of the system.
Finally, one could imagine using this experimental setup with a mixture of particle with two

different magnetic permeabilities, but otherwise identical. Immersed in the external magnetic
field, the induced magnetic moments of these two types of particles would be different, hence the
particles would have two different effective sizes (a term discussed in our EPL article [1] presented
in this chapter). Aside from an expected segregation by size [90], the crystallization transition
should lead in this case to a “macroscopic alloy”, instead of the homogeneous crystalline phase
described in this chapter. The self-organization properties of this media are certainly not trivial,
and certainly involve interesting questions regarding for instance lattice defects and geometric
frustration [85, 86].
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Abstract – A two-dimensional system of particles with tunable repulsive interactions is exper-
imentally investigated. Soft ferromagnetic particles are placed on a vibrating rough plate and
vertically confined, so that they perform a horizontal Brownian motion in a cell. When immersed
in an external vertical magnetic field, the particles become magnetised and thus interact according
to a dipolar repulsive law. As the amplitude of the magnetic field is increased, magnetic repulsion
raises and the rate of inelastic collisions decreases. Studying notably the pair correlation function
and the particle velocity distributions, we show that the typical properties of such a dissipative
out-of-equilibrium granular gas are progressively lost, to approach those expected for a usual gas
at thermodynamic equilibrium. For stronger interaction strengths, the system gradually solidifies
towards a hexagonal crystal. This new setup could consequently be used as a model experimental
system for out-of-equilibrium statistical physics, in which the distance to the quasi-elastic limit
can be accurately controlled.
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Introduction. – Statistical mechanics provides, with
the assumption of thermodynamic equilibrium, a precise
description of molecular gases composed of thermally agi-
tated microscopic particles. In contrast, in granular gases
macroscopic particles are mechanically driven. Since the
collisions between these particles are dissipative, energy
must be continuously provided into the system from out-
side to reach a stationary out-of-equilibrium state. In
consequence, granular gases have been extensively stud-
ied as a model system for out-of-equilibrium statistical
physics [1] theoretically [2,3], numerically [4] and exper-
imentally [5–7]. Two-dimensional granular gases, i.e.,
particles lying on a horizontal plate vertically vibrated,
were especially studied because particle trajectories can
be reconstructed using fast imaging and tracking algo-
rithms [5–9]. Nevertheless, few studies investigated the
case in which non-contact interactions between particles
compete with kinetic agitation and thus introduce spatial
correlations differing from those observed for an inelastic
hard-sphere gas. In a granular gas composed of parti-
cles owing a permanent magnetic dipole, the anisotropic
dipole-dipole interactions lead to dipole alignment, then
attraction and clustering [10–12]. In contrast, physics dif-
fers strongly using ferromagnetic particles with a low rem-
nant magnetic field. When immersed in an external static

magnetic field, such particles acquire an induced magneti-
sation so that inter-particle dipolar interactions become
tunable by the operator. Applying this protocol to a gran-
ular packing, a first-order fluid-solid transition [13] and a
surface instability due to competition between gravity and
magnetic forces [14], are observed. If such particles are
confined in a two-dimensional plane and immersed in an
external perpendicular magnetic field, the magnetic inter-
actions between particles are purely repulsive, since their
dipoles are all aligned in the vertical field direction. At low
packing fraction, low agitation and high magnetic field,
the system forms a hexagonal lattice [15]. As mechani-
cal agitation is increased crystal melting is observed, that
is, translational and orientational orders disappear, as in
some other 2D systems of interacting particles [16–20].

In this letter, we study a 2D granular gas with such
tunable repulsive magnetic interactions. To our knowl-
edge, the influence of dipolar interactions on the particle
velocity distributions has only been studied in a case dom-
inated by attractive interactions [21]. Free-cooling of 3D
granular gases with electrostatic repulsions has also been
investigated theoretically and numerically [22,23]. In our
experiment, we start from the well-studied case of a two-
dimensional granular gas [8,9] where mechanical agitation
is provided to the particles by the vibration of a horizontal
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Fig. 1: (Color online) (a) Experimental setup (see text).
(b) Snapshots in the inelastic regime for B0 = 0G (ε = 0),
(c) the quasi-elastic regime for B0 = 127 G (ε = 16.2), and
(d) the hexagonal crystal-like regime for B0 = 436 G (ε = 283).
Snapshots size is 3.5 cm × 3.5 cm, and Γ = 3.32. For the full
time evolution, see the supplementary video movie1.m4v. For
the stationary state of each of the three regimes, see sup-
plementary slow-down videos movie2.m4v, movie3.m4v and
movie4.m4v. (e) Area fraction of balls φ in the area S vs.

B0 for Γ = 2.45 and 3.32. The dashed line corresponds
to the area fraction for a homogeneous particle distribution
φth = N0πσ2/S0 ≈ 0.194.

rough bottom plate. Additionally, a vertical magnetic field
is then applied, leading to repulsive dipolar interactions
between particles. Using particle tracking techniques, we
analyse quantitatively the structural changes within the
granular gas and its dynamical properties. The rate of
inelastic collisions between particles can be easily tuned.
Indeed, increasing the amplitude of the magnetic field en-
hances magnetic repulsion and thus decreases the number
of inelastic collisions. As the dissipation rate due to inelas-
tic collisions is proportional to the number of collisions,
the total dissipation in the system is reduced. We thus
show that the system undergoes a transition from a dissi-
pative to a quasi-elastic system when the magnetic field is
increased.

Experimental setup. – The experimental cell is de-
picted in fig. 1(a). It consists of a horizontal, square du-
raluminium bottom plate of area S0 = 9 cm × 9 cm and
covered by a sandpaper sheet in order to provide rough-
ness (RMS amplitude of 20µm). The cell is filled with

N0 = 2000 chrome steel (AISI 52100) spherical particles
with a diameter a = 2 σ = 1 mm ± 2.5 µm and a mass
m = 4.07 × 10−6 kg. These balls are confined by rigid
aluminium walls and by a rigid, smooth, antistatic coated
polycarbonate lid placed 1.5a above the bottom plate. In
order to reach a non-equilibrium steady state, this cell is
driven sinusoidally in the vertical direction by means of
an electromagnetic shaker. The dimensionless accelera-
tion is Γ ≡ (2πf)2A/g with f = 300 Hz the frequency
and A the amplitude of the sinusoidal forcing, g being
the gravitational acceleration. Γ is measured using an
accelerometer screwed on the cell. Two coils generate a
vertical magnetic field B0 which is perpendicular to the
cell plane and is spatially homogeneous within the cell
volume with a 2% accuracy. A high-speed camera (Phan-
tom V10) is located above the centre of the cell. A diffu-
sive LED ring encircling the cell illuminates from the top
the particles that appear as bright rings on a dark back-
ground. The camera acquisition rate is fixed to 779 frames
per second in order to detect the collisions between parti-
cles. Video recordings are performed once the stationary
state is reached (waiting time of 60 s) and last at least
3.85 s. To avoid measurement issues at the boundaries,
we choose a region of interest S of 5.7 cm× 5.7 cm around
the cell centre. The particle diameter then corresponds
to 20 pixels. We performed individual detection of par-
ticles from the video recordings using first a convolution-
based least-squares fitting particle detection routine [8,24]
completed by an intensity-weighted centre detection al-
gorithm. This provides particle centre positions with a
resolution of less than 0.3 pixel ∼ 0.015a [9]. Finally, in-
dividual trajectories were reconstructed using a tracking
algorithm [25,26]. Hence, from highly resolved particle po-
sition data, we compute their velocity distributions, pair
correlation functions, mean square displacements as well
as collision rate estimations.

Experimental parameters. – Let us now describe
the influence of the external magnetic field B0 on the
chrome steel particles. These balls are soft ferromag-
netic, i.e., with a low remnant magnetic field and a high
magnetic permeability. When placed in a vertical mag-
netic field of amplitude B0, each particle is uniformly
magnetised. It behaves as an induced magnetic dipole
of magnetic moment 4

3
πσ3 χm

µ0

B0 ez, with χm the volume
magnetic susceptibility, µ0 the vacuum permeability, and
ez the upward unit vector along the vertical axis. For a
purely 2D system of two identical spheres i and j with B0

perpendicular to rij (the horizontal vector between the
particle centres), the potential energy of magnetic inter-
action reads [27]:

Em,〈i,j〉 =
4π

µ0

B0
2 σ6

|rij |3
(1)

in the limit of high intrinsic magnetic permeability. We
point out that without taking into account the geometry of
the magnetisation and the demagnetising magnetic field,
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an effective susceptibility χ can be defined [15,18], yield-
ing an expression of the magnetic energy proportional to
eq. (1). The repulsive force between these two particles,

Fm,〈i,j〉 = −∇ Em,〈i,j〉, decreases with |rij |−4 and is di-
rected along rij . Therefore the repulsion between particles
can be tuned by the amplitude of the magnetic field B0.
If particles are not exactly in the same horizontal plane
between the two confining plates, the horizontal repulsive
force is reduced due to 3D effects. Nevertheless, further
results in this letter show that a 2D analysis is relevant
to describe the system behaviour, by considering Em,〈i,j〉

from eq. (1) as a scale of the actual magnetic energy of
two interacting particles.

In addition to parameters Γ and B0, the last important
parameter is the dimensionless area fraction φ ≡ N πσ2/S,
with N the number of particles detected in the region of in-
terest S. As can be expected for a system of particles with
increased repulsive interactions, we observe (fig. 1(e)) an
expansion of the system when B0 is increased. φ is found
to be a decreasing function of B0, which differs from the
expected value φth = N0 πσ2/S0 ≈ 0.194 computed for
the full cell area. Indeed, φ ≈ 0.27 for B0 ≈ 0 G due to
clustering [3,5,28–30] in the cell central region. As B0 is in-
creased, the horizontal magnetic repulsive forces cause the
granular gas to expand and to reach a state of smaller and
homogeneous area fraction in the region of interest S. It is
well known that a higher particle density near the bound-
aries is induced by non-repulsive boundary conditions [22]
and a weak magnetic field radial gradient. Nevertheless,
we point out that φ is found to be homogeneous in the re-
gion of interest S whatever B0 > 0 G, the inhomogeneity
of φ being confined within the area outside S.

Competition between kinetic and magnetic

energies. – From the parameters B0, Γ and φ, we de-
fine now the relevant physical quantities, that we use to
describe the behaviour of our system. Considering a 2D as-
sembly of N particles mechanically agitated and immersed
in B0 inside the region of interest S, we compute its
kinetic energy per particle from velocity measurements,
namely Ec = 1

2
m 〈vx

2 + vy
2〉, where vx (respectively

vy) denotes the horizontal velocities in the x-direction
(y-direction), 〈·〉 an ensemble average and · the tempo-
ral average. Note that Ec is directly proportional to the
granular temperature usually defined as Tg = Ec

m
[8,9].

We also compute the magnetic energy per particle

Em = 1

N

∑N

i=1

∑N

j=i+1
Em, 〈i,j〉, with 〈i, j〉 a pair of parti-

cles within S and Em, 〈i,j〉 its potential energy from eq. (1).
The magnetic potential energy depends on the local config-
uration of the particles, and therefore it fluctuates in time.
Finally, a dimensionless interaction parameter is defined
by the ratio ε ≡ Em/Ec between the magnetic and kinetic
energies [15,18]. When ε is increased, the system under-
goes a continuous transition from an inelastic granular gas
(fig. 1(b)) to a quasi-elastic granular gas (fig. 1(c)) since
inelastic collisions between particles are progressively re-
placed by elastic magnetic interactions. At higher ε, the
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Fig. 2: (Color online) (a) Particle kinetic energy Ec as a func-
tion of the magnetic field B0 for accelerations Γ = 2.45 and
3.32. (b) Particle magnetic potential energy Em vs. B0. (c) Ra-
tio of the energies ε = Em/Ec vs. B0. (d) Collision rate νc

(number of collision per particle and time unit) vs. ε.

system self-organises in a condensed-like phase showing a
2D-hexagonal crystal lattice (fig. 1(d)) as particle displace-
ments become constrained due to magnetic repulsions.
This evolution of the system is also shown in the sup-
plementary video movie1.m4v for a continuous increase of
B0 at fixed Γ.

We present now experimental results obtained for in-
creasing B0 and for fixed Γ (2.45 or 3.32). These values
correspond to the bounds of the range of Γ where Ec in-
creases linearly [8]. The evolutions of Ec, Em and ε with
B0 are depicted in fig. 2(a)–(c). Note that ε is larger
than 1 for B0 > 20 G, meaning that regimes dominated
by magnetic repulsions are reached for moderate values
of B0. We also notice a non-monotonous evolution of Ec,
which reaches a maximum for B0 ≈ 70 G (ε ≈ 5). The
rate of inelastic collisions between particles νc is indeed
strongly reduced for increasing values of ε as depicted in
fig. 2(d). Due to the magnetic energy barrier, only parti-
cles with sufficient kinetic energy can collide [22]. The av-
erage number of collisions per particle and per time unit,
νc, is evaluated using an algorithm detecting individual
collisions through a distance criterion selective process.
νc decreases with ε, vanishes below 0.1 Hz for ε > 10 and
is strictly zero for ε > 30. For greater ε, particle displace-
ments become bounded [15]. Indeed, in fig. 2(b) Em is
found to be proportional to B0

2 for B0 > 150 G (ε > 30),
because particle geometrical arrangement becomes a fixed
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Fig. 3: (Color online) Pair correlation function g(r) for
Γ = 3.32 and ε = 0, 2.89, 16.2 and 283. For the last value,
peak positions for a hexagonal crystal are shown in dashed
lines as multiples of the lattice distance r1st/a = 2.28, for fac-
tors 1,

√
3, 2,

√
7, and 3. Inset: position of the first peak r1st/a

vs. ε and compared with d0/a expected for a hexagonal crystal
(see text).

parameter in the calculation of Em, once they are mag-
netically confined.

Radial pair correlation function. – This en-
ergetic description is also associated with impor-
tant structural changes, which can be enlightened
by computing the radial pair correlation function

g(r) ≡
[

∑N

i=1

∑

j �=i δ(r − rij)
]

S/(2πrN2), with rij the

distance between the particles i and j. This function gives
the probability to find two particle centres separated by
a distance r. g(r) is shown in fig. 3 for characteristic val-
ues of ε and at fixed Γ. At ε = 0, g(r) displays a sharp
peak at the contact value r = a, as in usual granular
gases [5,6]. This confirms that most collisions occur in
horizontal planes and validates the 2D description. Col-
lisions happening out of horizontal planes, when viewed
from the top, produce indeed a partial overlapping, lead-
ing to non-vanishing values of g(r) for r < a. When ε
is slightly increased, the amplitude of the first peak de-
creases to almost 1, giving a nearly flat g(r) (see the curve
for ε = 2.89). This shows that radial correlations are then
quasi-absent as for a non-dissipative perfect gas whose g(r)
is zero for r < a and 1 elsewhere in the vanishing density
limit. When ε is further increased, this feature is gradu-
ally lost. Due to magnetic repulsions, g(r = a) decreases
towards zero and a first peak appears at r > a, indicating
the appearance of a preferential distance between parti-
cles. A similar transition of g(r) has been observed nu-
merically for a 3D repulsive granular gas with a Coulomb
interaction potential [22]. For high enough values of ε, the
system structure approaches the one of a hexagonal crys-
tal [15]. In this case, once the lattice cell size is set to the
first-peak position, theoretical secondary-peak positions

can be predicted from geometrical calculations and are in-
deed found to be close to the measured values (see the
vertical dashed lines in fig. 3). The dimensionless position
of the first peak of the pair correlation function r1st/a vs.
ε (fig. 3(inset)) can be used to discriminate the different
regimes. Indeed, for ε < 2.89 (Γ = 3.32), r1st/a = 1,
which corresponds to a gas-like state becoming more and
more elastic as ε increases. Then, for higher values of ε,
r1st/a > 1 means that a fluid-like phase with a negligible
collision rate is reached. A system solidification progres-
sively occurs: r1st/a grows slowly with ε and gradually
approaches the value expected for the hexagonal lattice

d0/a =
√

π/(2
√

3φ), which depends on φ since measured

in S. A distance to the hexagonal crystal is thus provided
by the calculation of d0/a − r1st/a.

Recently, such a crystal formation has also been ob-
served in a 2D granular system of repulsive particles [15],
and this crystal was found to melt through a hexatic phase
in good agreement with the Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) scenario [31]. In our experi-
ments, the computations of the pair correlation function
and of the orientational correlation function (not shown
here) lead to qualitatively similar results as in [15]. Fi-
nally, the behaviour of the collisionless nearly crystalline
state at strong enough ε can be understood as follows.
We can consider our non-contact repulsive particles as ef-
fective larger particles in a close packing of disks. Their
effective diameter would be given by r1st, the first-peak
position of g(r), leading to an effective area fraction
φeff = (r1st/a)2 φ, varying roughly between 0.44 and 0.90.
Therefore, when the system is collisionless, increasing ε
can be understood as rising the effective density φeff. This
explains why a transition similar to the one occurring in
2D close-packed particle systems [32] might be found in
our study where non-contact interactions between parti-
cles are involved.

Mean square displacements. – Another way to
characterise structural and dynamical changes consists in
measuring the mean square displacements (MSD) of the
particles 〈|R(t + t0) − R(t0)|2〉, where R(t) is the parti-
cle position at time t, t0 being an arbitrary time origin.
For particles experiencing a Brownian motion in two di-
mensions, the MSD equals 4Dbt, where Db is the diffusion
coefficient. MSD normalised by the particle diameter are
plotted in fig. 4. For ε < 30, at short times a ballistic
regime occurs (MSD ∝ t2), followed by a normal diffu-
sive regime at longer times (MSD ∝ t). Therefore, in this
regime, particles perform a horizontal quasi-Brownian mo-
tion in the experimental cell. For ε > 30, the diffusion
becomes anomalous: a fit of the MSD by a power law tα

would provide α < 1, showing that particles undergo a
sub-diffusive motion. We point out that simultaneously,
the collision rate becomes zero, marking a change of be-
haviour of the particles as magnetic interactions become
stronger. Moreover, the derivative of the MSD vanishes at
finite times as the MSD locally saturates, shedding light
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Fig. 4: (Color online) Mean square displacements (MSD) for
Γ = 3.32 and ε = 0, 2.89, 16.2, 38.1 and 283. The thin dashed
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The thick dashed lines superimposed on MSD data from t = 1 s
to the end of the recordings are linear fits performed in the
normal diffusive regime. Inset: slopes of the linear fits divided
by 4, D, which can be identified with a diffusion coefficient.

onto the existence of magnetic confinement. This becomes
very clear for ε > 102, as particles are strongly confined
and move around equilibrium positions corresponding to
the nodes of the hexagonal lattice.

For ε ≤ 30 and after waiting long enough to define a
normal diffusive regime, we extract from the MSD the
particle diffusion coefficient D, computed as one fourth of
the slope of the MSD (evaluated from t+ t0 = 1 s until the
end of the measurement). The corresponding fits are plot-
ted as thick dashed lines in fig. 4, and the obtained values
of D are shown in fig. 4(inset). Like Ec (fig. 2(a)), D as
a function of ε is non-monotonous and decreases strongly
for ε � 5 (i.e., B0 � 70 G), showing that magnetic re-
pulsions oppose the displacements. It can also be noticed
that D and Ec reach their respective maximum for val-
ues of ε of the same order of magnitude, when repulsive
interactions are of the same order as kinetic agitation. In-
deed, D can be roughly evaluated as the product of the
root mean square velocity, which is directly related to Ec,
by the mean free path, which should decrease with φ and
ε as the magnetic confinement opposes the particle dis-
placements. The evolutions of D and Ec are thus deeply
connected.

Velocity statistics. – Structural modifications imply
important changes on dynamics, especially on the parti-
cle trajectories and velocity distributions. In the inset
of fig. 5, the probability density functions (PDF) of ve-
locities (x-component) normalised by their standard de-
viation, vx/σx with σx ≡

√

〈vx
2〉, are plotted at fixed

Γ for different values of ε. They are compared to the
Gaussian distribution expected for a perfect gas at ther-
mal equilibrium. Identical results are found for vy due
to system isotropy in the central region. As predicted
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for an infinite system [2] and reported in other experi-
ments [6–9], at ε = 0 the velocity distribution presents
a deviation from the Gaussian. In fact, this behaviour is
expected for out-of-equilibrium systems, as Gaussian dis-
tribution is predicted for equilibrium gases. The reported
overpopulation of the high-velocity tails is characteristic
of granular gases, although there is no simple argument to
justify it [1]. As ε is increased, the PDF become progres-
sively closer to the Gaussian until ε ≈ 10 but then depart
for higher values.

This behaviour is better depicted by plotting the
flatness of the velocity distributions, defined as
F ≡ 〈(vx − 〈vx〉)4〉/σ4

x and shown in fig. 5. For a purely
Gaussian distribution F equals 3 and is larger for more
spread distributions. A range of significantly low values
of F can be defined for 4 < ε < 30, where the granu-
lar gas can be considered as quasi-elastic. Indeed, energy
exchanges between particles should occur mainly through
magnetic repulsive interactions, which are dissipationless.
Note that the lower bound in ε is fairly consistent with the
value ε = 2.89 separating the usual granular gas regime
and the one with negligible collisions (see fig. 3). For
ε > 30, displacements become progressively constrained
by magnetic repelling and the system can be seen as an
assembly of confined particles [15]. F then increases with
ε, highlighting a heterogeneity of velocities, as particles
are individually more or less confined.

Conclusion. – We have studied the effect of tunable
repulsive dipolar interactions on a quasi–two-dimensional
granular gas. For fixed dimensionless accelerations Γ and
in a low density regime (φ ≈ 0.2), we increased the mag-
netic field B0. The rise of the ratio ε between magnetic in-
teraction and kinetic agitation leads to a continuous phase
transition from a dissipative granular gas state at ε = 0, to
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a collisionless hexagonal nearly crystalline state at high ε.
More interesting, in the intermediate range of ε, struc-
tural and dynamical properties of the magnetic granular
gas display similar features to those expected for a molec-
ular gas at thermal equilibrium (quasi-Gaussian velocity
distributions and nearly flat pair correlation functions).
This transition from a dissipative to a quasi-elastic gran-
ular gas, when B0 is increased, comes from the decrease
of the dissipative collision rate, which leads to the reduc-
tion of the total dissipation. Hence, the 2D granular gas
is then closer to the quasi-elastic limit. We were thus able
to produce a macroscopic system whose distance to the
quasi-elastic limit could be precisely controlled through
the applied magnetic field. We may also wonder how
the results found here with repulsive dipolar interactions
can be generalised for other interaction potentials, like the
Coulombian one [22,23].

Future studies on this new system could be useful to
validate theoretical works about out-of-equilibrium dis-
sipative gases, by investigating velocity correlations and
coupling with the forcing viewed as a thermal bath [9,33].
Another perspective is to apply a magnetic quench to the
system, in order to try to solidify it into a disordered state,
which could be analogous to a colloidal glass [34]. More-
over, for denser regimes and for high ε, we observe other
complex disordered states. Our experimental system could
indeed be used to mimic, at the macroscopic scale, geo-
metric frustration [35,36] or topological defects [37] arising
in various physical systems.

∗ ∗ ∗

We thank J.-C. Bacri for providing the coils and for
discussions, and P. Visco, L. Deike, L. Gordillo and
T. Jamin for fruitful discussions. This work has been
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4.5 Orientational order across the crystallization transition

Let us now present some first results of a work in the continuity of what we presented in
this chapter, and which will lead to a more detailed characterization of the transition from a
dissipative gas to a crystalline state.

If translational order is measured by the pair correlation function, g(r), orientational order
can be measured by means of a bond orientational order parameter. When one looks for the
appearance of hexagonal order, i.e., of a triangular lattice, it is relevant to use the 6-fold bond
orientational order parameter, Q6, locally defined for every particle j, as

Qj
6 =

1

nk

nk∑
k=1

e6iθjk , (4.1)

where nk is the number of nearest neighbors of particle j, and θjk is the angle between the vector
linking the center of particle j to the center of particle k, and an arbitrary fixed direction, for
instance the one of the x-axis.

Considering the particle index, j, as implicit, we define ψ6 as the complex modulus of Q6,
ψ6 = |Q6|, which equals 1 for a particle surrounded by 6 neighbors forming a regular hexagon;
otherwise ψ6 is smaller than 1. The quantity ψ6 is therefore a relevant measure of the hexag-
onal order. Note that the complex phase of Q6 indicates, for a perfect triangular lattice, the
orientation of this lattice with respect to the chosen reference axis.

In Fig. 4.3(a, b, c) we show the Voronoi tesselation of snapshots from three representative
experiments across the crystallization transition, for Γ = 3.32: B0 = 20.1G (ε = 0.894; dissi-
pative granular gas state), B0 = 208G (ε = 51.4; collisionless state) and B0 = 436G (ε = 283;
crystalline state). The color code is relative to the value of ψ6.

In the dissipative granular gas state, hexagonal order is weak but fluctuations of order pa-
rameter ψ6 are large, as characterized by the probability density function (PDF) of ψ6 shown
in Fig. 4.3(d). Then, local density fluctuations are large, as the wide diversity of Voronoi cell
sizes shows. In the collisionless state at B0 = 208G, particle spatial distribution is much more
homogeneous and hexagonal order significantly increases, as shown by the shift of the PDF of
ψ6 towards higher values in Fig. 4.3(e). For the highest interaction strength tested here, with
B0 = 436G, hexagonal order in the system is very high, as visible on the PDF of ψ6 in Fig. 4.3(f)
which presents a sharp, high-amplitude peak for the ψ6 between 0.9 and 1. Yet, some local de-
fects are clearly visible, as evidenced in Fig. 4.3(c) by the blue and yellow-green patches, which
contribute to widening the PDF of ψ6 towards smaller-than-1 values, as shown in Fig. 4.3(f).

In order to characterize the hexagonal order of the system at a given point of the parameter
space (Γ, B0), or equivalently, (Γ, ε), we use the ensemble-averaged value of ψ6, which we denote
⟨ψ6⟩. In Fig. 4.4 we show ⟨ψ6⟩ as a function of ε (and as a function of B0 in the inset), for the two
set of experiments presented in this chapter. We find that ⟨ψ6⟩ varies continuously from about
0.4 in the dissipative granular gas state to about 0.9 in the crystalline state, demonstrating that
hexagonal order continuously increases as we increase the strength of the interactions. However,
the fact that ⟨ψ6⟩ does not converges towards 1 evidences the presence of defaults in the mostly
triangular lattice, as visible in Fig. 4.3(c). The curves of ⟨ψ6⟩ collapse very satisfyingly when
plotted as a function of ε, which supports the choice of this parameter as being relevant for
characterizing this transition.
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Figure 4.3 Orientational order across the crystallization transition. (a, b, c) Voronoi tes-
selation of snapshots from experiments with Γ = 3.32 and B0 = 20.1G, i.e., ε = 0.894 (a),
B0 = 208G, i.e., ε = 51.4 (b) and B0 = 436G, i.e., ε = 283 (c). The color code indicates the
local value of the complex norm of the 6-fold bond orientational order parameter, ψ6 = |Q6|.
(d, e, f) Probability density functions of ψ6 relative to the experiments of diagrams (a, b, c).
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Figure 4.4 Ensemble averaged complex norm of the 6-fold bond orientational order parame-
ter, ⟨ψ6⟩, as a function of parameter ε = Em/Ec (inset: as a function of the magnetic field, B0),
for the two sets of experiments presented in this chapter (Γ = 2.45 and 3.32, B0 varies). This
order parameter increases continuously from about 0.4 to about 0.9, indicating a continuous
ordering of the particles into a hexagonal lattice, and the presence of defects in this lattice
even at high interaction strength.
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Chapter abstract

Labyrinthine patterns arise in two-dimensional physical systems subject to competing interac-
tions, in fields ranging from solid-state physics to hydrodynamics. For systems of interacting
particles, labyrinthine and stripe phases have been studied in the context of colloidal particles
confined into a monolayer, both numerically by means of Monte Carlo simulations and exper-
imentally using superparamagnetic particles. Here we report on the experimental observation
of a labyrinthine phase in an out-of-equilibrium system constituted of macroscopic particles.
Once sufficiently magnetized, they organize into short chains of particles in contact and ran-
domly oriented. We characterize the transition from a granular gas state towards a solid-like
labyrinthine phase, as a function of the ratio of the interaction strength to the kinetic agitation,
ε. The spatial local structure is analyzed by means of particle tracking. Moreover, we explain
the formation of these chains using a simple model.

5.1 Introduction

We encounter patterns in Nature every day: the stripes on a butterfly’s wings, a wave-shaped
cloud, the cracks on the bottom of a dried puddle. In chemistry, biology and fluid mechanics,
but also in solid state physics and non-linear optics, patterns arise from out-of-equilibrium
processes [91]. Alan Turing introduced, via his famous paper on reaction-diffusion patterns in
1952 [92], the analysis and the classification of spatio-temporal macroscopic patterns from the
point of view of linear stability analysis: a pattern can be either stationary in time and periodic
in space, or periodic in time and uniform in space, or periodic in both time and space (which is
the case of the so-called Turing patterns). Here we focus on the former type of patterns: those
with a spatial periodicity only.

Note that a pattern is defined by an ensemble of regions where the relevant order parameter
takes identical values. Hence, in the context of patterns, a problem with aligning or anti-aligning
spins is analogous to a problem of, respectively, attracting and repulsive particles. Therefore we
will not distinguish the former from the latter, and we will always talk about attractive and
repulsive interactions.
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(a) (b)

Figure 5.1 Ferrofluid (in dark) confined between two glass plates in a magnetic field normal
to the fluid, exhibiting (a) a bubble state of period ∼ 4µm, for a low filling fraction; and (b) a
labyrinthine state of period ∼ 1 cm, for a high filling fraction (adapted from [93]).

Crystal-like phases, such as the one we studied in our system at a low density ϕ and high
interaction strength ε in Chapter 4, more generally called bubble phases when more than a single
particle can be located at every node, are periodic in space. We show in Fig. 5.1(a) an example of
a bubble phase obtained with a confined ferrofluid. Also periodic in space are stripe phases, i.e.,
phases in which the pertinent order parameter varies periodically but in a preferred direction,
generating parallel stripes. However, unlike bubble phases, in which one repulsive interaction
dominates, stripe phases arise when two interactions with comparable strengths compete at
different lengthscales [93, 94]. Stripes can be entangled, instead of being parallel. Then, one
speaks of a labyrinthine phase, as illustrated in Fig. 5.1(b). The transitions between bubble, stripe
and labyrinthine phases occur when the strength of the competing interactions and temperature
vary [93, 95]. Let us now focus on labyrinthine phases, which arise in a wide variety of in- and
out-of-equilibrium, two-dimensional physical and chemical systems.

Systems displaying labyrinthine phases and which can be considered continuous, that is,
systems for which the typical stripe width is usually much larger than the inter-particle dis-
tance, are of various types. These include, among others, ferrimagnetic thin films [96, 97]
(due to the competition between local exchange interactions and long-ranged dipolar interac-
tions), amphiphilic monomolecular films, i.e., Langmuir monolayers [98] (van der Waals forces
vs. long-ranged dipolar interaction), ferrofluid drops [99] and biphasic ferrofluid-oil mixtures
in Hele-Shaw cells [100] as illustrated in Fig. 5.1 (surface tension vs. long-ranged dipolar in-
teractions), and granular-fluid suspensions in which air penetrates [101, 102] (effective surface
tension vs. frictional stress). Seul and Andelman demonstrated that the phenomenology of
these systems, that is, the choice between bubble and stripe phases, can be explained within the
framework of modulated phases [93]. Even though these authors briefly mention a “buckling
instability of stripe domains” leading to what we call here labyrinthine phases, it was not before
the numerical work of Stoycheva and Singer [95] that the transition from stripe to labyrinthine
phases was studied quantitatively. Using a model with competing short-range attraction and
long-range repulsion, they demonstrated that this melting transition depends on both the ratio
of the long-range to short-range interaction strengths, and on temperature. Finally, note that
for systems whose particles are constrained on a lattice, such as spins in ultra-thin films, the
structure of this lattice may influence the domain phases observed due to inherent geometrical
frustration [94]. In fact, Han et al. demonstrated that the problem of frustrated spins on a
triangular lattice can be mapped onto a problem of non-interacting particles packed on a tri-
angular lattice and allowed to buckle in two positions (up or down), and they indeed observed
labyrinthine patterns at low enough temperature [86, 85].
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In contrast to the continuous systems mentioned above, labyrinthine patterns can be ob-
tained with a typical width of a single particle diameter, as in [86, 85]. From diffusing particle
simulations with short-range attraction and long-range repulsion, Haw obtained one-particle-
wide labyrinthine phases, which evolved towards either a connected chain network or a con-
nected aggregate network depending on the range and strength of the interactions [103]. Some
Monte-Carlo simulations have even shown that one-particle-wide stripe and labyrinthine phases
can be obtained with a purely repulsive potential, if it includes a soft shoulder at short distance,
namely a core-softened potential [104, 105]. With such a potential, the alignment of particles
into the chains constituting the labyrinthine phase near contact is more favored than a homoge-
neous liquid-like state, due to the repulsive forces from the surrounding particles. In particular,
Malescio and Pellicane [104] demonstrated that the melting of parallel chains of particles (i.e.,
stripes) into a labyrinthine phase occurs through a sharp temperature-controlled transition, as
was also found for continuous systems by Stoycheva and Singer [95], where excessive energy fluc-
tuations indicate strong spatial ordering rearrangements. Motivated by the numerical results on
core-softened potentials, two-dimensional experiments have been performed with core-softened
colloids. Two complementary studies, one experimental [106] and one numerical [65], have ex-
plored the phases obtained for the softest repulsive potential shoulder possible, i.e., with a
vanishing force at contact, and indeed obtained labyrinthine phases for high enough densities.
In particular, a genetic algorithm approach has strongly suggested that stripe phases are ground
states for labyrinthine phases [65].

5.2 Motivation

Labyrinthine phases in systems of interacting particles have only been realized experimentally
once with core-softened colloids by Osterman et al. [106], with results consistent with their own
simulations [65] and with the related numerical (Monte-Carlo) predictions [104, 105]. How-
ever, the latter models do not restrict the possibility of creating labyrinthine phases to colloids,
but leave it accessible a priori to any system of particles interacting by a core-softened repul-
sive potential and agitated by an effective temperature for navigating the energy landscape. In
particular, the question of the existence of labyrinthine phases for out-of-equilibrium systems re-
mains open. One could expect results similar to thermal systems, but with a different dynamics.

In this chapter, our goal is twofold. First, demonstrating that such a labyrinthine phase can
be obtained in an intrinsically out-of-equilibrium system of macroscopic particles, such as our
magnetic granular gas, and quantitatively characterizing the transition that leads to it from a
liquid-like state. Second, explaining simply but quantitatively the preference of the system for
a labyrinthine rather than a crystalline configuration (like the one discussed in Chapter 4).

The work presented here is a logical step following Chapter 4. After having characterized the
effects of an increasing interaction strength on the system dynamics and structural organization
for low particle density, we perform an analogous investigation at a higher density, where the
high-energy state is a labyrinthine phase.
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5.3 Main results

The experimental setup that we use in this chapter is identical to the one in Chapter 4, except
that now the particle area fraction is higher. A monolayer of soft ferromagnetic spheres 1mm
in diameter is vibrated to form a quasi-two-dimensional granular gas. In this chapter, we use
N0 = 5000 particles, yielding an expected particle area fraction ϕth = 0.485. Under mechanical
agitation (Γ = 2.23), particles undergo Brownian-like motion, but due to the dissipative nature
of the collisions, the granular gas reaches a stationary out-of-equilibrium state. Immersed in
a vertical external magnetic field B0, the soft ferromagnetic spheres are magnetized and in-
teract as induced dipoles. The gap size in these experiments, e ∼ 1.42 a, with a the particle
diameter, is close to the specific value ex = a ( 1√

5
+ 1) ≈ 1.45 a (defined in Eq. 3.53). This

makes the pair potential significantly softened for two buckled particles at contact, while it is
normally repulsive elsewhere. As a result, when the magnetic field is increased, the granular
gas solidifies into a labyrinthine phase composed of chains of a few particles in contact, as il-
lustrated in Fig. 5.2 for three representative values of the magnetic field, B0, and detailed below.

When increasing the applied magnetic field, in a first stage, we increase the effective elasticity
of the particles’ interactions, as described in Chapter 4 at a lower density. At this stage, all par-
ticles are free to move across the cell and the system looks like a gas [Fig. 5.2(a)]. Consequently,
the fraction of particles in chains, φ, defined as the number of particles at contact divided by
the total number of particles, equals zero, as shown in Fig. 5.3(a). At the same time, the pair
correlation function has the expected spike at r = a and ripple at r = 2 a [Fig. 5.3 (c)]. However,
from ε ≈ 60 (i.e., B0 ≈ 100G), the behavior of this dense magnetic granular system is clearly
different: first pairs of particles, then triplets and so on, aggregate, while unbounded particles
move inbetween them, as illustrated in Fig. 5.2(b). Quantitatively, in the range of ε in which
chains and free particles coexist, φ increases from 0 to 1 and the mean chain length, λ, from 1.6 a

to 2.6 a, as shown in Fig. 5.3(b), while a high-amplitude peak appears on the pair correlation
function at r ≈ 0.9 a, proving the buckled structure of the chains illustrated in Fig. 5.3(c)(inset).
Eventually, at an interaction strength ε = 1000, the whole system solidifies into a labyrinthine
phase made of chains one-particle-wide, a few particle long and randomly oriented, as shown
in Fig. 5.2(c). Then, increasing ε further does not cause any noticeable change. This is made

(a) (b) (c)

Figure 5.2 Transition to the granular labyrinthine phase. (a) Granular gas state with only
free particles, at B0 = 20.5G, i.e., ε = 6.23; (b) State of coexistence of free particles and
chains, at B0 = 161G, i.e., ε = 126; (c) Labyrinthine phase where almost all the particles
are part of chains, at B0 = 188G, i.e., ε = 4.62 × 103. The white rings are the reflection of
the LED circular array on top of the particles and have a diameter about half of the particle
diameter. The particles themselves are visible in gray.
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Figure 5.3 Characterizing the transition from a dissipative granular gas to a labyrinthine
phase. (a) Fraction of particles in chains vs. control parameter ε = Em/Ec (inset: ε vs.
applied magnetic field); (b) Dimensionless mean chain length, defined as the largest distance
between two particles in a chain, vs. ε; (c) Pair correlation function at short distances for
ε = 14.7 (red), 41.0 (purple), 68.9 (green), 127 (orange), and 649 (blue).

clear, one one hand, by the measures of φ and λ, which both saturate at the respective values
they take at ε = 1000, and on the other hand, by g(r), which displays for all ε > 1000 similar
shapes characterized by a high-amplitude first peak and a secondary peak (these results are not
shown here).

Now, how can we explain that the magnetic granular gas solidifies into a labyrinthine phase
rather than into a crystalline state? We propose to answering this question using a simple model,
which is valid when ε is high enough so that particles do not collide and the density is roughly
homogeneous. We take a gap size of e = 1.5 a. We consider six particles horizontally positioned
at the nodes of a regular hexagon of side d equalling the node-to-node distance of a triangular
lattice of particle area fraction ϕ, i.e., d = a

[
π/(2

√
3ϕ)
]1/2. These particles all remain fixed to

the bottom plate. One test particle is linearly moved from the central position, at the center of
the hexagon, to the contact with one of the two bottom particles, while always being in contact
with the top plate. For different values of ϕ, we evaluate the energy landscape experienced by
this particle. At ϕ = 0.5, the central position is a local minimum of energy, while the global
minimum is found at contact, thus the two particles preferentially stick together in the buckled
configuration. Extending this argument to the whole system leads to the conclusion that at
ϕ = 0.5, the favored high-energy state is either a stripe or a labyrinthine phase. This conclusion
also applies to ϕ = 0.6 and higher area fractions, since then, the only minimum is found at
contact. In contrast, at lower ϕ, such as 0.35 and 0.2, the global minimum of energy is reached
when the test particle is at the central position. Therefore, at such area fractions, a crystal-like
configuration is most favored. Finally, this simple model is consistent with the experimental
results that we presented in this chapter and in Chapter 4.

5.4 Conclusion

We have demonstrated that a labyrinthine phase made of chains of particles can be obtained in
a granular, out-of-equilibrium system of macroscopic particles, analogously to the labyrinthine
phases observed in a colloidal system [106] and as predicted by Monte-Carlo simulations [104,
105]. In our granular gas, particles interact by anisotropic repulsive dipolar interactions and
experience an agitation which enables them to explore the energy landscape. Through the
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“solidification” of the granular gas into a labyrinthine phase, for which we use the fraction
of particles in chains as an order parameter, the mean chain length significantly increases (i.e.,
particles aggregate into nearly linear chains and not into round clusters) and a sharp peak of the
pair correlation function grows at r < a (i.e., chains are buckled out of plane). Moreover, a simple
model based on the comparison of the energies of particles in configurations corresponding,
respectively, to a crystalline state and to a labyrinthine phase, enabled us to explain the system’s
preference for one state or the other depending on the particle area fraction.

In this chapter, we have not addressed the question of the dynamics of the granular labyrinthine
phase, because we chose parameters that made relevant to consider it as stationary (relatively
slow increase of the magnetic field and long waiting time τ0 = 60 s). Yet, as we are going to see
in Chapter 6, the granular labyrinthine phase does undergo relaxation at long times, which is a
phenomenon reminiscent of the slow dynamics of structural glasses [107, 108, 109]. Let us note
that in the case of labyrinthine domain patterns in continuous systems, the analogy with glasses
was also reported in an analysis of their globally disordered structure [97] and a study of their
relaxation [110].

Finally, let us emphasize that, although the simple criterion of the variation of φ captures
well the transition from a granular gas to a labyrinthine phase, it should fail to distinguish
a parallel stripe phase [104, 65] from a labyrinthine phase. Topology and morphology would
indeed have to be taken into account, like local orientational properties. Several approaches
have been proposed to analyze or to model labyrinthine patterns, such as the introduction of a
local wave vector [111], the computation of the wrinkledness [110], and the decomposition of the
pattern into clusters of linear segments [97]. To our knowledge, the definition of an appropriate
order parameter for labyrinthine patterns remains an open question.
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Labyrinthine patterns arise in two-dimensional physical systems submitted to competing interactions, in fields

ranging from solid-state physics to hydrodynamics. For systems of interacting particles, labyrinthine and stripe

phases were studied in the context of colloidal particles confined into a monolayer, both numerically by means of

Monte Carlo simulations and experimentally using superparamagnetic particles. Here we report an experimental

observation of a labyrinthine phase in an out-of-equilibrium system constituted of macroscopic particles. Once

sufficiently magnetized, they organize into short chains of particles in contact and randomly orientated. We

characterize the transition from a granular gas state towards a solid labyrinthine phase, as a function of the ratio

of the interaction strength to the kinetic agitation. The spatial local structure is analyzed by means of accurate

particle tracking. Moreover, we explain the formation of these chains using a simple model.
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I. INTRODUCTION

Labyrinthine phases are intriguing two-dimensional (2D)
patterns occurring in various domains of physics, in equilib-
rium and out-of-equilibrium situations. Two distinct phases
form at small-scale well-separated stripes, which are them-
selves entangled, leading to a complex large-scale pattern.
These shapes were experimentally obtained for extremely
varied 2D systems ranging from ferrimagnetic garnet films
[1] in condensed matter, Langmuir monolayers [2] in soft
matter, granular fluid suspensions in which air penetrates [3,4],
ferrofluid drops [5] and biphasic ferrofluid-oil layers [6] in
fluid mechanics, to chemical reaction-diffusion systems [7].
The common denominator of these systems is the competition
between long-range repulsion and short-range attraction,
which leads to the phenomenology of modulated phases [8].
Moreover, a wide range of ordering effects that lead to different
patterns can also be related to the competition between
interactions and geometrical frustration, as specifically shown
for magnetic thin films [9].

By analogy with the phenomenology of these continuous
systems, labyrinthine and stripe phases have been introduced
for systems of particles. In particular, in the context of colloidal
monolayers, several Monte Carlo simulations [10–13] and one
molecular dynamics simulation [14] have been performed. It
was shown that, to observe stripes and labyrinthine phases,
a long-range repulsive potential is needed, together with a
short-range attraction, which can be replaced by a core-
softened potential [10,11]. Tuning geometrical frustration in
noninteracting colloidal monolayers [13,15] leads also to
stripe phases. Moreover, the only experimental observation
of a labyrinthine phase in a colloidal system was obtained
using superparamagnetic colloids under a magnetic field,
inducing dipolar interactions [16]. Labyrinthine phases were
indeed found as equilibrium states at a high enough density
of micrometric spheres, in agreement with dedicated Monte
Carlo simulations [12,16]. In contrast, similar labyrinthine or
stripe phases have not been described in a macroscopic and
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out-of-equilibrium system whose particles can be individually
identified.

Here, we report the observation of such a labyrinthine
phase. A monolayer of soft ferromagnetic spheres 1 mm
in diameter is vibrated to form a 2D granular gas [17–22].
Under mechanical agitation particles undergo a Brownian-like
motion, but due to the dissipative nature of the collisions,
the granular gas reaches a stationary out-of-equilibrium state.
Then immersed in a vertical external magnetic field B, the
soft ferromagnetic spheres are magnetized and interact with
each other as induced dipoles. When the magnetic field is
increased, the granular gas solidifies into a phase composed of
chains of a few particles in contact, similar to the labyrinthine
phase observed with colloids [16]. In contrast to this colloid
study, which focuses on equilibrium states, the transition
from gas to labyrinth is here clearly described, using accurate
particle tracking. Finally, as a remark, we emphasize that the
physical mechanisms at play in labyrinthine and stripe phases
of interacting particles differ from those in chain and cluster
phases reported in some interacting granular gases [23–25],
despite visual similarities. Indeed, these phases are composed
of head-to-tail dipoles and were observed when attractive
behavior is dominant at a large scale, because permanent
dipoles are considered [23,25] or because the hypothesis of
a quasi-2D system is not verified [24].

SS0

h B
Fm

a

Fm

FIG. 1. Experimental setup. 5000 chromed steel spherical par-

ticles (diameter a = 1 mm and mass m = 4.07 mg) are vertically

vibrated (acceleration Ŵ = 21.9 m · s−2) inside a horizontal, square

aluminium cell (area S0 = 9 × 9 cm2) with a rough bottom plate and

a polycarbonate top lid (gap size h = 1.5a). In the presence of a

vertical magnetic field B, particles repel each other with a force �Fm.

The region of interest is of area S = 5.7 × 5.7 cm2.

1539-3755/2015/92(6)/062205(7) 062205-1 ©2015 American Physical Society
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(a) (b) (c) (d)

FIG. 2. (Color online) Top views of the system of particles. In (a) and (b), images of the spheres have been replaced by white disks of

diameter a for better visualization, whereas (c) is from a direct image from the camera and (d) is the result of particle tracking. (a) Dissipative

granular gas state at a moderate B (80 G). (b) Labyrinthine phase at a high B (170 G). The particles organize into an amorphous phase mostly

composed of chains of a few particles. The region within the red square is enlarged in (c) and (d). (c) Thick circles are reflections of lighting

on the spheres and appear smaller than the actual overlapping particle radii (thin circles). (d) Buckled chains (red spheres, top particles; blue

spheres, bottom particles) mostly compose the amorphous phase.

II. FROM A GRANULAR GAS TOWARDS A

LABYRINTHINE SOLID PHASE

The experimental setup is similar to the one used in [26].
Soft ferromagnetic spherical particles of diameter a = 1 mm
are confined between two horizontal parallel plates separated
by a gap of h = 1.5a in order to form a monolayer as depicted
in Fig. 1. Particles are vibrated vertically and are lit by an
annular light-emitting diode (LED) array and imaged from
the top by a fast camera through the transparent top plate.
Particle center positions are tracked and their trajectories are
reconstructed in the horizontal plane [21,27]. Interactions
between particles are introduced by means of an external
vertical magnetic field of amplitude B controlled by the
experimentalist. Additional details on the experimental setup
and protocol, and on the particle detection technique, are given
in the Appendixes.

Magnetized soft ferromagnetic spheres behave as induced
dipoles, whose magnetic moments are vertical and propor-
tional to B. The interaction potential Um of a particle located
at a distance r and a polar angle θ from a second particle [28]
reads in spherical coordinates [29], with μ0 the vacuum
permeability,

Um(r,θ ) = − π

16

B2

μ0

a6

r3
(2 cos2 θ − sin2 θ ). (1)

Two spheres in the same horizontal (θ = π/2) plane are
thus repelling each other. Using this experimental method,
macroscopic transitions were observed in 3D assemblies of
magnetized soft-ferromagnetic particles [30,31]. Then the
number of particles per surface unit is expressed by a
dimensionless parameter, the area fraction φ = (Nπa2)/(4 S),
with N the number of particles tracked in the region of interest
S. For a monolayer of particles, a high enough magnetic
field, and a moderate area fraction (φ = 0.2), the 2D granular
gas solidifies into a hexagonal crystal [26], whose melting
has been found to follow the Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) scenario [32].

Here φ is increased to 0.5. For moderate values of the
magnetic field B and continuous shaking, particles undergo
a Brownian-like motion. At a given instant particle positions

are random [Fig. 2(a)] and spheres exchange energy through
dissipative collisions and magnetic interactions. We observe a
2D granular gas, whose properties are similar to those found
at a lower area fraction [26]. Then by increasing B further,
we observe that, despite the magnetic repulsion, small chains
of two or three particles in contact start to form in the bulk
of agitated particles. We remark also that the motions of the
particles belonging to these chains are considerably restricted
compared to those of free particles. At a higher magnetic
field, the quasitotality of the particles are condensed into
these chains [Fig. 2(b)]. At a large scale, the picture of the
assembly of the system does not present an ordered structure.
Thus, by increasing magnetic interactions, the system has been
solidified in an amorphous state. Labyrinthine patterns were
indeed described as globally disordered stripe domains [33].
Due to the presence of chains, the particle assembly presents
striking similarities to the labyrinthine and stripe phases
observed [16] and numerically predicted [10–14], for example,
for 2D colloidal systems under thermal agitation and with
dipolar repulsive magnetic interactions. Here, a transition from
a granular gas phase to a labyrinthine phase for a macroscopic,
out-of-equilibrium system is observed. This transition can
also be visualized by applying a linearly increasing magnetic
field from B = 0 G to B = 200 G (see video in Supplemental
Material [34]). First, pairs aggregate, then triplets, and so on,
homogeneously across the cell, until nearly motionless chains
of various lengths occupy the whole cell, isolating the few
remaining fluctuating particles from each other. We note also
that, starting from the labyrinthine phase, the inverse transition
is observed when the magnetic field is decreased. This shows
that the system does not present any noticeable hysteresis.

By means of accurate particle tracking, chain morphology
can now be quantitatively characterized. Chains are well
separated due to the magnetic repulsion and can thus be
considered as groups of more than one particle, according
to a criterion of the contact distance. Moreover, chains appear
mainly as linear objects because, most of the time, a particle
inside a chain is in contact with two neighboring particles.
Nevertheless, the relative orientations of the chains seem
random. In the following, quantitative analysis of the small-
scale structure reveals that chains correspond to a buckled
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state of particles in contact [Fig. 2(c)]. A particle, once it is
condensed in a chain, is in contact either with the top plate or
with the bottom plate. Using slight differences in lighting for
the two kinds of particles, our detection technique is able to
provide the vertical position of the particles in the chains [as
shown in the virtual image in Fig. 2(d)], which is coded as up

(red spheres) or down (blue spheres). It can be noted that the
particles at the tips of the chains are for the most part down,
revealing an effect of gravity.

III. CHARACTERIZATION OF THE TRANSITION

Let us now quantitatively characterize the transition from a
granular gas to the labyrinthine phase using the particle track-
ing data. The magnetic potential energy Em and the horizontal
kinetic energy Ec per particle can now be computed. From the
interaction potential Um(r,θ ) defined in Eq. (1), the magnetic
energy per particle is computed as the averaged summation
over the pairs of the interaction potential of each pair,

Em = 1

Np

Np
∑

i=1

Np
∑

j=i+1

Um(rij ,θij ), (2)

with Np the number of particles involved in the calculation
of Em; rij and θij , respectively, the distance and the polar
angle between the two particles i and j ; and · the temporal
average. The magnetic potential energy depends on the local
configuration of the particles, and therefore it fluctuates in
time. Its averaged value, Em, is found to be proportional to B2

[Fig. 3(a)]. The kinetic energy per particle is computed from
velocity measurements,

Ec = 1
2
m

(〈

vx
2
〉

+
〈

vy
2
〉)

, (3)

where m denotes the particle mass, vx (respectively, vy) the
horizontal velocities in the x direction (y direction), and 〈·〉 an
ensemble average. Ec is a measure of the agitation in the sys-
tem. When the magnetic field B is increased, in the first stage
Ec grows [Fig. 3(b)]. Repulsive dipole-dipole interactions
reduce the rate of dissipative collisions, which consequently
increases Ec for a given shaking amplitude [26]. Once chains
start to form, for B ≈ 100 G, Ec drops significantly and nearly
vanishes as the labyrinthine phase is formed for B ≈ 150 G,
illustrating the solidification process. For higher magnetic
excitation values, the labyrinthine phase becomes less and
less mobile as interactions strengthen and fluctuations are
restrained.

Now, let us define the dimensionless control parameter
ε ≡ Em/Ec [26], which is depicted as a function of B in the
inset in Fig. 4(a). ε provides a measure of the competition
between distance interactions and kinetic agitation. By analogy
with an order parameter, the fraction of particles condensed
in the chains ϕ is computed as the ratio of the number of
particles belonging to a group of more than one particle to
the total number of particles tracked in the region of interest.
By plotting ϕ as a function of ε, as shown in Fig. 4(a), the
transition is well depicted. For ε < 60, ϕ is nearly null in
the granular gas phase, whereas for ε > 1000, ϕ is slightly
smaller than 1, for the labyrinthine phase. The intermediate
region of partial solidification corresponds to a coexistence
zone between fluidized particles and particles condensed
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FIG. 3. (Color online) Potential magnetic energy and kinetic

energy per particle. Each symbol corresponds to an independent

experiment. (a) The potential magnetic energy is found to scale as B2

(the dashed curve is a B2 fit). (b) The kinetic energy, which measures

agitation, plotted as a function of B. First, Ec increases due to the

fluidizing effect of the magnetic interactions [26], then it suddenly

drops towards 0 at the onset of solidification (B ≈ 100 G).

in the chains. Let us emphasize that, although the simple
criterion of the variation of ϕ captures well the transition
from a granular gas to a labyrinthine phase, it should fail to
distinguish a stripe phase from a labyrinthine phase. Topology
and morphology would indeed have to be taken into account,
like local orientational properties. Several approaches have
been proposed to analyze or to model labyrinthine patterns,
such as the introduction of a local wave vector [35], the
computation of the wrinkledness [36], and the decomposition
of the pattern into clusters of linear segments [33]. To our
knowledge, the definition of an appropriate order parameter
for labyrinthine patterns remains an open question.

Nonetheless, aiming at quantifying some of the directly
observable morphological changes of the chains, we evaluate
their mean length λ as a function of ε [Fig. 4(b)]. λ is defined
as the average over all chains of the largest distance between
particle centers inside a given chain. Starting from 1.6a at
the formation of first chains, λ seems to saturate for the
highest values of ε around 2.6a. This suggests that competition
between growing chains could limit their extension.

The pair correlation function, which is related to the
probability of finding a particle center at a given distance from
another particle center, provides information on the small-scale
structure of the system. Before the transition, the particle
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FIG. 4. (Color online) Characterizing the transition. Each symbol corresponds to an independent experiment. (a) The fraction of particles

in chains ϕ as a function of the control parameter ε = Em/Ec. It varies from about 0 in the dissipative state to 1 in the fully solidified state.

The horizontal, dashed black line is a guide for the eye. Inset: ε as a function of B. (b) Adimensionalized mean chain length λ/a as a function

of ε, with λ evaluated by computing the largest distance between particle centers inside a given chain. The value of λ averaged over the chains

increases continuously with ε. If the averaging is weighted by the number of particles in the chains, the obtained values are larger by roughly 1

diameter unit, but the trend with ε is similar. (c) Evolution of the radial pair correlation function g(r/a) for increasing values of ε (see arrow):

ε = 14.7 (red), ε = 41.0 (purple), ε = 68.9 (green), ε = 127 (orange), and ε = 649 (blue). As the transition occurs, the r = a peak of g(r/a)

drops down to 0, showing that the in-plane collision probability vanishes for high values of ε. In the meantime, another sharp peak appears at

r/a = xg/a = 0.91, which is the imprint of the buckled chains.

assembly evolves from a purely dissipative gas to an effectively
more elastic gas [26]. Therefore, as Fig. 4(c) (red and purple
lines) displays, the peak at the diameter value flattens while
the effective elasticity rises. From the onset of solidification
(green, orange, and blue lines), surprisingly, an extremely
sharp peak grows from 0 at the distance value r = xg ≈ 0.91a,
which is smaller than the particle diameter. This peak, which
would be impossible to observe in purely 2D systems of hard
spheres, reveals the internal structure of the chains. Here the
gap size is indeed large enough so that partial overlaps of par-
ticles are allowed, leading to the formation of buckled particle
chains in which particles are in contact with the top or bottom
plate [see schematic in Fig. 4(c)]. Geometrical calculations

yielding xg =
√

2h a − h2 , one finds h = 1.42 mm, which
corresponds to the announced gap of 1.5 mm diminished
by the the roughness of the bottom plate. Moreover, in the
labyrinthine phase (blue line), g(r/a) also exhibits a shorter
peak at the position 2xg , from the aligned second neighbors,
showing the presence of linear chains. Between these two
peaks, the zero probability at xg � r � 1.2a indicates the void
spaces between the chains, while the nonvanishing probability
for 1.2a � r � 2xg stands for both nonaligned second neigh-
bors in chains and particles from neighboring chains. The 3D
effects related to the gap size h are thus essential to describe the
small-scale structure of the labyrinthine phase. Therefore, we
now discuss how three-dimensionality can explain the stability
of the chains at a high enough area fraction.

IV. CHAIN FORMATION MECHANISM

At a low area fraction (φ = 0.2 and lower), the stable state
of the assembly of spheres in dipolar interaction was found
to be a hexagonal crystal [26,32]. Why does the hexagonal
structure now become unstable at a higher area fraction? How
can we explain the formation of chains of particles in contact?
In Fig. 5(a), we plot the 3D magnetic energetic landscape

(in the vertical plane) for a sphere initially in the center of a
hexagon of six neighboring particles, the projected horizontal
distance between the particles being given geometrically by

d = a
√

π/(2
√

3φ). Let us consider this central particle at
x = 0 to be up [dashed circle in Fig. 5(a)] between six down

neighbors, all at a distance d, and investigate its potential
energy when it moves from x = 0 to the contact position for
several values of φ [Fig. 5(b)]. Contact positions between
spheres are local minima of potential energy, as the dipolar
interaction aims to align spheres along a vertical axis. For
φ = 0.2, the central position is an absolute minimum of energy,
in agreement with the expected stability of the hexagonal
lattice. In contrast, when φ is increased, the energy barrier
decreases and Em(0) augments relatively to Em(±d). For
φ = 0.5 contact positions become absolute minima, which
can be reached by means of mechanical agitation. For φ =
0.6, the central position is not even a minimum anymore.
Therefore for φ = 0.5 and above, we expect that the hexagonal
structure is unstable, leading to local structures of spheres
in contact like chains, despite the isotropic dipolar repulsion
in a purely 2D system. This qualitative model explains the
small-scale attraction leading to particle contacts, needed for
the shaping and the stability of labyrinthine phases [8]. To
improve the description, solid friction between the spheres
and the top and bottom plates should be incorporated, as
this may greatly stabilize the buckled chains. In thermal
systems, similar predictions were obtained using Monte Carlo
simulations [10–12]. In these examples and our system, the
resultant of repulsive interactions of the assembly of particles
over one acts as a magnetic pressure, favoring contact at
a high enough particle density. Additionally, we note that
buckled phases stabilized by pressure and friction can also
appear in thin vibrated granular layers without magnetic
interactions [37] if the density and gap size are sufficiently
large [38]. Nevertheless, in the latter case, the structuring in
separated chains is absent.
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FIG. 5. (Color online) (a) The potential energy landscape Em is

computed for φ = 0.5 and B = 200 G by averaging the pair potential

Um [see Eq. (1)] for six down neighbors forming a hexagon (four

particles are out of the figure plane) and a central up particle moving

along the x axis (dashed line). (b) The profile of Em is plotted along

this trajectory for four values of φ (curves have been rescaled and

shifted vertically for clarity). The circles depict the initial central

position and the crosses show the contact positions. From these

graphs, for φ = 0.2 and 0.35, hexagonal configurations are found

to be stable, whereas for φ = 0.5 and 0.6, the central particle in the

presence of agitation should leave the position x = 0 to reach contact

positions associated with buckled chains.

V. CONCLUSION

In this macroscopic and out-of-equilibrium model ex-
periment, a labyrinthine phase is obtained by applying a
magnetic field to a confined granular gas, by means of
externally controlled dipolar interactions. We describe and
quantitatively characterize the transition from a gas-like phase
towards a globally disordered solid phase. It appears as a
three-dimensional effect occurring in a quasi-two-dimensional
system. The parameters setting the confinement, the gap h/a

and the area fraction φ, are thus essential to explain the phase
diagram of this granular medium, as also shown for colloidal
and hard-sphere monolayers [12,16,39]. Although not pre-
sented here, after a fast increase in B, i.e., a magnetic quench,
the labyrinthine phase exhibits a slow dynamics characterized
by a slow evolution of its structural properties [40]. This aging
phenomenon should thus be compared to the slow dynamics
of structural glasses [41–43]. In the case of labyrinthine
domain patterns arising in continuous systems, the analogy
with glasses was also reported in an analysis of their globally
disordered structure [33] and a study of their relaxation [36].
Finally, whereas the structure of the phases obtained in this
macroscopic experiment resembles that of the phases found at
thermal equilibrium in Monte Carlo simulations and colloidal
monolayers [12,16,44], the kinetics of the transition described

here is intrinsically an out-of-equilibrium process, which
deserves further studies.
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APPENDIX A: POTENTIAL MAGNETIC ENERGY FOR

TWO PARALLEL DIPOLES WITH FINITE MAGNETIC

PERMEABILITY

For two ferromagnetic spheres of identical diameter a

immersed in an unidirectional vertical magnetic field of
intensity B and separated by a distance r , the potential energy
of magnetic interaction reads in spherical coordinates as the
interaction of two vertical magnetic dipoles [28],

Um(r,θ ) = − π

16

B2

μ0

a6

r3

(

μ − μ0

μ + 2μ0

)2

(2 cos2 θ − sin2 θ ),

(A1)
where θ is the polar angle between the two dipoles, μ0 =
4π10−7 H · m−1 is the vacuum permeability, and μ is the
intrinsic magnetic permeability of the sphere material. The
induced magnetic fields of the neighboring particles are
assumed negligible in front of the external magnetic field.
For free-moving particles θ is taken equal to π/2, whereas for
particles belonging to chains θ is computed from the measured
vertical position of the particles (top or bottom). The magnetic
potential energy per particle Em is computed as an average of
Um over interacting pairs of particles [26] and in the limit of
large μ. This approximation holds for soft and linear ferro-
magnetic materials [45], which is the case for our particles.

APPENDIX B: GENERATION OF THE VIBRATED AND

INTERACTING SYSTEM OF PARTICLES

The particles are chromed alloy steel (AISI 52100) spheres
of diameter a = 1 mm and of mass m = 4.07 × 10−3 g.
Using a vibrating sample magnetometer, the magnetization
of one particle was measured by V. Dupuis. The magnetic
permeability μ verifies 122 < μ/μ0 < ∞ in the linear domain
(−2000 G < B < +2000 G), and the remnant magnetic field
Br is below 12 G. The coercive field is small compared with the
values of the magnetic field B used in our experiments. Within
this range of B, the response to magnetic excitation is linear.
The square aluminum cell (side, 9 cm long) containing these
particles (see Fig. 1) is vertically driven by an electromagnetic
shaker. The forcing is sinusoidal at the frequency f0 = 300 Hz
and the root mean square (RMS) acceleration of vibration is
fixed at Ŵ = 21.9 m · s−2 = 2.23g for all experiments, with
g the gravity acceleration. This value corresponds to the
upper limit of the linear response domain of the granular
temperature Tg = Ec/m as a function of Ŵ [21]. Two coils
in Helmholtz configuration and current-controlled generate
a nearly homogeneous magnetic field B across the cell (the
measured variation is of 3%). Immersed in this magnetic field,
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the particles are magnetized into induced dipoles vertically
oriented (the particle rotation velocity is negligible compared
with the speed of the magnetic domain rearrangements).

APPENDIX C: PARTICLE DETECTION

An annular LED array above the cell produces a high-
contrast circular signal on the chromed particles, whose
positions are recorded from above using a high-speed video
camera at a high resolution (1152 × 1152 pixels at 780 Hz).
The region of interest S is 5.7 × 5.7 cm2 around the cell
center (see Fig. 1). The particle diameter is about 20 pixels.
For individual particle detection, we used a convolution-based
least-squares fitting routine [21,46] completed by an intensity-
weighted center detection algorithm (accuracy estimated as
smaller than 0.3 pixel). Particle trajectories were reconstructed
using a tracking algorithm [27,47].

APPENDIX D: EXPERIMENTAL PROTOCOL

The experimental protocol is fully automated for the sake
of robustness. Every single experiment is noncorrelated with
the others. The amplifiers of the electromagnetic shaker and
of the Helmholtz coils are computer controlled via a data

acquisition card. The experimental protocol routine is written
in Matlab. It also proceeds to the dialogue with the camera,
i.e., configuring and starting the video recordings, as well as
to the recording of the data from the accelerometer and the
Hall effect sensor. All experiments are performed according
to the following protocol. First, the shaking is activated (Ŵ =
21.9 m · s−2) while the magnetic field remains 0. The magnetic
field is then linearly increased (the rising rate αq ≡ dB/dt is
kept fixed for all experiments) up to its higher plateau value
B. Afterwards, a waiting time is respected prior to proceeding
to the recordings. It is chosen along with the recording time
length so as to reach the chosen mean aging time τw. In all the
experiments presented here, αq = 1 G · s−1, τw = 30 s, and
recordings last at least 2 s. Note that these two parameters,
αq and τw, have a noticeable influence on the nature of the
labyrinthine state reached for high values of B, implying that
a slow dynamics is at play.

For the 5000 particles introduced in the experiments, the
area fraction evaluated on the cell is equal to 0.485. However,
within the region of interest S, as the boundaries are not
repulsive [26], φ decreases from 0.58 to 0.46 with B until
B ≈ 80 G. From the appearance of the first chains, φ remains
nearly constant.
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5.5 Discussion of the validity of the energetic model

Here, we discuss the simple model presented in our Physical Review E article [2] and also
explained in Section 5.3. We question the relevance of the choice of 6 neighbors, in the hexagonal
configuration described above, and the validity of this approach itself, in particular in regard of
the effect of the gap size on the potential interaction energies.

Let us first define the geometry of the problem we consider in this section. As in the article,
we consider one test particle initially positioned at the origin of the (x, y) frame and touching
the top plate [dashed black circle in Fig. 5.4(a, b)]. We move this particle to contact with its
first neighbor along the x-axis, which is considered touching the bottom plate (z = a/2) and
horizontally positioned at (x = d, y = 0), with d the node-to-node distance of a triangular lattice
of particle area fraction ϕ, namely d = a

[
π/(2

√
3ϕ)
]1/2. In Fig. 5.4(a, b), the test particle in its

final position is represented by the plain black circle, and the first neighbor, by the blue circle.
Now, we consider a varying number of particles surrounding the test particle, nv, placed at

the nodes of a triangular lattice of side d, as shown in Fig. 5.4(a). All surrounding particles except
the one at (x = d, y = 0) are taken at a mid-gap altitude, namely z = e/2. We consider the
cases nv = 1, 6, 13, 29, 51, 79, 113. For nv = 1, only the particle at (x = d, y = 0) is considered;
for nv = 6, as in the article we consider the 6 particles at the nodes of a regular hexagon of
side d surrounding the initial position of the test particle [innermost hexagon and blue circles in
Fig. 5.4(a)]; for nv = 13, we consider all the particles inside the first larger non-regular hexagon,
whose particles are drawn in a darker shade of blue in Fig. 5.4(a), which includes the particles
of the hexagon of nv = 6; the case nv = 29 includes all particles within the hexagon surrounding
the ensemble of nv = 13 particles; and so on for nv = 51, 79, and 113.

As in Chapter 3, we denote Emag
p (ri, θi) the magnetic energy of interaction of the test particle

and neighboring particle i, where ri (resp. θi) is the center-to-center distance (polar angle)
between the test particle and particle i, as defined in Fig. 3.3. The formula of Emag

p (r, θ) is given
in Eq. 3.42 (note that gravity here is not considered since the test particle remains at a fixed
altitude, namely z = e− a/2). Note that Emag

p (r, θ) is denoted Um(r, θ) in the article.
The total magnetic energy of interaction of the test particle when it has nv neighbors, En=nv

p ,
is the sum over the nv neighbors of the magnetic energies Emag

p (ri, θi), with i = 1, ..., nv,

En=nv
p =

nv∑
i=1

Emag
p (ri, θi). (5.1)

Let us now go back to the article. The approach that we presented in it is based on the
local and global minima of magnetic energy of interaction for the test particle moving in the
hexagon formed by the closer neighbors (nv = 6). If this approach can be convincing for the
gap size e = 1.5 a chosen for the discussion in the paper (FIG. 5 in the article), unfortunately,
it does not explain the existence of a labyrinthine phase when the gap size, e, is smaller than
the critical value, ex = a (1/

√
5+ 1) ∼ 1.45 a (Eq. 3.53). Indeed, for e < ex, the horizontal force

between two particles in the buckled configuration, denoted Fx in Chapter 3, is repulsive and
thus this configuration is not stable, as evidenced by the stability diagram in Fig. 3.8. In other
words, the pair potential does not present any local minimum of energy at contact for e < ex.
We show as an example the pair potential, En=1

p , relative to the experiments presented in the
article (gap size e = 1.42 a and particle area fraction ϕ = 0.47), in Fig. 5.5(a) (black curve). Now
considering the nv = 6 first neighbors of the test particle, as in the article, yields En=6

p [blue
curve in Fig. 5.5(a)], which does not present a local minimum at contact either. Moreover, this
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Figure 5.4 Geometry of the problem. (a) Top view. The colors from blue to red (and the
hexagons drawn in grey lines) identify the outer limit of the ensembles of particles used for
the computation of the magnetic energy (more details are given in the main text); (b) Side
view. The test particle moves from the initial central position (dashed black circle) to contact
position (plain black circle) with its first neighbor along the x-axis (plain blue circle). These
schematics are draws on the example of ϕ = 0.5 and gap size e/a = 1.5.

curve shows how the magnetic pressure from the surrounding particles decreases the potential
energy barrier between the central and contact positions, relative to the energy at the initial
position, En=6

p (x = 0). The fact that neither of these curves presents a local minimum of energy
at contact should prevent the formation of a labyrinthine phase, according to our simple model.
However, we do observe such a phase, hence we should reconsider our reasoning.

To start with, we can question the choice of nv = 6 particles for representing the total energy
of interaction of the test particle. How is this energy changed when additional neighbors are
considered? The curves of En=nv

p for nv = 13, 29, 51, 79 and 113 are plotted in Fig. 5.5(b),
for the particle area fraction measured at the transition in the experiments of this chapter,
namely ϕ = 0.47. We observe that the curve of En=6

p is below the curves of En>6
p , and that its

shape is slightly different from the others. In particular, the former seems to reach a plateau at
contact, although this is not the case for the latter. This indicates that the asymmetry of the
hexagonal configuration of the nv = 6 neighbors, relative to the trajectory of the test particle,
visibly modifies the shape of the energy landscape. For nv ≥ 13 this asymmetry is reduced and
the shape of En>13

p is much more similar to En=1
p , although the energy variations are reduced.

This shows that the magnetic pressure from all surrounding particles acts as a mean field, when
particles are distributed homogeneously around the test particle trajectory. Increasing further
nv, from 13 to 113, makes the curves of En=nv

p apparently converge towards a limit curve. This
convergence indicates that the mean field effect from particles beyond the hexagon of nv = 113

would have approximatively no effect on the test particle. This provides a relevant limit distance
for the computation of the magnetic energy of interaction, namely approximatively 7 a. This
result is close to 10 a, which is the distance that we use for our calculation of Em, as explained
in Section 2.2.3. More generally, we can say that the choice of nv = 6 neighbors is not optimal
for computing the energy landscape, and that replacing it by nv = 113 seems satisfying.

As an other example, we take the gap size used in the experiments of Chapter 6, namely
e/a = 1.48, the particle area fraction then measured at the transition, ϕ = 0.44, and plot
En=nv

p for nv = 6, 13, 29, 51, 79 and 113 in Fig. 5.6. In this case, using nv = 6 suggests that
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Figure 5.5 Potential energies of interaction, En=nv
p , for ϕ = 0.47 and e/a = 1.42, as in the

article of this chapter. (a) nv = 1 and 6; and (b) nv ≥ 6. The magnetic pressure from the
neighbors acts as a mean field which reduces the relative variations on En=nv

p relative to the
value at contact. In particular, (b) shows that typically nv = 113 neighbors should be used to
estimate the potential energy of interaction.

the potential is nearly purely attractive with a global minimum of energy at contact, while the
curves of nv > 6 show an attraction at short distances only, with a local minimum of energy at
contact. This supports the choice of typically nv = 113 particles for estimating the potential
energies of interaction.

Let us also note that the existence of local minima of energy along the trajectories (i.e., for
0 < x < a), which we find on most curves in Fig. 5.5 and Fig. 5.6, is due to the fact that the
first neighbor along the x-axis, drawn in blue in Fig. 5.4(b), is taken in contact with the bottom
plate, unlike all the other neighbors, which are vertically taken at mid-gap. Indeed, this induces
a breakup of the left-right symmetry in our problem.

Now, as the curve of En=113
p in Fig. 5.5(b) makes clear, there is no local minimum of energy

at contact when the gap size is e/a = 1.42 < ex/a (and ϕ = 0.47). How can we explain the
formation of chains in this experiments? We suggest that one should consider that friction
plays an important role in the stabilization of the chains. Indeed, while the potential energy of
interaction does not show any minimum at contact, this position may be stable anyway thanks
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Figure 5.6 Potential energies of interaction, En=nv
p , for ϕ = 0.44 and e/a = 1.48, as in the

experiments of Chapter 6.

to friction. Therefore, instead of considering local and global minimum of energy, it may be more
relevant to consider the barrier of energy between the initial central position and the contact
position, which we call ∆En and define as

∆En = max
[
En=113

p (x > 0)
]
− En=113

p (x = 0), (5.2)

if En=113
p (x = xmax), with xmax the value of x at contact, is larger than the potential energy

at the central position En=113
p (x = 0); else, i.e., when En=113

p (x = xmax) < En=113
p (x = 0), the

particles attract each other and we consider ∆En as irrelevant. Although we have no final word
on the question, we suggest that ∆En may be the relevant energy scale to compare with kinetic
energy for understanding the chain formation process, as we discuss below.

Before this, let us study the effect of particle area fraction on the potential energies of in-
teraction. In Fig. 5.7, we show the profiles of En=113

p reduced by En=113
p (x = 0) for increasing

area fractions, ϕ, and gap sizes of e/a = 1.42, as in the current chapter [Fig. 5.7(a)], e/a = ex/a

[Fig. 5.7(b)], and e/a = 1.48, which corresponds to the experiments of Chapter 6 [Fig. 5.7(c)].
We find that at low density, typically ϕ = 0.2, the energy landscape looks very similar to the
pair potential; indeed then the effects from the neighbors are minimized. As we increase the
particle are fraction, the intensity of the magnetic pressure from the neighbors augments. Then,
the energy profile becomes more flat. Very interestingly, for all the gap values studied here,
there exists a value of ϕ for which the interaction become attractive, although at lower ϕ it was
repulsive. Then, there is no more energy barrier to overcome to go from the central position to
the contact position.

We make this clear by plotting, in Fig. 5.8, the values of energy barriers, ∆En, as a function
of the particle area fraction, ϕ, for the same three gap values. As could be qualitatively seen in
Fig. 5.7, we find that the energy barrier ∆En decreases with ϕ, and vanishes from a value of ϕ
proper to each gap value. Interestingly, for the experiments of this chapter, the mean kinetic
energy per particle at the transition is about Ec ∼ 6 × 10−10 J, and we find in Fig. 5.8(a) a
corresponding energy barrier, i.e., for ϕ = 0.47, of ∆En ∼ 2×10−9 J, which is about three times
higher but of the same order of magnitude. For the experiments of Chapter 6, for which ϕ ∼ 0.44,
we measure at the transition Ec ∼ 4×10−10 J, and we find in Fig. 5.8(c) ∆En ∼ 4×10−10 J too.
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Then, the energy barrier ∆En is found of the same order of magnitude or even almost equal to
the experimentally measured mean kinetic energy per particles at the transition to labyrinthine
phase.

To summarize, the energy barrier ∆En, which we defined for e < ex (as long as the potential
energy of interaction at contact is higher than at the central position), seems to be the relevant
energy scale to be compared to the kinetic energy, and to discuss the transition from a collision-
less state, like the crystalline state, to a phase with particles at contact, like the labyrinthine
phase. We conclude that a proper theoretical study is needed for capturing the complete picture
of the problem. Note that, in particular, considering vertical displacements in the trajectories
of the test particle and of the other particles would be more realistic.

As a final word on this chapter, and supporting our explaination that labyrinthine phases
can exist for gap size smaller than the critical value ex, we show in Fig. 5.9 the results of ex-
periments carried out for gap sizes ranging from e/a = 1.28 to e/a = 1.78, hence well below
and well above the critical gap, with the circular cell. The fraction of particles in chains, φ, is
plotted as a function of the magnetic field, B0, for the 6 gap values. We observe that, whatever
the gap size, we can always find a value of the applied magnetic field from which particles start
to self-organize into chains.
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Figure 5.7 Profiles of potential magnetic energy computed with nv = 113, En=113
p , reduced

by En=113
p (x = 0), as a function of the distance to the central position normalized by its

value at contact, x/xmax, for particle are fraction ϕ between 0.2 and 0.8, and for a gap size
of (a) e/a = 1.42 (as in the experiments of the current chapter; (b) e/a = 1/

√
5 + 1 (critical

gap size; and (c) e/a = 1.48 (as in the experiments of Chapter 6). Whatever the shape of the
potential at low ϕ, when ϕ is high enough, no more barrier exists between the central position
and the contact position; the two particles are attracted towards each other.
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Figure 5.8 Barrier of potential energy between the central position and the contact position,
∆En, as a function of the particle area fraction, ϕ, for B0 = 100G and for a gap size of
(a) e/a = 1.42; (b) e/a = 1/

√
5+ 1; and (c) e/a = 1.48. When the potential energy at contact

is larger than the potential energy at the central position, ∆En = max
[
En=113

p (x > 0)
]
−

En=113
p (x = 0); otherwise the particles attract each other and we consider ∆En as irrelevant.

The energy barrier ∆En decreases with ϕ, until it vanishes for ϕ high enough, namely ϕ =
0.7 (a), ϕ = 0.6 (b), and ϕ = 0.5 (c). The values of ∆En are found of the same order of
magnitude than the values of mean kinetic energy in the related experiments, at the transition
threshold, suggesting that ∆En is the relevant potential energy scale in the problem.
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Figure 5.9 Creating chains even at very low gap sizes. Fraction of particles in chains, φ, as a
function of B0 for gap sizes ranging from e = 1.28 a to e = 1.78 a, for ϕ ∼ 0.36, with the circular
cell. Even though the critical values of B0 at which the transition to the labyrinthine phase
starts, i.e., when φ > 0, increases as the gap size decreases, in all the experiments presented
here, it is possible to make particle self-organize into chains.
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Chapter abstract

Labyrinthine phases are disordered, metastable states. As such, we can expect them to de-
pend strongly on the processing pathway used to generate them, and to be unsteady states.
Yet, surprisingly, only very few studies have focused on the time evolution of labyrinthine
phases [103, 110], and most questions regarding this aspect remain unanswered. In this chap-
ter, we demonstrate that a “magnetic quench” can be applied to the granular liquid-like state
(mentioned in Chapter 4 and Chapter 5) to generate a highly disordered granular labyrinthine
phase. We show that the relaxation of the latter involves different processes at short and at
long times. We demonstrate that, at short times, free particles aggregate into mostly short,
unbranched chains, and we detect no major chain rearrangements. In contrast, we show that
at long times, nucleation continues much more slowly, and the dominant process is, for high
enough values of the magnetic field, the rearrangement and the merging of chains into large,
highly branched clusters; in other words, there is coarsening of the labyrinthine phase.

6.1 Introduction

Labyrinthine phases are disordered states: if in such phases a well-defined structure exists at
short range, it disappears at long range. In thermal systems, disordered states are typically
obtained by cooling a sample faster than nucleation can occur: then, particles do not have enough
time to organize into a crystal, and a disordered structure is obtained. The resulting states, called
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supercooled liquids, relax slowly through metastable states towards equilibrium: then, measured
properties change with time [112]. Moreover, they display anomalously high viscosities and
relaxation time scales, dynamical heterogeneities and caging effects. Analogous disordered states
can be obtained in colloidal systems, where density plays the role of temperature in microscopic
systems, that is, “supercooling” is then performed by abruptly increasing density [108]. In view
of this, it is reasonable to ask: Do labyrinthine phases, which are disordered and can be made
of microscopic constituents, colloids, or granular materials, display slow dynamics?

Surprisingly, if labyrinthine phases considered as steady states have been the subject of a large
number of studies both on continuous systems and on systems of particles (see the introduction
of Chapter 5), works devoted to the exploration of the time evolution of labyrinthine phases are
scarce.

In fact, for systems with short-range attraction and long-range repulsion, we are only aware
of two articles. Riemann et al. [110] obtained labyrinthine magnetic domain patterns in a
ferrimagnetic garnet film initially magnetized, then rapidly subjected to a demagnetizing field.
They characterized the dynamics of the relaxation of the pattern by means of a measure of the
pattern borderline curvature, and found that it relaxes as a stretched exponential Kohlrausch-
Williams-Watt law [113], which is a typical relaxation law for microscopically disordered systems
exhibiting a slow dynamics.

More recently, Haw [103] studied numerically a system of particles with short-range attraction
and long-range repulsion, using an algorithm of type molecular dynamics. The evolution of the
number of clusters with numerical steps, which he considers analogous to real time, displays a
slow logarithmic decay at long “times”. Interpreting this logarithmic coarsening as arising from
random walks of chains in the rough energy landscape created by their neighbors, he proposes
viewing the aging labyrinthine phase as a “glass of chains”.

6.2 Motivation

This suggests that relaxation occurs in labyrinthine phases in a way that may be analogous
to relaxation in glassy systems. However, a more complete exploration of the aging process,
based on the study of various relevant structural and dynamical quantities at both very short
and very long times is still lacking. One idea would be to use colloids, which form labyrinthine
phases very similar to those that we observe in our granular labyrinthine phase [106, 65], but this
would require extremely accurate control over the density and temperature over long time scales.
Moreover, quenching colloidal systems (i.e., increasing the density fast) in a well-controlled
manner is not easily done. Numerical simulations are confronted with the very rough nature
of the potential energy landscape in which labyrinthine phases live, which makes exploring
the long-time aging of such phases numerically too costly to be reliable, although it has been
attempted by Haw [103]. Our granular system appears to be well fitted to the task: using a
high-speed video camera for particle tracking, we can access particle positions and velocities,
and hence both structural and dynamical properties, at any time from very short to very long.
Most importantly, a crucial difference with colloidal systems is that thermal fluctuations are
negligible in granular systems, which makes them much more easy to manipulate.

In this chapter, we aim at, first, evaluating the impact of a strong quench on the nature of the
disorder in the resulting granular labyrinthine phase. Then, we will explore the time evolution
of the structural and dynamical features of the labyrinthine phase, from the first moment after
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the quench to very long times, by means of particle tracking. We will investigate separately each
time scale associated with a particular process.

This chapter logically follows the work presented in Chapter 5: then, we did not address
the question of the time evolution of the granular labyrinthine phase, which was relevant in
the range of parameters then used; now, we go beyond this simplified picture and consider the
granular labyrinthine phase more generally, as a disordered system which slowly relaxes.

6.3 A disordered system which slowly relaxes

In this section, we aim at finely characterizing the structure of the labyrinthine phases which
we observe in our magnetic granular system, like those described in the previous chapter. To do
this, we use both the pair correlation function, in real space, in order to estimate the range of
order and the homogeneity of the system; and the structure factor, in Fourier space, for verifying
the isotropy of the system. Moreover, we investigate how to tune the degree of disorder with
respect to labyrinthine phases, in terms of the order parameter φ which we defined in the
previous chapter as the fraction of particles in chains. Based on our conclusion on this point,
we generate a highly disordered labyrinthine phase and introduce the slow relaxation processes
that it undergoes from very short times, to very long times.

6.3.1 Spatial range of order, homogeneity and isotropy

One way to estimate the range of order in a system is via the pair correlation function, g(r), by
studying the way the amplitude of its maxima decays as a function of distance, r. If this ampli-
tude decreases exponentially towards 0 at large distances, the system is said to be disordered;
if the decay follows a power law, then the order is quasi-long-ranged; if the amplitude decreases
to a constant value larger than 1 at large distances, the order is long-ranged. Moreover, if the
system is homogeneous, the function g(r) converges to 1.

In the previous chapter, we plotted in Fig. 5.3(c) g(r) for multiple values of our control
parameter, ε, across the transition. For the system in the labyrinthine phase (i.e., in a state for
which the fraction of particles in chains φ ≈ 1), g(r) mostly exhibited two peaks (blue curve
in Fig. 5.3(c)): one at the distance separating two nearest neighbors in chains, which is smaller
than one particle diameter due to chain buckling and which we called xg, and a second one at
twice that distance, accounting for the second nearest neighbors. No other peak was visible.

Here, our goal is to significantly improve this characterization on the example of a typical
labyrinthine phase. Keeping in mind that labyrinthine phases are very robust metastable states,
as explained by Seul and collaborators [96], we cannot hope to have the system rearrange quickly
from one labyrinthine configuration to another. Instead –and this is the focus of Section 6.5
below– once formed, a labyrinthine phase slowly evolves across timescales, without any fast,
major reconfiguration. Consequently, improving the structural characterization of labyrinthine
phases requires accumulating measurements from a high number of experimental realizations
performed with identical parameters, rather than from a single experiment during a long time
(as was the case for studying the gas- and liquid-like states). This way, exploiting the variety of
particle initial positions and velocities, we probe various metastable states while using identical
experimental parameters (acceleration Γ, magnetic field B0, magnetic quench rate αq, aging
time τag, etc, as defined in Section 1.2.1). To achieve this, we perform several experiments for a
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typical set of parameters leading to a labyrinthine phase: 50 independent runs, with Γ ≈ 2 and
B0 = 212G (see Table 6.2), with the circular cell and a gap size e = 1.48 a.

The resulting pair correlation function, averaged over the 50 realizations, is plotted in
Fig. 6.1. The noise level is very low and four peaks clearly rise above it. The first peak
is centered on the first-neighbor horizontal distance r1/a ≡ 0.88, indicating the gap size of
e = a (1 +

√
1− r21/a

2) ≈ 1.48 a > ex ≈ 1.45 a (see Eq. 3.53 for the value of ex). The pair
magnetic potential is thus core-softened with a local minimum at contact that stabilizes the
particles aggregated into the buckled chains (see Chapter 3). Note that we use this gap size this
gap size, e = 1.48 a, with the circular cell, for all the experiments presented in this chapter. The
5 vertical grey lines in Fig. 6.1 mark the distance r1/a and its four first multiples 2r1/a, 3r1/a,
4r1/a and 5r1/a. Three secondary peaks of g(r) are visible (and better visualized in the inset
in log-scale) and match the values of the three first multiples of r1/a, indicating a significant
probability of finding linear chains a few particles long. However, the amplitude of these peaks
decreases quickly and the peaks are no more distinguishable from the noise around g(r) = 1 after
the third secondary peak. This shows that the spatial range of position-position correlations
does not exceed 4 particle diameters. Moreover, the values of g(r) are found higher in front
of the secondary peaks than behind them. This comes from two contributions: the curvature
of the chains, which makes same-chain nth-neighbor particles closer than the distance nr1/a,
and the particles of neighboring chains. The latter significantly account for, in particular, the
non-vanishing values of g(r) between r1/a and 2r1/a. Thus, the typical distance between two
chains can be estimated at about 1.5 a. Finally, the pair correlation function can be considered
flat with a value of 1 from r/a ≈ 4, implying that the system appears homogeneous beyond that
distance.

Let us remark that, even though labyrinthine phases in our system are long-range disordered
as are structural glasses, at short distances, they are strongly ordered; this is the signature of
the buckled chains, and in contrast to glasses which have the structure of a liquid.

Isotropy cannot be verified using the pair correlation function since it is an azimuthally aver-
aged measure whose only variable is the center-to-center distance. To explore the orientational
characteristics of our typical labyrinthine phases, we use the static structure factor, S(k), which
is the two-dimensional Fourier transform of the particle center positions,

S(k) =
⟨

1

Np

Np∑
j=1

Np∑
k=1

e−ik(rj−rk)
⟩

(6.1)

where k = kx ex + ky ey is the wavenumber in the horizontal plane, ri and rj are the positions
of particles of indices i and j, Np is the number of particles used in the computation, and
⟨·⟩ denotes an ensemble average. We compute S(k) using the same data set as for the pair
correlation function plotted in Fig. 6.1.

Our measurements of the static structure factor S(k) are presented in Fig. 6.2(a). An obvious
feature of this plot is that it is invariant by rotation, implying that this labyrinthine phase is
uniform in all directions of the plane (x, y), i.e., it is isotropic. For instance, if the particles
had been on a triangular lattice instead, that is, forming a crystal-like phase as in some of our
experiments in Chapter 4, S(k) would have six sharp maxima placed every π/3 on a circle (and
secondary peaks for larger wave vectors) due to the strong orientational order.

In our case, we can average S(k) over the angles to get the static structure factor, S(k),
where k = |k|, without loss of information. The high-amplitude ring on the two-dimensional plot
becomes a high-amplitude peak at ka ≈ 7.8 for S(k), as shown in Fig. 6.2(b). This peak is the
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Figure 6.1 Pair correlation function of a typical labyrinthine phase, obtained from averaging
over an ensemble of 50 experimental realizations with identical parameters (circular cell, gap
size e = 1.48 a, B0 = 212G and Γ ∼ 2; see Table 6.2 for other parameters). The first peak is at
r1/a = 0.88. The vertical grey lines are guides to the eye marking this value and its first four
multiples nr1/a, with n = 2, ..., 5. The horizontal dashed line at g(r) = 1 is also a guide to
the eye. Inset: same plot in vertical log-scale for better visualizing the secondary maxima. We
conclude that position-position correlations are negligible at distances larger than 4 particle
diameters.

signature of the nearest neighbors in chains, i.e., of the buckled pairs at contact. For decreasing
wavelengths, S(k) drops down to a lower plateau for ka = 4-6 (i.e., wavelengths of 1-1.6 a),
corresponding to both the second nearest neighbors in chains and to particles of neighboring
chains. Even at shorter wavelengths, S(k) further decreases towards zero. Structure is thus
clearly visible from the particle scale up to the second- or third- nearest neighbors in chains, but
then tends to disappear, as was observed above with the pair correlation function in Fig. 6.1.

The typical labyrinthine phase that we analyze here is therefore disordered, homogeneous and
isotropic. We argue that these results can be generally extended to the ensemble of labyrinthine
phases that we obtain with other parameters Γ (dimensionless acceleration), B0 (transverse
magnetic field), αq (magnetic quenching rate) and τag (post-quenching aging time), as long as
they present a structure of chains apparently disordered in orientation and position. However,
we do not perform systematic measurements like the one presented above (50 repeated runs),
given the significant experimental and computational times required to do so.

6.3.2 Enhancing the aging process

In this chapter, our goal is to study the temporal evolution, or aging, of the granular labyrinthine
phase, which is an unsteady, disordered state. A labyrinthine phase displaying a low probability
of particle rearrangements on very long time scales is obviously not experimentally convenient
to explore. Indeed, we are interested in generating a labyrinthine phase that is prone to evolving
significantly over time scales accessible in the laboratory. We need, thus, to generate a state
that is as disordered as possible with respect to the intermediate-time labyrinthine phase. This
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Figure 6.2 Static structure factor of a typical labyrinthine phase, obtained from averaging
over an ensemble of 50 experimental realizations with identical parameters (circular cell, gap
size e = 1.48 a, B0 = 212G and Γ ∼ 2; see Table 6.2 for other parameters). (a) Two-
dimensional static structure factor S(k). The system is isotropic since S(k) is invariant by
rotation. (a) Angularly averaged structure factor, S(k), with k = |k|. The ridge near ka = 8 is
the mark of the pairs at contact. Finite-size effects exclude wavelengths k such as ka < 2π

57 ≈ 0.1
(the field of view of the camera is 57 a× 57 a).

disorder can be measured by the fraction of particles in chains, φ, which we introduced Chapter 5
as an order parameter for the transition from a liquid-like (i.e., an “elastic” granular gas with
no dissipative collisions, defined in Chapter 4) to a labyrinthine phase. Note, however, that φ
could not be used to distinguish a parallel stripe phase from a disordered labyrinthine phase.

By analogy to a thermal quench in microscopic and colloidal systems, we achieve this goal by
quenching the magnetic granular medium from a liquid-like state into a point of the parameter
space where a labyrinthine phase is expected. Since ε ≡ Em/Ec is a control parameter for the
transition from liquid-like to labyrinthine, performing a quench in our system can be realized by
either decreasing fast agitation (by means of the dimensionless acceleration Γ) or by increasing
fast magnetic interactions (by means of the transverse magnetic field B0). With our experimental
setup, we are restricted to values of Γ within the same order of magnitude, but we can access
more than two orders of magnitude for B0. Hence, instead of thermal-like quenches, we choose
to perform magnetic quenches consisting of fast increases of the externally applied, vertical
magnetic field, whose strength is measured by αq ≡ dB/dt. Let us remark that increasing
pressure is also known to trigger glass formation [108]. In our system, an increase of B0 increases
also the pressure via the magnetic interactions between particles, as we explained in Section 3.3.3,
and thus triggers the transition to a labyrinthine phase.

The protocol we use to perform these quenching tests is the following (see general schematic
in Fig. 1.9). Mechanical agitation is fixed at Γ = 2 and remains unchanged for all experiments.
First, the magnetic field is set to the plateau value Bp = 85G during 30 s, and the system forms
a homogeneous liquid-like (“elastic”) state. Second, the magnetic field is increased from this
plateau up to B0 = 170G. Quenching rates αq ≡ dB/dt ranging from 10−1 G/s to 103 G/s are
tested. We repeat 10 times the experiment for each value of αq. We measure the fraction of
particles in chains, φ, less than 10−2 s after the magnetic field has reached its target value, B0,
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Figure 6.3 Magnetically quenching the system: Fraction of particles in chains just after
applying an increase of magnetic field of strength αq ≡ dB/dt from 85G up to B0 = 170G
(circular cell, gap size e = 1.48 a; see Table 6.2 for all parameters). Grey data points are raw
data (10 repeated runs for each value of αq), whose averaged values are the colored data points.

so as to probe the state of the system in its early stage. Note that the duration of the quench
itself, i.e., ∆B/αq (with ∆B = B0 − Bp), ranges from less than 0.1 s to more than 14min, and
during this time the system already rearranges.

Our results are presented in Fig. 6.3, which shows the fraction of particles in chains, φ, as a
function of the quenching parameter, αq. Note that the upper bound for αq, which is of about
103 G/s, was chosen to make sure that the coils provided a non-delayed, linear response to the
applied fast increase of electrical current (see Section 1.1.5). We find that when the quenching
is weak, that is, when the magnetic field is increased slowly, φ takes values close to 1. As
illustrated by the picture on the left of the graph, this corresponds to states in which almost all
particles are in chains, while a few ones remain unbounded and oscillate between neighboring
chains: with respect to φ, this is a very ordered state. As αq is increased, however, φ drops
down. Just after a sharp quench of 103 G/s, only one third of the particles are in chains, despite
the fact that the magnetic field is high enough for all (or nearly all) the particles to solidify
into a labyrinthine phase, as demonstrated with low values of αq. The picture to the right of
the graph shows a snapshot from one of the latter experiments, where most particles are free
to move, although a few pairs and triplets are visible. In terms of φ, strong quenches generate
very disordered states.

To conclude, the degree of order of the system, as measured by the labyrinthine order pa-
rameter φ and at very short times, can be adjusted via the magnetic quenching rate, αq, which
we use for driving the system from a liquid-like state into a labyrinthine phase, following an
idea comparable to the way thermal quenching is used to turn a liquid into a glass. The higher
αq, the farther from the preferred labyrinthine state is the system. Therefore, strong quenches
generate states which display dramatic changes in their structure and dynamics, both at short
and long time scales. For the rest of this chapter, we use the highest value of quench presented
here, namely αq = 103 G/s.
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6.3.3 Relaxation following a strong quench

From now on, we report on experiments probing the relaxation, or aging, of the system after a
strong quench at αq = 103 G/s is applied. Mechanical excitation is kept fixed with a dimension-
less acceleration Γ = 2, while the magnetic field reached at the end of the quench, B0, is fixed to
several different values between 105G and 212G. We choose these values to be from just above
the critical B0 for the transition from liquid-like to labyrinthine state for the current physical
and geometrical parameters (circular cell with gap size e = 1.48 a), namely about 95G, as shown
in Fig. 6.4 and further discussed below. The parameter against which we explore the structural
and dynamical changes in the system is the post-quenching aging time, which we denote τag and
simply call aging time. We defined it in Chapter 1 as:

τag = τ0 +
τrec
2
, (6.2)

where τ0 is the waiting time between the end of the magnetic quench and the start of the
recordings, and τrec is the duration of the recordings (see general schematic in Fig. 1.9).

In Fig. 6.4 we plot the fraction of particles in chains, φ, against the magnetic field, B0, for
several aging times ranging from about 10−2 s to 103 s. These curves characterize the transition
from a liquid-like to a labyrinthine phase similarly to the curve of φ vs. ε in Fig. 5.3(a),
and can be considered as its generalization for a quenched system, in which aging is relevant.
The transition here occurs around B0 = 95G. Non-vanishing values of φ below it are due to
temporarily colliding pairs counted as chains, which occurs when we do not check the stability of
the chains as explained in Section 2.2.1. Hence, this is a numerical artefact and φ should be zero
below the transition. Above the critical magnetic field, φ increases towards 1 with B0, but does
so with a strong dependence over the aging time: near the transition, the larger τag, the larger
the increase of φ for a given increment in B0. In other words, the transition to a labyrinthine
phase seems to go from continuous to discontinuous when the aging time tends towards infinity.
A question is then: Is this transition of first order? For now, we this as a perspective. Let us
point of thet even if it were indeed of first order, no real discontinuity could be observed in our
experiments due to the finite size of the system.

As a first approach of the aging process, we show in Fig. 6.5 and Fig. 6.6 virtual images of
the system after a quench at rate αq = 1.03 × 103 G/s, at increasing aging times and for an
applied magnetic field B0 = 127G. These images are all from the same experiment, except for
Fig. 6.6(d). The free particles are represented by the grey disks, and the particles “solidified”
in chains, by the orange disks. The diameter of these disks is the one of a real particle, a.

The time evolution of the system at aging times τag smaller than 4 × 10−1 s is represented
in Fig. 6.5. Shortly after the quench, at τag = 7.7× 10−3 s, the greater part of the particles are
free, and a few short chains are already formed, as shown in Fig. 6.5(a). As time passes, these
chains do not break but grow, as shown in Fig. 6.5(b, c, d). At these short times, we observe
the nucleation of free particle into chains, homogeneously across the system.

At times longer than 5× 10−1 s, most particles are part of chains, as can be seen in Fig. 6.6.
The particles that are free at τag = 5.1 × 10−1 s [Fig. 6.6(a)] progressively join chains, and at
very long times, just a few of them remain free, as visible in Fig. 6.6(d). At the same time,
the morphology of the labyrinthine phase evolves from an ensemble of unbranched chains to a
system of longer, more branched chains. Hence, the relaxation of the labyrinthine phase at long
times is related to coarsening.

For a more systematic approach to the aging process of the granular labyrinthine phases,
let us consider the order parameter φ and the mean kinetic energy per particle, Ec, over aging
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Figure 6.4 Transition from liquid-like to labyrinthine states as measured by the fraction of
particles in chains, φ, for various aging times, τag. The transition occurs around B0 = 95G.
For B0 < 95G, φ ∼ 0 since there are no stable chain. For B0 > 95G, φ strongly depends on
τag, which shows the evolution of the labyrinthine phase in time. The transition seems to go
from continuous at short aging times, to discontinuous at long aging times.

times ranging from 10−3 s to 104 s. We plot φ and Ec against τag and for various values of
B0 in Fig. 6.7(a, b). These two observables provide a good picture of the structural and the
dynamical states of the system. Note that travelling along an imaginary vertical line at a given
B0 in Fig. 6.4, from bottom to top, means travelling in aging time, and hence corresponds to
following the curve of the corresponding B0 in Fig.6.7(a) from left to right.

All the curves describing φ (respectively, Ec) have similar shapes: they display a plateau
at very short times, then monotonically increase (respectively, decrease) with an inflexion point
at intermediate times, and tend towards a limit value at long times. It clearly appears that
the evolutions of φ and Ec are closely related, even though they remain distinguishable. This
can be qualitatively explained as follows. When φ increases, by definition the number of free
particles decreases. Moreover, these mobile particles are those who mostly contribute to Ec,
the mean kinetic energy per particle, since the particles in chains are almost “frozen”, i.e.,
their displacements are extremely reduced compared to those of the free particles. Indeed, we
recall that chains are buckled between the top and bottom plate and are almost static in the
cell reference frame, thus injection of mechanical energy to the particles that compose them is
highly inefficient. The velocity distribution functions (not shown here) also clearly display the
coexistence of both mobile and almost immobile particles. To conclude, when the population of
free particles drops down (i.e., φ rises), the mean agitation in the system (i.e., Ec) does so too.

At short times, we note that φ does not equal zero for any of the magnetic field values used
here, reflecting the fact that at the start of the recordings, some chains are already formed. The
values of the initial plateaus of φ increase with B0 (i.e., more chains are formed for higher B0),
and the same trend seems to qualitatively apply to the initial plateaus of Ec, although error bars
are much larger. For longer times, kinetic energy measurements do order according to magnetic
field values as φ does: the higher B0, the higher φ and the lower Ec.
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In the range of long aging times, the respective limit values of φ clearly indicate different limit
states: for the two lower values of B0, namely 105G and 112G, the fraction of particles in chains
saturates below 1, which implies that some particles remain free between the chains constituting
the rest of the system, although for all higher values of B0, φ converges towards 1 and the whole
system is “solidified”. In the following, we refer to the former type of experiments as type NC
experiments (for “non-converging to φ = 1”, i.e., for which there is phase coexistence in the
limit τ → ∞) and the latter as type C experiments (for “converging to φ = 1”). Moreover,
a specific magnetic field value emerges, B0 = 127G, which strictly speaking belongs to type
C experiments, but for which φ converges to 1 in a time significantly larger than for other
experiments. Hence in the following, we refer to this ensemble of experiments with B0 = 127G
as the limit case.

Finally, it appears that the system structure and dynamics behave in significantly different
ways at short and long time scales, the inflection points of the curves marking a transition. At
short aging times, the population of particles integrated in chains grows fast and the agitation
drops simultaneously; this is what we focus on in the next section. Then, in Section 6.5, we will
investigate the much slower relaxation that occurs at long times.

As a final remark, we would like to indicate that although experiments were easily re-
producible when performed within short time intervals, some discrepancies appeared for data
sets typically separated by a week, which we do not understand. For instance, the curve of
B0 = 112G clearly displays a discontinuity between τag = 3 × 10−1 s and 4 × 10−1 s, which
probably does not have any physical significance but in fact corresponds to, respectively, the
final experiments of one data set, and the first experiments of another one. The error bars
correspond to the standard deviation from ten repeated runs performed successively.
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(a) (b)

(c) (d)

Figure 6.5 Short-time response of the magnetic granular gas to a magnetic quench at rate
αq = 1.03 × 103 G.s−1, for a target magnetic field B0 = 127G and an acceleration Γ = 2.04.
The four images are from the same experiment and are taken at successive aging times. These
times are smaller than the time at which the curve of φ in Fig. 6.7 shows an inflection point,
namely near 4 × 10−1 s. (a) τag = 7.7 × 10−3 s, (b) τag = 3.7 × 10−2 s, (c) τag = 1.0 × 10−1 s,
and (d) τag = 2.5 × 10−1 s. Grey disks represent free particles, while orange disks show
particles “solidified” in chains. The diameter of the disks is the real particle diameter, a.
Clusters are detected by an algorithm mentioned in Section 2.2.1 and further examined in
Section 6.4.1. At short times, free particles nucleate into mostly linear chains, homogeneously
across the system.
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(a) (b)

(c) (d)

Figure 6.6 Long-time relaxation of the granular labyrinthine phase, after a magnetic quench
at rate αq = 1.03 × 103 G.s−1, for a target magnetic field B0 = 127G and an acceleration
Γ = 2.04. The three first images are from the same experiment and are taken at successive
aging times. The fourth image is from another set of experiments. The aging times are larger
than the time at which the curve of φ in Fig. 6.7 shows an inflection point, namely near
4 × 10−1 s. (a) τag = 5.1 × 10−1 s, (b) τag = 2.0 s, (c) τag = 10 s, and (d) τag = 2.3 × 103 s.
Grey disks represent free particles, while orange disks show particles “solidified” in chains.
The diameter of the disks is the real particle diameter, a. At long times, free particles keep
nucleating into chains, and the chains rearrange and merge, leading to a global coarsening of
the labyrinthine phase.
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Figure 6.7 Relaxation of a labyrinthine phase. (a) Fraction of particles in chains, φ, and
(b) kinetic energy per particle, Ec, vs. aging time, τag, after a strong quench (αq = 103 G/s),
for different target values of the magnetic field B0. The grey horizontal lines in (a) indicate
φ = 0 (no chains) and φ = 1 (only chains). For aging times τag < 103 s, every data point is
obtained from averaging over ten repeated runs. Error bars represent the standard deviation
of these repeated runs. For τag ≥ 103 s, only one experiment was performed for each value of
the aging time.
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6.4 Steady nucleation at short times

Right after the magnetic quench, the fraction of particles in chains is very low compared to its
long time values, as shown in Fig. 6.7(a), and particles are very agitated on average, as shown
in Fig. 6.7(b). Such a state does not correspond to a preferred configuration and only exists as
a result of the magnetic quench. Like a thermally quenched microscopic system, the granular
system relaxes as it escapes from its quenched configurations towards more favored states, first
quickly, and then more slowly. In this section we focus on the short time limit, that is, the range
of times during which the fraction of particles in chains, φ, follows an accelerated increase, and
which corresponds to an accelerated decrease of the mean kinetic energy per particle, Ec. The
inflection points of the curves can be considered as the upper short time limit, for now, but we
will give below a more quantitative estimate of this limit.

At these early times, free particles massively aggregate to form chains or to extend existing
ones. Here we ask: Can we find universal laws describing the time evolution of, respectively, φ
and Ec for all values of the magnetic field? What are the quantitative changes generated by the
free particles’ aggregation in terms of chain quantity and morphology (size, shape, etc.)?

Note that the answers to these questions, which we ask in the context of a fixed magnetic
field B0, should also be qualitatively valid concerning the aggregation of particles into chains
during the increase of the magnetic field from B1 to B0.

6.4.1 Structure

Let us first focus on the structural changes affecting the system. We characterize them by means
of the time evolution of the fraction of particles in chains, φ, which measures how advanced the
state of the system is in the transition from liquid-like to the labyrinthine phase; but we also
use some specific quantities giving a good picture of the morphology of the labyrinthine phase
formed and of the chains that compose it, such as the total number of chains, the mean number
of particles per chain, the distribution of sizes of the chains, and so on.

Fraction of particles in chains

In Section 6.3.3, we mentioned the visible similarity in general shape between the curves of
the fraction of particles in chains, φ, for the values of magnetic field, B0, used in the present
experiments dedicated to the aging of the labyrinthine phase (from B0 = 105G to 212G). Here
we go further and demonstrate that there exists a universal law (“universal” here meaning “valid
for any B0”) describing the time evolution of φ at short times.

During short times, φ increases from its initial plateau value up to an inflection point. The
plateau value depends on B0 and is defined by

φ0(B0) ≡ lim
τag→0

φ(B0; τag). (6.3)

Whatever the value of B0, φ0 is always non-vanishing: chains already exist for τag → 0. In-
deed, as pointed out above, the magnetic quenching itself takes a finite time, namely (B0 −Bp)/αq

(with Bp = 85G the magnetic field plateau value and B0 ∈ [105; 212]G the magnetic field target
value, as defined in Section 1.2.1), and during this time particles start to aggregate. Although
the underlying process occurring during magnetic quenching is certainly interesting and deserves
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further attention, we will not tackle it in this thesis and will focus instead on the aggregation
process occurring for τag > 0, that is, once the magnetic field has reached its target value, B0.

In practice, we take the values of φ0(B0) as the average of φ(B0) between τag = 1 × 10−3 s
and τag = 4× 10−3 s. We estimate that this arbitrary choice correctly represents the very short
time trends of the curves.

For the purpose of comparing the curves of φ at short aging times and for different magnetic
field values, it is convenient to define a reduced fraction of particles in chains, φn, which equals 0
in the limit τag → 0 for all B0:

φn ≡ φ− φ0

1− φ0
. (6.4)

Now, let us turn to searching for a universal behavior of φ(B0) at short times. As specified in
Section 6.3, the gap size used for the experiments of this chapter is e ≈ 1.48 a and corresponds
to a long-distance repulsive and short-distance attractive pair potential, as we discussed in
particular in Section 5.5. If this potential is modified by the presence of other particles which
acts as a magnetic pressure, as defined in Section 3.3.3, its qualitative shape remains unchanged.
In particular, the test particle must overcome a potential energy barrier for going from being
free, to being part of a buckled chain.

In order to build a simple phenomenological model, we consider that particles can be either
in the state “free” or in the state “chain”. We assume that their kinetic energy enables them
to jump over the potential energy barrier, that is, to switch from one state to the other, if it is
large enough. Based on these assumptions, the time evolution of the probability for a particle to
be part of a chain, P chain, is the opposite of the time evolution of the probability for a particle
to be free, P free, and it is given by:

dP chain

dτag
=Wfree→chain P

free −Wchain→free P
chain, (6.5)

where Wfree→chain and Wchain→free are, respectively, the probability that a particle become part
of a chain when it was free, and the probability that a particle become free when it was in a
chain, in the long time limit.

It is important to note that friction probably plays an important role in stabilizing the
chains, as mentioned in Section 5.5. Indeed, given that chains are buckled between the lid
and the bottom plate, particle-particle, particle-lid and particle-bottom surface friction effects
should not be neglected. Qualitatively, friction probably acts as if the short-distance attractive
potential well was much deeper, making it harder for a trapped particle to escape. Additionally,
as mentioned previously, particles inside buckled chains are very inefficiently provided energy
by the cell vibration since they are immobile in the cell reference frame, and as a consequence,
their kinetic energy is very low. Finally, the amount of energy required for particles trapped
at contact to escape and become free again is most probably much greater than their kinetic
energy in the “chain” state. This idea is supported by the experimental observation that chains
of particles, once formed, almost never break apart. Hence, it seems relevant to consider the
nucleation of free particles in chains as an irreversible process, i.e., we estimate relevant to
assume Wchain→free = 0. Additionally using the relation P free = 1−P chain, and the fact that the
probability that a particle is part of a chain equals the measured fraction of particles in chains,
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i.e., P chain = φ, we can rewrite Eq. 6.5 as:

dφ
dτag

=Wfree→chain (1− φ). (6.6)

The probability Wfree→chain is related to the ratio of the height of the potential energy barrier
between the state “free” and the contact position, to the kinetic energy of the free particles.
It certainly depends on the applied magnetic field B0, and also possibly presents a dependence
over time arising from geometrical rearrangements of the particles in the system. For now, we
assume that Wfree→chain varies sufficiently slowly with the aging time so that we can consider it
as time-invariant in the range of τag considered in this section. Therefore, the solution of Eq. 6.6
at short times is an exponential with a characteristic time

τ cag(B0) ≡W−1
free→chain(B0), (6.7)

which writes

φ(τag;B0) = 1− (1− φ0) exp
(
−
τag
τ cag

)
, (6.8)

where φ0 is the short-time limit of φ defined in Eq. 6.3.
Note that the characteristic time τ cag is the typical time for free particles to jump over the

potential energy barrier and go from the state “free” to the state “chain”. As such, we call it
characteristic time of nucleation.

Now re-writing Eq. 6.8 for the reduced fraction of particles in chains, φn, we have at short
times:

φn(τag) = 1− exp
(
−
τag
τ cag

)
. (6.9)

In Fig. 6.8(a), we show φn as a function of the aging time, τag, along with the best fits of φn

by Eq. 6.9. We obtain the characteristic nucleation times, τ cag(B0), shown in the inset. Note that
the quality of the fits and the resulting error bars are directly related to the arbitrary choice of the
range of τag used for performing the fits. The ones we used are reported in Table 6.1, along with
the values obtained for τ cag. In particular, for B0 = 112G (blue up-pointing triangles in Fig. 6.8),
we only used the time preceding the gap between the two sets of data, i.e., τag < 4× 10−1 s.

As shown in Fig. 6.8(a)-(inset), we find that τ cag decreases faster than exponentially with B0.
It may be counterintuitive that nucleation is accelerated by higher magnetic field, since increasing
the magnetic field decreases particle agitation, as shown in Fig. 6.7(b), and increases the height
of the pair potential energy barrier. However, increasing B0 also increases the magnetic pressure
exerted by the neighboring particles on the test particle, which in turn decreases the height of
the real (and not pair) potential energy barrier, hence justifying the decrease of τ cag with B0.
Note that the uncertainty on our estimates of τ cag dramatically increases with B0. This comes
from the dispersion in the raw data for φ, which is much smaller for the three lower values of
B0 than for the others, as attested by the error bars in Fig. 6.7(a).

Each characteristic nucleation time τ cag(B0) is a relevant time scale for the set of experiments
performed with the magnetic field B0. Indeed, by rescaling the aging time, τag, by τ cag(B0) for
each set of experiments, we make all curves of φn(B0) satisfyingly collapse on a master curve,
as shown in Fig. 6.8(b). A good agreement with the exponential fit of Eq. 6.9 (thick black line
in Fig. 6.8(b)) is obtained for times τag/τ cag ≲ 5 × 10−1, except for B0 = 105G (blue circles),
which departs from the master curve at earlier times. For the experiments with B0 = 105G, the
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fraction of free particles that aggregate is so low that the nucleation process relevant at short
times is shortened compared with the other experiments.

The dispersion of the data points with respect to the exponential fit is made more clear in
the inset in Fig. 6.8(b), which represents the same measures as the main plot but in log-log
scale. This confirms that dispersion seems acceptable for τag/τ cag ≲ 5× 10−1.

At longer aging times, however, all curves separate from the exponential fit and increase
much more slowly towards 1. This implies that in this time range, the assumption of a non-time-
dependent characteristic nucleation time, which is what we assumed above to obtain Eq. 6.9,
breaks down: τ cag then not only depends on B0, but also on τag. In other words, if the nucleation
process can be considered as steady at times τag/τ cag ≲ 5× 10−1, it becomes unsteady at longer
times. This enables us to quantitatively define the upper limit of the short times as being the
dimensionless time τag/τ cag = 5 × 10−1. Beyond that time, i.e., at long times, the greater part
of the particles are part of chains, the dynamics slows down and the processes that are then
relevant clearly differ from steady nucleation; this is the focus of Section 6.5.

Morphology of the chains

At short times, the labyrinthine phase sets up from a state with a significant fraction of free
particles, which progressively nucleate into chains [Fig. 6.7(a)]. In the previous section, we
identified the characteristic nucleation times, τ cag(B0), which indicate the time at which about
two thirds of the particles which were free in the limit τag → 0 belong to the labyrinthine phase
[Fig. 6.8(a)-(inset)]. Now we ask: What is the morphology of the chains as they form during
this nucleation process? Are they short or extended? Are they straight or bent? Do they have
branching points?

To answer these questions, we designed an algorithm identifying independently every particle
in every chain, so that we can measure a variety of their morphological properties. Aiming at
obtaining statistics with as little bias as possible, we exclude from our measurements the chains
intersecting with at least one of the boundaries of the region of interest, because information
about such chains is irreversibly lost. Moreover, to not exclude them would artificially increase
the shortest chain population, with no certainty that they are representative of that population.
Of course, such a method has a related drawback: if chains become long enough so that the
number of excluded chains is not negligible compared with the number of those accepted by the
algorithm, then statistics become significantly biased for the long chains.

In order to evaluate the validity of our method, we measure the total number of particles
accepted by the algorithm, Nall, which is the sum of both free and in-chain particles, as shown
in Fig. 6.9. Since, generally, chains grow while the labyrinthine phase sets up, Nall is expected
to follow a decreasing trend. For now, we focus only on the part of the curves at short times,
i.e., on dimensionless times τag/τ cag < 5 × 10−1. As Fig. 6.9(a) shows for type NC experiments
(i.e., experiments for which “solidification” is not complete even at long times) and Fig. 6.9(b)

B0 (G) 105 112 127 150 170 192 212
τag

i (s) 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−2 1× 10−3 1× 10−3

τag
f (s) 8× 10−1 4× 10−1 6× 10−1 9× 10−2 7× 10−2 1× 10−1 8× 10−2

τ cag (s) 4.5 2.0 6.5×10−1 2.7×10−1 2.0×10−1 1.6×10−1 1.2×10−1

Table 6.1 Lower and upper aging time boundaries used for performing the exponential fits of
φn given by Eq. 6.9 and plotted in Fig. 6.8, τ iag and τfag; and resulting characteristic nucleation
times, τ cag.
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Figure 6.8 Reduced fraction of particles in chains, φn, defined in Eq. 6.4, and characteristic
nucleation times τ cag(B0). (a) φn as a function of τag. The full lines are fits from Eq. 6.9,
which provide the characteristic nucleation times τ cag(B0) (plotted in inset against B0). (b)
φn as a function of the dimensionless aging time, τag/τ

c
ag. For τag/τ

c
ag ≲ 5 × 10−1, all curves

collapse on a master curve which is well fitted by the exponential defined in Eq. 6.9. This is
the steady nucleation process. For τag/τ

c
ag ≳ 5 × 10−1, the characteristic nucleation times are

time-dependent and the exponential fit is irrelevant. Inset: same data plotted in log-log scale.
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Figure 6.9 Total number of particles, Nall, i.e., number of free particles plus number of
particles in chains, accepted by the algorithm analyzing the chains, for (a) experiments of type
NC, i.e., experiments for which “solidification” is not complete even at long times; and for (b)
examples of experiments of type C, i.e., experiments for which “solidification” is complete at
long times. The vertical black dashed line in (b) indicates the limit of validity of the algorithm
(see Section 6.5) past which Nall drops down anomalously; this is a numerical artefact.

shows for type C experiments (i.e., experiments for which “solidification” is complete at long
times), Nall is almost constant at short times whatever the value of B0. Note that the limit case
(i.e., the set of experiments with B0 = 127G and for which “solidification” takes the longest
time) appears on both plots in Fig. 6.9 (and in the following figures) because, as we will see, it
shares features of both type NC and type C experiments. To conclude, the algorithm does not
seem to exclude an excessive number of particles at short times. This observation clearly does
not hold at long times anymore, as we will discuss in the next section.

Let us now focus on the morphological characteristics of the chains constituting the labyrinthine
phase which forms at short times. The mean number of chains accepted by the algorithm, which
we denote Nc, provides a general picture of the state. We are also interested in the mean number
of particles per chain, which we call here mean chain size, nc, mean chain linear extension, or
mean chain length, λc, and mean fraction of particles in a chain with 3 neighbors, or mean chain
connectivity, κ3.

More precisely, Nc, nc, λc and κ3 are averaged over a few frames and over experimental
realizations, and additionally, nc and λc are averaged over the clusters:

Nc =
⟨
N t

c

⟩
(6.10)

nc =

⟨
1

N t
c

Nt
c∑

i=1

n1c(i)

⟩
(6.11)

λc =

⟨
1

N t
c

Nt
c∑

i=1

λ1p(i)

⟩
(6.12)

κ3 =

⟨
N t

3∑Nt
c

i=1 n
1
c(i)

⟩
(6.13)

where ⟨·⟩ denotes the average over a few frames and over repeated experiments, N t
c is the number

of chains at time t, n1c(i) [resp., λ1c(i)] is the number of particles (the longest distance between
two particles) in the chain of index i at time t, and N t

3 is the number of particles with three
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Figure 6.10 Virtual representation of a non-straight, branched chain with indication of the
longest distance between two particles in this chain, λ1c . All chains are buckled between the
cell lid and the bottom plate. Here, particles in contact with the bottom plate are represented
in blue, while those in contact with the cell lid, in red. The mean chain length, λc, is defined
by Eq. 6.12 as the average of λ1c over the ensemble of chains at a given time, over a very short
time window, and over repeated experiments.

neighbors at time t. Note that
∑Nt

c
i=1 n

1
c(i) is the total number of particles in chains at time t.

We illustrate the calculation of λ1c for a random chain in Fig. 6.10.

On Fig. 6.11 we represent Nc, nc, λc and κ3 for experiments of type NC (left column) and for
experiments of type C (right column). The limit case appears in both columns. As for Fig. 6.9,
we focus for now on the short times, i.e., τag/τ cag < 5× 10−1.

In this range of time, the mean number of clusters, Nc, displays trends similar to those of φ
[see Fig. 6.7(a)] for both type NC [Fig. 6.11(a)] and type C [Fig. 6.11(b)] experiments: plateaus
at τag → 0 are followed by increases, whose respective values and rates are ordered according to
B0. Therefore, φ and Nc are directly related, which implies that mostly short chains grow at
short times. If this were not the case, that is, if long chains prevailed, the increases of Nc would
be much slowed down compared to that of φ.

The time evolution of the mean cluster size, nc, provides insight on the kinetics of the nucle-
ation process. As shown in Fig. 6.11(c), for type NC experiments as well as for the limit case,
increases in nc occur from a common plateau at nc = 2, simultaneously at dimensionless time
τag/τ cag ∼ 10−2, and with a very similar increase rate. In contrast, in type C experiments, nc
curves start from slightly higher plateaus and increase all the more slowly as B0 is increased, as
shown in Fig. 6.11(d). Note that the values of the plateaus at τag → 0, ranging from nc = 2 to
nc = 3, suggest that pairs are initially the dominant population in type NC experiments, but
that chains are already longer for type C experiments. Moreover, it is remarkable that, below
the limit case B0 = 127G, chain growth is simultaneous whatever B0, while for higher magnetic
fields, it is all the more delayed as B0 is increased.

These observations are echoed by our results on the mean chain length, λc, which measures
the largest extension of the chains, as defined in Eq. 6.12 and illustrated in Fig. 6.10. The
dimensionless chain length λc/a and chain size nc equal each other but for a constant +1 when
chains are composed of aligned particles. For chains that are curved or branched, λc grows more
slowly than nc. In type NC experiments, as shown in Fig. 6.11(e), λc qualitatively follows the
trend drawn by nc. But they differ quantitatively: when nc increases from 2 to 4 (during the
short times), λc/a only increases from 1 to 2, which reveals that the chains being formed are
either branched, or curved, or both. For type C experiments, the increases of λc are too small
for us to draw a conclusion, as shown in Fig. 6.11(f).

We measure the quantity of branching using of κ3, the chain connectivity. Let us recall that
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κ3 is the ratio of the number of particles having 3 neighbors to the total number of particles
in chains, as defined in Eq. 6.13. Again, the two types of experiments are different from each
other: as shown in Fig. 6.11(g), connectivity sharply increases for type NC experiments from 0,
simultaneously at a time of about τag/τ cag = 10−1 and past the short time limit, while for exper-
iments of type C, branching essentially does not occur at short times, as shown in Fig. 6.11(h).
Hence, at short times, connectivity either increases simultaneously and sharply (B0 below the
limit case), or it remains zero (B0 larger than the limit case).

In a nutshell, at short times: first, the total number of chains, Nall, increases in response
to the increase of φ, suggesting that mostly short chains are formed. This is confirmed by the
slowly increasing mean chain size, nc, whatever B0; second, for experiments of type NC and for
the limit case, chains grow simultaneously and at similar rates, which occurs in parallel with
a strong branching; third, in experiments of type C, chains are initially larger but they grow
slowly and at a decreasing rate as B0 increases, and they are essentially not branched.

At this stage, it is tempting to go beyond the general picture given by cluster-averaged
quantities such as nc or λc and have a look at the distributions of the measures averaged to
produced them, like the individual numbers of particles in a chain, n1c , or the individual chain
lengths, λ1c . By doing so, we can estimate the exchange fluxes between the different populations
of sizes of chains. The mean number of particles per chain, nc, provides the most straightforward
piece of information for characterizing the chains: therefore we will analyze nc instead of λc.
We now investigate the time evolution of the probabilities of finding n-particle-long chains (with
n = n1c ≥ 2) among all the chains, which we simply call populations of n-particle-long chains.
Note that these populations are “relative” to the others, and their values are between 0 and 1.

In Fig. 6.12 are plotted the populations of 2-, 3-, 4-, 5- and more-than-5-particle-long chains
(respectively, from top to bottom). As in Fig. 6.11, the left column is dedicated to type NC
experiments, and the right column to type C experiments. We observe, again, a marked distinc-
tion between the two types.

For type NC experiments (limit case B0 = 127G included), right after the magnetic quench,
the population of chains is almost solely composed of pairs [Fig. 6.12(a)]. This population then
decreases and approaches extinction (10% of the total) when τag/τ cag = 5×10−1. Simultaneously,
longer chains replace them, among which trimers are by far the most represented [Fig. 6.12(c)]:
more than 60% of all chains are trimers at the end of short times. The population of 4-particle-
long chains starts growing shortly after that of trimers, but the amplitude of this increase is
quite small [Fig. 6.12(e)]. In contrast, the population of 5-particle-long chains grows after an
even longer time delay at a rate which apparently does not depend on B0, but whose maximum
does increase with B0. The longer chains grow from an even longer time (τag/τ cag ∼ 10−1) and
as such, become non-zero only at the very end of the short times [Fig. 6.12(i)].

Experiments of type C (limit case B0 = 127G excluded) display much different initial com-
position and time evolution of their populations. Indeed, for τag → 0, pairs only account for
half of the chains [Fig. 6.12(b)], trimers for one third [Fig. 6.12(d)] and 4- and 5-particle-long
chains [Fig. 6.12(f, h)] for the rest. As for type NC experiments, longer chains do not exist at
very short times [Fig. 6.12(j)]. However, in contrast with experiments of type NC, here there
is no abrupt change of behavior in any of these populations: the population of pairs decreases
steadily and all the more slowly as B0 increases, the population of trimers is roughly stable,
the population of 4-particle-long chains very slowly increases, the population of 5-particle-long
chains increases steadily but all the more slowly as B0 increases, and the longer chain population
remain negligible (below 5%).

Finally, at short times and for both types of experiments, we observe, as suggested by the
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Figure 6.11 Chain morphology characterization for type NC experiments (left column) and
for type C experiments (right column). (a, b) Number of chains accepted by the algorithm, Nc;
(c, d) Mean number of particles per chain, or mean chain size, nc; (e, f) Mean nondimensional
chain linear extension, or mean nondimensional chain length, λc/a; (g, h) Mean fraction of
particles in a chain with three neighbors, or mean chain connectivity, κ3. The vertical black
dashed line in (b, d, f, h) indicates the limit of validity of the algorithm, as defined from
Fig. 6.9.
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Figure 6.12 Probability, or relative population, of n-particle-long chains (n = n1c > 2) for
type NC experiments (left column) and type C experiments (right column). (a, b) Population of
pairs; (c, d) Population of trimers; (e, f) Population of 4-particle-long chains; (g, h) Population
of 5-particle-long chains; (i, j) Population of more-than-5-particle-long chains. The vertical
black dashed line in (b, d, f, h) indicates the limit of validity of the algorithm, as defined from
Fig. 6.9.
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measures of Nc, nc and λc in Fig. 6.11, that the most represented populations of chains are those
of pairs and trimers. For type NC experiments (limit case included), the growth of chains is
hierarchical: pairs and free particles associate to become trimers, which themselves grow a short
time afterwards into 4-particle-long chains, which later form 5-particle-long chains, and so on.
The time at which trimers start to develop, namely τag/τ cag ∼ 10−2, corresponds to the start
of the increase of nc and λc. Moreover, the sharp increase of more-than-5-particle-long chains
occurs simultaneously with the increase of κ3, which reveals the branched nature of these long
chains. For type C experiments (limit case excluded), hierarchical growth is less obvious since
exchanges between the different populations are not clear. However, the observed slowing down
of the decrease (resp., increase) of the population of pairs (of 5-particle-long chains) with B0,
is representative of the slowing down of the growth of nc and λ with B0. As a final note, it is
remarkable that the growing and branching rates evolve at short times in the same way as the
characteristic time of nucleation, τ cag, i.e., they decrease with B0, which means that if a higher
magnetic field favors quick short chain nucleation, it also slows down the development of these
chains into larger, branched clusters.

6.4.2 Dynamics

Let us now focus on the dynamical aspects of steady nucleation, at short times. We consider,
first, the mean kinetic energy of the particles, and then the mean square displacement of the
particles. These two quantities are averaged, in particular, over the ensemble of particles present
on each frame, which means that the contributions from free and in-chain particles are not
distinguished.

Mean kinetic energy per particle

In Fig. 6.7, we plotted the mean kinetic energy per particle, Ec, as a function of the aging time,
τag. We observed that the general shape of the curves of Ec is similar to the one of the curves
of φ. In fact, we can quantitatively relate Ec and φ from the idea mentioned in Section 6.3.3,
that because particles in the buckled chains are mostly immobile in the cell reference frame, the
greater contribution to Ec comes from the free particles. Let us denote E1

c (i) the amount of
kinetic energy carried by the single particle of index i. This quantity depends a priori on each
particle and on time.

In order to evaluate how E1
c (i) depends on the particle, let us go back to Chapter 4. We

have shown there that, from a high enough magnetic field, the mean kinetic energy of the free
particles decreases with B0, B0 being then a measure of the confinement strength [see Fig. 2(a) in
our EPL article [1], for B0 > 80G]; hence E1

c (i) decreases with the confinement strength. Now,
for a fixed magnetic field, confinement decreases when the mean distance between particles
increases. In the present experiments, the use of a plateau of magnetic field at Bp = 85G before
the magnetic quench, as explained in Section 1.2.1, ensures that free particles all have similar
nearest-neighbor distances, at least at short times. Consequently, we can consider that all free
particles carry the same amount of kinetic energy, which we simply denote E1

c .
Moreover, as shown in Fig. 6.13, the mean distance between free particles and their neighbors,

which is a measure of their confinement, remains essentially unchanged before τag/τ cag = 5×10−1.
During short times, the confinement of free particles can be considered fixed, and thus it is
relevant to take E1

c as fixed too.
By denoting Ns(τag) the number of free particles at aging time τag, the mean kinetic energy

then can be expressed as
Ec ≈ Ns(τag)E

1
c , (6.14)
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Figure 6.13 Mean distance between a free particle and its neighbors, ⟨ds⟩, as measured from
Delaunay tesselation, as a function of the dimensionless aging time τag/τ

c
ag. This is a measure

of the confinement of the free particles. At short times, i.e., τag/τ
c
ag < 5 × 10−1, confinement

is approximately constant, but at long times, i.e., τag/τ
c
ag > 5× 10−1, it decreases.

where Ns = NR
all (1 − φ), NR

all being the real total number of particles (to distinguish from the
total number of particles in the algorithm, Nall, plotted on Fig. 6.9). Using the expression for φ
given in Eq. 6.8 therefore yields

Ec ≈ Nall (1− φ0) e
−τag/τcag E1

c . (6.15)

Based on the above assumptions, the plateaus of kinetic energy in the limit τag → 0, namely

E0
c (B0) ≡ lim

τag→0
Ec(B0; τag), (6.16)

are simply related to the plateaus of the fraction of particles in chains, φ0 (defined in Eq. 6.3),
through E0

c ≈ NR
all (1− φ0)E

1
c . This yields the approximated form of the mean kinetic energy

per particle normalized by its value at short times,

Ec

E0
c

= e−τag/τcag . (6.17)

In Fig. 6.14 is shown Ec/E
0
c as a function of the dimensionless aging time, τag/τ cag. As for φn

in Fig. 6.8(b), the data points of Ec/E
0
c from all experiments satisfyingly collapse on a master

curve at short times. We test our estimate of Ec at short times, namely Eq. 6.17, by comparing
the exponential prediction (thick black curve in Fig. 6.14) with our experimental results. As
we can see on the main plot, and better visualize in the inset in log-log scale, the exponential
fit is suited to the master curve at short times, although it is not as satisfying as Eq. 6.9 is for
representing φn: Eq. 6.17 slightly overestimates the kinetic energy. It may be possible to improve
our estimate of Ec by taking into consideration that free particles are not exactly confined all
with the same strength (i.e., the E1

c ’s are not all equal), and that confinement is not strictly



6.4 Steady nucleation at short times 147

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

τag/τ
c
ag

E
c/
E

0 c

 

 

B0=105G
B0=112G
B0=127G
B0=150G
B0=170G
B0=192G
B0=212G

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

τag/τ
c
ag

1 − Ec/E
0
c
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short aging times, E0

c (B0), as a function of the dimensionless aging time, τag/τ
c
ag. All curves

satisfyingly collapse on a master curve, except for the set of experiments with B0 = 105G,
which departs from the master curve at the end of short times. The thick black curve represents
the exponential decay predicted in Eq. 6.17. It is shifted with respect to the experimental data,
but has a shape that matches them well. Inset: 1− Ec/E

0
c as a function of τag/τ

c
ag in log-log

scale.

constant for all short times (i.e., the E1
c ’s are time-dependent).

Mean square displacements

Another way to characterize the dynamics is to measure the amount of space explored by the
particles during a given time. This can be achieved by measuring the mean square displacement
(MSD) of the particles, which we denote

⟨
r2
⟩

and which is defined as:

⟨
r2(t)

⟩
=

⟨
1

N t
p

Nt
p∑

i=1

|ri(t− τ0)− ri(τ0)|2
⟩
, (6.18)

where ⟨·⟩ denotes an ensemble average, time t is larger than τ0, the time at which the recordings
are started, as defined in Section 1.2.1, t − τ0 is called the delay time, N t

p is the number of
particles at time t, and ri(t) is the position of particle i at time t.

The MSD of particles undergoing a ballistic motion increases as the square of the delay time:⟨
r2
⟩
∝ (t− τ0)

2, (6.19)

while for Brownian particles confined in two dimensions, the MSD is related to the delay time
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by a linear relation implying a coefficient of diffusion, or diffusivity, D, as⟨
r2
⟩
= 4D(t− τ0), (6.20)

a formula which directly comes from the central limit theorem and the Markovian nature of the
underlying stochastic process.

For systems of particles with either broad displacement distributions or long-range corre-
lations, the diffusion is anomalous and does not follow Eq. 6.20 [114]. In this case, the linear
relationship between the MSD and the delay time in Eq. 6.20 is modified into the non-linear
relationship: ⟨

r2
⟩
= 4Dα(t− τ0)

α, (6.21)

where α is an anomalous diffusion exponent and Dα is a generalized coefficient of diffusion. The
motion is characterized as superdiffusive if α > 1, which is for example the case of Richardson
turbulent diffusion, transport in micelle systems and bacterial motion; and it is called subdiffusive
if 0 < α < 1, which corresponds for instance to the reptation dynamics in polymeric systems,
transport on fractal geometries, and the dynamics of a bead in a polymeric network [114], and
more generally to situations where particles can get randomly trapped.

Here, we study the MSD of particles in the set of experiments with B0 = 170G, which is
representative of type C experiments, because it has an intermediate characteristic nucleation
time [see Fig. 6.8(a)-(inset)]. We use an acceleration Γ = 2 and a magnetic quenching rate
αq = 103 G.s−1 so that our results are directly comparable with the other experiments of this
chapter.

Let us remark that if MSD recordings starting at a time τ0 provide a picture of the dynamics
of the system as it evolves from the state it was in at time τ0, they do not represent the dynamics
of the state of the system around time τ0. In our experiments, we use starting times τ0 shorter
than, or of the order of magnitude of, the characteristic nucleation time τ cag(B0 = 170G) ≈
2.0 × 10−1 s [see Fig. 6.8(a), inset], so as to explore the displacements of particles originating
from states belonging to the short aging time regime.

Our measurements of the MSD as a function of the delay time, t − τ0, are presented in
Fig. 6.15. For delay times shorter than t − τ0 = 10−2 s, particles undergo a ballistic motion
whatever the starting time τ0 (slope 2 in the log-log plot corresponding to Eq. 6.19). In such
a time range, particles behave as projectiles whose kinetic energy is obtained from collisions
with the bottom plate. This ballistic motion is arrested, however, by the interaction with a
neighboring particle: either the two particles repel each other and hence reverse or deflect each
other’s trajectories, or they aggregate to form a pair or extend an already existing chain. This
type of event occurs at delay times t − τ0 ≈ 3 × 10−2 s and corresponds to an inflection point
in the MSD. For longer delay times, two types of behaviors emerge: for very short starting
times τ0 < 5×10−2 s, the MSD increases monotonically according to an anomalous diffusion law
with exponents smaller than 1/4, while for longer starting times τ0 > 5 × 10−2 s, a temporary
saturation of the MSD, which is the hallmark of caging effects [43, 115, 116, 117], is followed by
an anomalous diffusion regime with exponent α ≈ 1/2.

Note that the “age” of the system when caging arises, namely the sum of the starting time
of the first experiment displaying an intermediate plateau (τ0 = 5.62× 10−2 s) and of the delay
time at which the plateau appears (t− τ0 ≈ 4× 10−2 s), is tc ≈ 10−1 s. Now, Table 6.1 provides
τ cag(B0 = 170G) = 2.0× 10−1 s, hence tc/τ cag ≈ 1/2. Therefore caging arises at a dimensionless
time tc/τ cag ≈ 5 × 10−1, i.e., at the end of steady nucleation. We can interpret this result as
follows: a significant fraction of free particles nucleates during steady nucleation, which leads



6.4 Steady nucleation at short times 149

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t − τ0 (s)

〈

r2
〉

/a
2

 

 

τ0=0.0018 s
τ0=0.0178 s
τ0=0.0316 s
τ0=0.0562 s
τ0=0.1 s
τ0=0.178 s
τ0=0.316 s
τ0=0.562 s

1/4

1/2

2

Figure 6.15 Mean square displacements, non-dimensionalized by the particle diameter, for
B0 = 170G. The time τ0 is the time from which MSD measurements are performed, and t−τ0 is
the delay time. As for glassy systems, the caging effect arises: the MSD temporarily saturates
between the ballistic regime at very short times and the subdiffusive regime at longer times.

to a decrease of the confinement of the remaining free particles, as shown in Fig. 6.13, hence
making the causing effect. Then, the remaining free particles are caged for some time before
they nucleate in turn.

To summarize, at all times the initial motion of particles is ballistic, inside a cage, then
nucleation occurs either without (τ0 < 5 × 10−2 s) or with the occurrence of a caging effect
(τ0 > 5 × 10−2 s). The subsequent motion at longer times is subdiffusive, with an anomalous
exponent increasing from below 1/4 towards 1/2 with τ0.

6.4.3 Partial conclusion for short times

In this section, we studied the formation of the labyrinthine phase at short times, after a sharp
magnetic quench is applied to the system in a liquid-like (“elastic”) phase. Right after the
quench, the system is composed of coexisting free particles and chains, the fraction of free par-
ticles decreasing with the magnetic field.

We interpreted the chain growth as an irreversible, steady nucleation process, which corre-
sponds to an exponential increase of the fraction of particles in chains. For each value of the
magnetic field, we measured a characteristic nucleation time, which we used as the relevant
time scale for non-dimensionalizing the aging time. Mostly based on the hypothesis of weak
structural rearrangements, we estimated the mean kinetic energy per particle to be decreasing
exponentially.

We demonstrated that after the quench, chains in type NC experiments (those which do
not fully “solidify” at long times, limit case B0 = 127G included) are mostly pairs, which serve
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as a basis for a subsequent hierarchical growth, itself corresponding to quick chain growth and
branching, simultaneously for all experiments. In contrast, longer chains already exist after the
quench for type C experiments (those which fully “solidify” at long times, limit case B0 = 127G
excluded), which have growth rates that decrease as B0 increases, and essentially no branching.

Using the mean square displacements on the example of B0 = 170G, we shed the light on
the caging effect arising at the end of steady nucleation, and connected it to the simultaneous
loosening of the confinement of the remaining free particles. This confirmed that steady nucle-
ation ends at a dimensionless time of about τag/τ cag = 5× 10−1.

An exciting perspective is to view the irreversible nucleation process that we analyzed in this
section as analogous to a transition from an agitated state to an absorbing state. An absorbing
state is a particular out-of-equilibrium state that can be reached by the dynamics of the particles
but cannot be left, and which is characterized by total freezing of the relevant degree of freedom
of the particles [118, 119]. In such a state, fluctuations are completely absent. Hence, the
irreversible nature of the transition that we observe in our system from the “free”, agitated
state into the “chain” state, in which particles are essentially “frozen”, makes encouraging to
use our system for testing a certain type of transition to an absorbing phase. Future work in this
direction should include, in particular, a more complete analysis of the characteristic nucleation
times and of the spatial correlations between the chains.

6.5 Coarsening of the labyrinthine phase at long times

In Section 6.4, we characterized the development of the chains constituting the granular
labyrinthine phase right after the magnetic quench. We found that, generally speaking, the
nucleation of free particles into chains is such that the growth of the chains is hierarchical (i.e.,
from pairs to trimers to 4-particle-long chains, and so on), and that pairs and trimers constitute
the vast majority of the chains. We identified at short times a characteristic nucleation time for
each value of the magnetic field, τ cag(B0), which proved to be the relevant time scale as long as
structural rearrangements are negligible.

Yet, at the end of the short times, i.e., around τag/τ cag ∼ 5 × 10−1, there remain a num-
ber of free particles that have not nucleated yet, but which will do so at long times, i.e., for
τag/τ cag > 5× 10−1. Nucleation hence continues, even though in a different way. Moreover, given
that the time scales in this section are much larger than in Section 6.4, processes much slower
than free particle nucleation, such as chain motion, become relevant. Indeed, already at the end
of the short times, we identified for type NC experiments a sharp increase of the connectivity
associated with the growth of long chains: some chains have moved and connected with each
other. Therefore at long times chain rearrangements can play a major role.

Thus we ask: What are the characteristics of this new long time regime, where free particle
nucleation meets chain rearrangements?

6.5.1 Structure

At the end of steady nucleation, about half of the particles that were free at the end of the
magnetic quench have nucleated into chains. How fast does the remaining half nucleate at long
times? Moreover, this continuing nucleation is associated with structural changes, in particular
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with a decrease of free particle confinement. Can we relate these changes to the appearance of
specific morphological features?

Fraction of particles in chains

In order to highlight the long time convergence (resp., divergence) of the fraction of particles in
chains towards (from) 1 for type C (type NC) experiments, we show 1−φn on a log-log scale in
Fig. 6.16. In this way, the short time changes of φn, which we studied in Section 6.4, are mostly
invisible.

As shown in Fig. 6.8(b) (in Section 6.4), at the limit of validity of steady nucleation, that
is, around τag/τag ∼ 5 × 10−1, the increase of φn significantly slows down compared to the
proposed exponential growth. This change of behavior is made even more obvious in Fig. 6.16:
all curves of 1− φn (except for the lowest magnetic field B0 = 105G) are deflected downwards
from τag/τag ∼ 5× 10−1, not as an exponential, but as a power law of exponent −1/2, over two
decades of dimensionless time. This power law decay characterizes the continuing nucleation
occurring at long times, and it can be explained by a characteristic time of nucleation varying
as (1−φn)

2 [120]. As this process occurs, the fraction of free particles is divided by 10, reaching
a value of a few percent at around τag/τ cag = 102, that is, fifty or so free particles. Beyond that
time, the accelerated decrease of 1−φn most probably arises from finite-size effects; indeed, the
number of free particles being finite, 1−φn must diverge towards −∞ within a finite time. Note
that our accuracy on 1−φn corresponds to a single remaining free particle, i.e., 1−φn ∼ 10−3,
and is indicated by the horizontal black dashed line in Fig. 6.16. Note also that for experiments
of type NC, no divergence is observed since, by definition, for them the fraction of particles in
chains does not reach 1.

To conclude, the continuing nucleation process that occurs at long times is very slow com-
pared to steady nucleation at short times and is characterized by an increase of the fraction of
particles in chains, φ, as the square root of the dimensionless time, τag/τ cag.

Chain morphology

In order to characterize the structural changes affecting the labyrinthine phase at long times,
let us now turn to chain statistics. Note that in this paragraph, we use Fig. 6.9, Fig. 6.11 and
Fig. 6.12, which are plotted in Section 6.4.

Our algorithm, as mentioned in Section 6.4, excludes clusters that intersect with the image
boundaries. As shown in Fig. 6.9, the very slow decrease at short times of the total number of
accepted particles, Nall, is followed by an accelerated drop from τag/τ cag ∼ 5 × 10−1. For type
NC experiments [Fig. 6.9(a)], this decrease saturates at times around τag/τ cag = 102. In contrast,
for type C experiments [Fig. 6.9(b)], the decrease is more moderate until τag/τ cag = 102-103, but
then Nall dramatically drops down towards 0. The limit case B0 = 127G has an intermediate
behavior: marked, steady decrease for all τag/τ cag > 5 × 10−1, but no divergence at very long
times.

It is essential to understand the meaning of the huge drops of Nall for type C experiments:
then, the greatest part of the particles found in the region of interest are excluded from our
analysis of the chains, which, in turn, significantly biases it. We concede that the trick that
we used in our algorithm backfires here: it becomes irrelevant when the chance that a cluster
intersects the image boundaries becomes too large. Evaluating such a limit of validity is, however,
not an easy task since it depends on the time evolution of the populations of chains of different
sizes. Here, we consider our results as trustworthy until the decrease of Nall appears to be too
fast to be likely to arise from a physical mechanism, a guess which will be validated a posteriori
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Figure 6.16 Shifted opposite of the reduced fraction of particles in chains, 1 − φn, with
emphasis on the long time behavior, as a function of the dimensionless aging time, τag/τ

c
ag.

From the times at which the exponential fit given in Eq. 6.9 fails to describe the curves (i.e.,
τag/τ

c
ag ∼ 5 × 10−1), 1 − φn decreases as a power law with exponent −1/2 over two decades

of time, for all experiments except for B0 = 105G. The accelerated decrease of 1− φn at very
long times is most probably due to the finite number of particles. The horizontal black dashed
line shows our experimental resolution on 1−φn, which is relative to detecting one single free
particle. The horizontal grey line indicates 1− φn = 1.

by our measurements of the mean chain size, nc, as explained below. Based on our results with
B0 = 170G, we choose as an indicative limit of validity the value τag/τ cag = 4 × 103 (note that
this value may be adjusted for every value of B0). We indicate it by the vertical black dashed line
in Fig. 6.9(b), as well as in Fig. 6.11 (right column) and in Fig. 6.12 (right column). Note that
it may be possible to balance this drawback from a study of how the probability of excluding a
chain varies with its size, curvature, etc., but this is a complex question that we do not tackle
here.

In Fig. 6.11 (in Section 6.4), we plotted the mean total number of clusters accepted by the
algorithm, Nc, the mean chain size nc, the mean chain length λc and the mean chain connectivity
κ3, at all times. Here, we focus on the long time limit, i.e., one times such that τag/τ cag > 5×10−1.

In this time range, the total number of clusters, Nc, does not behave similarly to φ as it
does at short times. Indeed, for type NC experiments, Nc temporarily saturates and then only
very slowly increases: almost all the clusters are formed during steady nucleation, at short times
[Fig. 6.11(a)]. For type C experiments, the dramatic and continued decrease of Nc from the end
of steady nucleation can only mean that chains massively merge into larger clusters [Fig. 6.11(b)].
Indeed, this decrease cannot be attributed to the exclusion of clusters by the algorithm before
times near the limit of validity defined above, which is represented by the vertical black dashed
line in Fig. 6.11(b).

The study of the mean chain size, nc, reveals a surprising result: for experiments of type NC
[Fig. 6.11(c)], while nc for B0 = 105G simply saturates, it clearly decreases for B0 = 112G. The
latter result is more unexpected since, exclusion of clusters by the algorithm being negligible
at this stage, this means that some of the chains formed at short times split up into shorter
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chains: hence chain formation is not irreversible. As shown in [Fig. 6.11(d)], the picture is
totally different for experiments of type C: nc only increases. More precisely, nc for B0 = 127G
follows a very steady increase, while for B0 = 170G and 212G, it goes from slow to accelerated
at dimensionless times of about, respectively, 102 and 103: the higher B0, the more delayed and
the sharper is the late-time increase of nc. It is not possible, unfortunately, to arrive at possible
asymptotic values of nc at very long times, due to both noise in the measurements (experiments
are not repeated for τag ≥ 104 s) and the limit of validity of our algorithm.

As shown in Fig. 6.11(e, f), the behavior of the mean chain length, λc, leads to the same
comments as in the short time limit: trends of λc are similar to those of nc, but increases are
much slower than they should be if the chains were straight and unbranched. For the limit case
B0 = 127G, we possibly detect a saturation of λc at very long times, as is the case for type NC
experiments, but we cannot make a firm conclusion from the present data set.

The measures of the mean chain connectivity, or fraction of particles in chains with three
neighbors, κ3, are far from being as trivial in the long time range as they were in the steady
nucleation regime, in which κ3 was essentially zero. At long times, κ3 quickly saturates for
B0 = 105G, but rises high for B0 = 112G before it drops down to reach around 5% [Fig. 6.11(g)].
This local maximum of κ3 seems to correspond to the local maximum of nc and λc, suggesting
that the chains that split do so at branching points. Note that such splitting event seems to
occur only when free particles coexist with chains. For type C experiments [Fig. 6.11(h)], κ3
follows the same trend as nc: it increases with a delay and a sharpness all the more high as B0

is increased.
Finally, at long times, for type NC experiments, just a few more chains are formed. They

do not undergo dramatic morphological changes, except for B0 = 112G, where their mean
chain size and length temporarily decrease in parallel with a burst of connectivity. For type
C experiments, the number of chains rapidly drops as chains merge into larger, more branched
clusters. For these experiments, chain growth and increase of connectivity are accelerated by
a magnetic field as low as possible above the limit case B0 = 127G. Note that this limit case
shares at long times the morphological features of type C experiments, and not those of type
NC experiments as it did at short times.

The time evolution of the populations of chains 2-, 3-, 4-, 5- and more-than-5-particles-long
is plotted in Fig. 6.12 (in Section 6.4). We keep focusing on times such that τag/τ cag > 5× 10−1.

For type NC experiments, there are essentially no more pairs at long times [Fig. 6.12(a)]. The
population of trimers is dominant [Fig. 6.12(c)], but leaves all the more room to 5- and more-
than-5- particle-long chains as B0 approaches its limit case value, namely 127G [Fig. 6.12(e, g)].
This echoes the behaviors of nc and λc in Fig. 6.11(c, e), whose long-time limits increase with
B0. Moreover, the absence of pairs means than free particles do not aggregate to create pairs
anymore, hence contributing to keeping Nc constant. The population of 4-particle-long chains
is very low at very long times.

For type C experiments, the decrease of the populations of pairs [Fig. 6.12(b)] and 4-particle-
long chains [Fig. 6.12(f)], the stabilization of the trimers [Fig. 6.12(d)], and the increase of the
populations of 5- and more-than-5-particle-long chains [Fig. 6.12(h, j)], are all the more enhanced
and less delayed as the magnetic field is close to its limit case value, 127G. In particular,
the delays in the increases of 5- and more-than-5-particle-long chains reflect the delays of the
increases of the chain size, nc, and length, λc.

Moreover, for all experiments, the similarities between the time evolution of the cumulated
population of 5- and more-than-5-particle-long chains (which we do not show explicitly) and of
the mean chain connectivity [Fig. 6.11(g, h)] strongly suggest that these long chains are highly
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branched.
Let us point out that, for all experiments, chains with an even number of particles are much

less present than chains with an odd number of particles. We can see two main reasons for
this. First, gravity (and maybe friction too) favors chains with their end particles being down
(i.e., touching the bottom plate), which is the case at both ends for trimers and (unbranched)
5-particle-long chains, but only at one end of pairs and (unbranched) 4-particle-long chains. The
former ones are thus more stable. Second, chains with one end up (i.e., touching the top lid),
e.g., pairs and (unbranched) 4-particle-long chains, can easily attach to any other end that is
down, the latter being easily found since in a large majority; this can only result in a decrease
of the population of even chains. Note also that the attachment of one down (resp. up) end
to an intermediate up (down) particle is possible too, when one chain approaches the other
perpendicularly, and this results in a new branching point, i.e., in increasing the connectivity,
κ3.

As a last remark, we would like to stress the very particular role of the limit case, B0 = 127G,
between type NC experiments, that evolve quickly but eventually have mostly short chains, and
type C experiments, that evolve with delays (increased by B0) towards states with large chains:
setting the magnetic field to B0 = 127G enables the quick formation of long chains.

6.5.2 Dynamics

As the system relaxes, free particles keep nucleating, even though more slowly than at short
times, and at the same time chains move to change configuration and possibly merge. These
structural changes are associated with changes in the dynamics of the system. Now we investigate
the time evolution of the mean kinetic energy per particle and of the mean square displacement
of the particles. As we will see, at long times, it is relevant to compute coefficients of diffusion,
which are a measure of the mobility of the particles.

Mean kinetic energy per particle

In Section 6.4 we introduced the dynamical aspects of steady nucleation using the mean kinetic
energy per particle, divided by its value in the limit τag → 0, Ec/E

0
c (Fig. 6.14). We found the

decrease of Ec/E
0
c during steady nucleation to be exponential.

Here, in order to study the long-time aging of the labyrinthine phase, we represent Ec/E
0
c

on a log-log scale, in Fig. 6.17. As for 1− φn in Fig. 6.16, the short time changes are flattened
and we observe a power-law decay of Ec/E

0
c , between about τag/τ cag ∼ 3 × 10−1 and 3 × 101.

We estimate the exponent of the decay between −3/4 and −1 for experiments of type C and
the limit case B0 = 127G, but closer to −1/2 for B0 = 112G. The decrease of Ec is thus faster
than the increase of φ for experiments of type C and the limit case, which is due to the fact
that Ec is obtained from an average over all particles, and not only over the free particles. For
B0 = 112G, this effect is less pronounced because more particles remain free at long times.

An interesting feature of the curve of Ec/E
0
c lies at very long times. Then, particles are all

part of chains for experiments of type C (in particular for B0 = 170G and 212G, as demonstrated
by the vanishing values of 1− φn beyond τag/τ cag ∼ 104, in Fig. 6.16) hence the measured mean
kinetic energy is the mean kinetic energy of the particles in chains. This shows that, qualitatively,
a particle in a chain has a mean kinetic energy of about 1/100th of that of a free particle right
after the quench.

To summarize, mean agitation decreases sharply as more and more free particles nucleate
into chains, but it clearly remains non-vanishing and experimentally measurable even when
chains occupy the whole system at very long times.
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Figure 6.17 Mean kinetic energy per particle, Ec, divided by its plateau value at very
short aging times, E0

c (B0), with emphasis on the long time behavior, as a function of the
dimensionless aging time, τag/τ

c
ag. Ec/E

0
c decreases as a power law of time with an exponent

between −3/4 and −1 for B0 ≥ 127G (and closer to −1/2 for B0 = 112G), in the same time
range than 1 − φn decreases as a power law of time with an exponent −1/2, as shown in
Fig. 6.16. The very long time values of Ec/E

0
c show that the agitation of a nucleated particle

is about 1/100th of that of a free particle right after the quench. The horizontal grey line
indicates Ec/E

0
c = 1.

Mean square displacements

Since even particles in chains are agitated, chains can move: collective motion can arise from
individual particle (low) agitation due to the strong interactions between the particles inside
chains. In fact, chain motion does occur from the end of short times and across long times and
has as a consequence the development of larger and more branched chains by the merging of
shorter chains, as we have seen from the time evolution of the morphological characteristics of
the chains, from Fig. 6.11 and Fig. 6.12.

The mean square displacement (MSD) of the particles indicates how far they have moved
between starting time τ0 and time t. We measure the MSD for experiments with an acceleration
Γ = 2, a quenching rate αq = 103 G/s, and a magnetic field B = 170G (as in Section 6.4),
with starting times ranging from just before the end of steady nucleation, which occurs around
τag/τ cag = 5× 10−1, until the longest aging times that we can reach, namely τag = 104 s.

Note that when the starting time, τ0, is much larger than the duration of the recordings of
the MSD, the distinction between τ0 and the age of the system at the end of these recordings
(1 s later) is irrelevant: the MSD measurement then provides a good picture of the system at
age τ0. This is the case for most of our MSD measurements in the long time limit, shown in
Fig. 6.18.

A ballistic regime (curves of slope 2 in the log-log plot) is visible for all starting times until
τ0 ∼ 100 s. The ballistic regime shows the presence of a significant number of free particles,
since particles in chains are strongly “attached” to each other due to magnetic interactions and
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Figure 6.18 Mean square displacement non-dimensionalized by the particle diameter,⟨
r2
⟩
/a, for B0 = 170G. Time τ0 is the starting time for the MSD recordings, and t− τ0 is the

delay time. Caging effects tend to disappear as free particles become scarce (τag/τ
c
ag ∼ 102),

and the long time motion goes from subdiffusive with an anomalous diffusion exponent α ∼ 1/2,
to diffusive from τ0 ∼ 103 s. To compute coefficients of anomalous diffusion, shown in Fig. 6.19,
we use the data points of the MSD between t − τ0 = 0.5 s and 1 s, a time range indicated by
the grey shading.

friction, and certainly do no undergo a ballistic motion. Using Fig. 6.16, we estimate that only
a few percent of all particles are left free by times τ0 ∼ 100 s. The ballistic regime is associated
with a caging effect (temporary saturation of the MSD), as discussed in Section 6.4, which is
itself followed by a subdiffusive regime of anomalous exponent close to 1/2 (slope 1/2 in the
log-log plot).

At larger starting times, the ballistic motion progressively dies off, as the motion tends to
become diffusive only (slope 1 in the log-log plot), at all delay times studied here. At these
very long times, free particles essentially disappear and there only remain particles in chains.
This result suggests that particles in chains diffuse on scales of (10−5 a2)1/2 ≈ 3× 10−3 a, with
a the particle diameter, which remains within our detection range according to our estimate of
detection accuracy: δ ∼ 5× 10−4 a, as given by Eq. 2.25.
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Figure 6.19 Generalized coefficients of diffusion, D 1
2
, as a function of the dimensionless

modified aging time, τ⋆ag/τ
c
ag. The coefficients D 1

2
are obtained from fits of the mean square

displacements between t− τ0 = 0.5 s and 1 s, according to the equation of anomalous diffusion,
namely Eq. 6.21, with exponent α = 1/2. The modified aging time is defined as τ⋆ag = τ0+τ̄MSD,
with τ̄MSD = 0.75 s the mean delay time of the MSD data used in the computation of D 1

2
. For

all types of experiments (i.e., type NC with B0 = 112G, limit case with B0 = 127G, and type
C with B0 = 170G), the coefficients D 1

2
decay as the inverse of time, until they each reach a

plateau from τ⋆ag/τ
c
ag ∼ 4× 103 s (at least for B0 = 127G and 170G), a time indicated by the

vertical black dashed line.

Generalized coefficients of diffusion

The subdiffusive motion of particles at long delay times, which we almost always observe in our
experiments (in Fig. 6.18, but also in Fig. 6.15 at shorter times), is not only characterized by an
anomalous diffusion exponent, α, but also by a generalized coefficient of diffusion, Dα. Indeed,
let us recall here Eq. 6.21, which is the nonlinear relation between the MSD,

⟨
r2
⟩
, and the delay

time, t− τ0, using α and Dα: ⟨
r2
⟩
= 4Dα(t− τ0)

α. (6.22)

In our experiments with B0 = 170G, we found for starting times larger than τ0 = 1 s that
α takes values close to 1/2, as shown in Fig. 6.18 (except for the largest τ0). We therefore
compute generalized coefficients of diffusion from fits of the MSD plotted in Fig. 6.18, between
delay times t− τ0 = 0.5 s and 1 s (vertical black dashed lines in Fig. 6.18), using the anomalous
diffusion equation with α = 1/2, that is,

⟨
r2
⟩
= 4D 1

2
(t− τ0)

1/2.
This provides the coefficients D 1

2
as a function of the starting times τ0. However, we find

more relevant to use as time, the mean aging time associated with the computation of D 1
2
, which

we call modified aging time, τ⋆ag, and which we define by

τ⋆ag ≡ τ0 + τ̄MSD, (6.23)

where τ̄MSD = (0.5 + 1)/2 s = 0.75 s is the mean delay time associated with the computation
of D 1

2
.
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In Fig. 6.19, we show as a function of τ⋆ag/τ
c
ag the coefficients D 1

2
that we obtain from the

experiments with B0 = 170G at long times (Fig. 6.18), but also at short times (Fig. 6.15), and
additionally from experiments at B0 = 112G and 127G, whose MSD measurements we do not
present here. Note that we make the choice of α = 1/2 because it appears to be the one best
adapted to compare this large ensemble of experiments, even though it is not always the best
choice for each individual experiment. Note also that we choose each of the values of B0, namely
112G, 127G and 170G, so that they are representative of the different types of experiments
identified in Section 6.3.3: respectively, type NC, limit case, and type C.

As shown in Fig. 6.19, we find that for all three values of the magnetic field tested here, the
coefficients D 1

2
decrease as the inverse of the dimensionless modified aging time τ⋆ag/τ

c
ag, over 2-3

decades of time. At a fixed time, the values of D 1
2
/a2 are decreased as B0 is increased, which is

reminiscent of the populations of free particles in the different systems at a fixed time: φ increases
as B0 is increased. All decreases apparently stop at distinct plateau values at around the same
time, namely at τ⋆ag/τ

c
ag ∼ 4 × 103. At such times, φ has reached its long time limit value, as

shown in Fig. 6.16: either finite (B0 = 112G, type NC experiment) or vanishing (B0 = 127G
and 170G, resp. limit case and type C experiment). For the latter, all particles have nucleated
into chains, hence the coefficients D 1

2
that we measure are relative to the diffusivity of the chains

themselves. The values of these plateaus decrease with B0, showing that chains are less mobile
when B0 is increased.

Note that we also tested α = 1/4 and α = 1 for computing the generalized coefficients
of diffusion. We found that, if quantitatively the values of Dα depend on α, the trends are
comparable to the results with α = 1/2 presented in Fig. 6.19.

6.5.3 Partial conclusion for long times

In this section, we explored how the labyrinthine phase obtained at the end of steady nucleation
(i.e., τag/τ cag ∼ 5×10−1) relaxes at long times, through both structural and dynamical analyses.
The timescales involved here are large enough for observing chain rearrangements, which can be
thought of as collective motion occurring much more slowly than single-particle displacements.

We demonstrated that the fraction of particles in chains, φ, grows towards 1 as the square
root of time from the end of steady nucleation. We saw that this continuing nucleation process
mostly leads to extending existing chains, instead of creating new pairs. In addition, we observed
chain rearrangements, sometimes massive enough to lead to dramatic changes of the labyrinthine
phase morphology. In type NC experiments (for which there is no long-time full “solidification”),
morphological changes are weak: the number of chains, Nc, mean chain size, nc, length, λc, and
connectivity, κ3, in the limit τag → +∞ all take similar values than at the end of steady
nucleation (although we noticed a temporary burst of connectivity and size). Then, trimers are
the most common, but the proportions of 5- and more-than-5-particle-long chains increase as B0

approaches the limit case value, B0 = 127G. In type C experiments (for which there is long-time
full “solidification”), the labyrinthine phase undergoes coarsening: chains merge massively as
the system ages, and their size, length and connectivity increase all the more quickly as B0

approaches the limit case value, 127G; however, their long-time values seem similar. In these
experiments, 5-particle-long chains are more numerous, and longer chains form more quickly, as
B0 approaches the limit case value. In both type NC and type C experiments, chains containing
an even number of particles progressively give way to chains with an odd number of particles,
most probably due to gravity, but also because the merging of the former with the latter is
energetically favored.

We also characterized the “freezing” of the labyrinthine phase as it ages. For all types of
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experiments, we have shown that, first, the mean kinetic energy per particle, Ec, decreases as a
power law in parallel to the power law increase of φ; and second, that the generalized coefficients
of diffusion obtained in subdiffusive regimes decrease as the inverse of the age of the labyrinthine
phase, which characterizes the dramatic slowing down of its dynamics as it ages.

Finally, at long times, the granular labyrinthine phase for type C experiments is like a dis-
ordered system that undergoes coarsening through slow relaxation, and as such is comparable
to glassy systems, which also approach equilibrium slowly [103]. In both cases, a metastable
state evolves into another metastable state due to agitation and so on, as the system moves to-
wards the global minimum of energy of its multi-dimensional energy landscape (i.e., equilibrium
in glassy systems) [121, 122]. Each jump corresponds to a rearrangement event, which in our
system consists of the motion of increasingly larger chains, and in glassy systems of large-scale
cooperative motion.

However, unlike in glassy systems, in our system there are two distinct populations of parti-
cles, namely free and nucleated; caging effects are only relevant for the free particles, and not for
those in the slowly rearranging chains; the dramatic slowdown of the dynamics measured by the
generalized coefficients of diffusion is most probably due to the freezing of the free particles and
not due to the decreasing mobility of chains (indeed when φ ∼ 1, D 1

2
reaches a plateau value);

and the long-time state is, for the granular labyrinthine phase, intrinsically out-of-equilibrium
due to the nature of this system.

Yet, motivated by the similarities in the nature of the structural rearrangements that occur in
the aging granular labyrinthine phase and in thermal glassy systems, we will further investigate
our system’s relaxation time- and length-scales, and characterize the dynamical heterogeneities
it displays because of chain-rearrangement events.

6.6 Conclusion

In this chapter, we explored the time evolution of the granular labyrinthine phase introduced in
Chapter 5, from its emergence at extremely short times, to its aging at very long times.

We started by characterizing the effects of a “magnetic quench”, i.e., a rapid increase in
the vertical magnetic field, on the obtained labyrinthine phase. We concluded that the stronger
the quench, the more disordered and hence the farther from its long-time state is the granular
labyrinthine phase. Aiming at obtaining the labyrinthine phase that is as prone to evolving with
time as possible, we decided to use a very strong magnetic quench.

We found that the time evolution of the quenched granular labyrinthine phase can be sepa-
rated into two main phases: at short times, steady nucleation, and at long times a continuing
nucleation process and chain rearrangements simultaneously, leading to a coarsening of the
labyrinthine phase.

Steady nucleation refers to the irreversible process of aggregation of free particles into chains,
right after the quench. Then, we found that nucleation is accelerated by increasing the magnetic
field B0. For experiments of type NC, chains grow quickly and develop little branching simul-
taneously for all B0, while for experiments of type C the system does not undergo significant
morphological changes. We concluded that this system, in the future, could be used for testing a
particular type of transition from an agitated state into an absorbing phase, between the “free”
and the “chain” states of our granular particles.

At long times, the labyrinthine phase coarsens in type C experiments: the remaining free
particles continue nucleating, but much more slowly, and at the same time chains rearrange in
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a relaxation process that implies massive chain merging events and hence marked chain growth
and branching development. In type NC experiments, changes during relaxation are minor.
Our results show that strong analogies exist between the aging of the labyrinthine phase and
aging in thermal glassy systems, hence we see perspective in pushing further investigation in
this direction by using tools specific to the study of slowly relaxing disordered systems.

Aside from these analogies, we have shown that labyrinthine phases are systems that are very
rich on their own. Indeed, they constitute a novel class of disordered systems which undergo
slow relaxation, with a wide variety of processes that can occur in a coupled manner, like chain
rearrangements and merging in parallel with a slow nucleation process.

Finally, our results are in qualitative agreement with the work of Riemann et al. [110] on
ferrimagnetic garnet films and with the simulations of Haw [103]: labyrinthine phases slowly
relax at long times, which is reminiscent of glassy systems. This conclusion seems, however,
in disagreement with the suggestion of Dobnikar et al. [65] that labyrinthine phases –for them,
made of colloids, but very much analogous to the one we studied here– may be equilibrium
phases, and thus stationary states. Hence this suggests investigating the possible time depen-
dence of their colloidal labyrinthine phase, in order to compare with our results on the granular
labyrinthine phase and with microscopic glassy systems.

To conclude this chapter, let us propose another possible approach for studying the relax-
ation of the granular labyrinthine phase. As we have seen, its relaxation is generally slow due
to strong confinement making it hard for the system to reorganize. In order to accelerate re-
laxation, one could use a magnetic field oscillating between a target value and a lower value,
instead of a being fixed at this target value. Through such an “annealing” process, confinement
would be periodically decreased, then reconfiguration events favored and relaxation accelerated,
as used for instance by Riemann et al. [110]. Such a method would be particularly relevant
in the search of a long-time limit state of the granular labyrinthine phase. Can the system
reach a state of parallel stripes? Or is this state inaccessible, as suggested for similar colloidal
labyrinthine phases [65]?
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Figure Γ B0 (G) αq (G.s−1) τag (s) npic facq (Hz) iter

6.1, 6.2 2.02± 0.01 212± 1 10.6± 0.01 15 40 4 50
6.3 2.03± 0.02 171± 1 var. 0.9×10−2 10 780 10

6.4 2.06± 0.03 var. (1.08± 0.02)×
103

mult. ≤ 17 780 1

6.7, 6.8, 6.9, 6.11,
6.12, 6.13, 6.14,

6.16, 6.17
2.03± 0.02 mult. (1.07± 0.01)×

103
var. var. 780

10 (or
1)

6.15, 6.18 2.01± 0.01 171± 1
(1.07± 0.01)×

103
mult. 800 780 1

6.19 2.01± 0.01 mult. (1.07± 0.01)×
103

var. 50 780 1

Table 6.2 Experimental parameters for the figures of Chapter 6. Γ is the dimensionless
acceleration defined in Eq. 1.10; B0 is the applied transverse magnetic field; αq = dB/dt is
the quenching parameter; τag is the post-quenching aging time defined in Section 1.2.1; npic
is the number of pictures recorded; facq is the acquisition frequency; and iter is the number
of repeated experiments with the identical parameters. The errors indicated correspond to
the standard deviation of the measurements. The entry var. (resp., mult.) indicates that
the quantity is the main variable (a variable for which multiple values are taken) for the
experiments. All experiments are performed using the circular cell with a gap size e = 1.48 a.
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Conclusion and perspective

In this thesis, we have studied the self-organization properties of a quasi-two-dimensional en-
semble of vibrated magnetic granular particles. We have shown that either ordered or slowly
relaxing disordered states can be generated by tuning the applied magnetic field.

In Chapter 4, we presented the first experimental realization of a quasi-two-dimensional gran-
ular gas whose typical out-of-equilibrium and dissipative properties are progressively replaced
by those of a molecular gas at thermal equilibrium, by tuning an external field. We achieved
this with a granular gas composed of soft-ferromagnetic balls vibrated at a fixed strength and
immersed in an external vertical magnetic field. The particle area fraction was about 20%.
By increasing the magnetic field, we increased the ratio of the magnetic repulsive interaction
to the mechanical agitation strength, ε. A moderate increase of ε decreased the collision rate
and thus the energy dissipated in particle-particle collisions, bringing the granular gas closer to
the quasi-elastic limit. By further increasing ε, we observed a continuous phase transition to a
collisionless, nearly crystalline phase, already reported in [26].

In Chapter 5, we demonstrated that a disordered labyrinthine phase made of discrete particles
can be generated in a macroscopic and out-of-equilibrium model experiment, and, for the first
time, we characterized the transition that leads to it from a liquid-like state by means of particle
tracking. For this, we used the same quasi-two-dimensional granular gas as in Chapter 4 but
at a higher particle area fraction, namely about 50%. By increasing the applied magnetic field,
we made the system undergo a transition from a dissipative gas state, to a state of coexisting
chains of particles and free particles, to a labyrinthine phase almost only composed of these
chains. The stability of the latter, which are buckled and confined between the top and bottom
plates, is a three-dimensional effect. The parameter setting the vertical confinement, namely the
gap size, is then essential to explain the different phases of this granular medium, as has also
been shown for colloidal systems [65, 106]. Even though, if the structure of the phases obtained
in this macroscopic experiment resembles that of the phases found in thermal equilibrium in
Monte-Carlo simulations and colloidal monolayers [65, 106, 104], the kinetics of the transition
described in this chapter is intrinsically an out-of-equilibrium process, as we saw in Chapter 6.

In Chapter 6, we showed that the granular labyrinthine phase is a disordered metastable
state which undergoes slow relaxation. We saw that, shortly after a strong magnetic quench,
this highly disordered structure arises from a nucleation process that occurs homogeneously
across the system. We further observed that, once the timescale of observation becomes of
the order of the timescale of chain displacements, slow chain rearrangements become apparent.
This leads to a coarsening of the labyrinthine phase, along with a dramatic slowing down of its
dynamics, which makes it tempting to call it a “glass of chains” [103]. Our results corroborate
the two existing studies on the long-time evolution of a labyrinthine phase, namely in a thermal
system [110] and in numerical simulations [103], and strongly question the view that labyrinthine
phases as stationary, or even equilibrium states [65].

To summarize, we have seen that adding dipolar magnetic interactions between the particles
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of a granular gas leads to self-organization phenomena that had not been previously observed
in such a macroscopic and out-of-equilibrium model system. We are not only able to tune the
distance of a dissipative granular gas to the quasi-elastic limit by controlling these interactions,
but also to study the transitions to a collisionless crystalline state and a labyrinthine phase made
of chains of macroscopic particles at contact, both of which have counterparts in microscopic
systems. We have also identified the key role of the protocol in designing disordered labyrinthine
phases with different structural and dynamical properties.

The strong analogies between our interacting granular gas and some colloidal systems, despite
the dissipative nature of the collisions between grains and grain-plate friction, suggest that
advances in these two fields can benefit each other. More generally, we hope that these results
will motivate the exploration of granular gases with distance interactions as macroscopic model
systems for self-organization phenomena in interacting many-body systems.

In Chapter 4, Chapter 5 and Chapter 6, we proposed a few possible lines of research, to
which we would like to add the following ones.

One exciting question is: What more can we learn from a detailed analysis in Fourier space
of the transition from a liquid-like to a crystalline state described in Chapter 4? In particular, to
what extent is this transition analogous to two-dimensional crystal melting as described by the
Kosterlitz-Thouless-Halpering-Nelson-Young (KTHNY) scenario [123]? An experimental confir-
mation for the KTHNY theory has been reported with a colloidal model system with repulsive
magnetic dipole–dipole interactions [124]. Moreover, the work of Schockmel et al. [26], on a
granular system similar to ours, supports this analogy too and shows the existence of two suc-
cessive steps. To tackle this question more completely, we have ongoing collaborative work with
Gustavo Castillo from Universidad de Chile (previously from ENS Paris). Our idea is to ana-
lyze the two successive second-order transitions that occur during crystallization, and possibly
to show critical behavior near these transitions (divergence of the relevant quantities as power
laws). Moreover, studying velocity correlations in Fourier space enables us to track propagating
waves, which can be seen as analogous to phonons. The behavior of these correlations at large
scale provides us with a “speed of sound” related to the elastic constants of the lattice [125],
and for which the KTHNY theory predicts values for both transitions.

Finally, there is now a need to bridge the gap between the different phases observed in our
experiments, that is, to build up the full phase diagram of the magnetic granular gas. However,
the parameter space is extremely large. In Chapter 4 and Chapter 5, we studied the transitions
to crystalline and labyrinthine phases for two densities ϕ, fixed gap size e and shaking strength
Γ, and only the magnetic field B0 was varied. There are also a number of parameters other than
ϕ, e, B0 and Γ than may be relevant, including those of the processing pathway (e.g., rate of
increase of the magnetic field, aging time, etc.), friction and restitution coefficients, and bead
physical properties (magnetic permeability, mass, diameter, etc.). What are the phases found
in the regions of parameter space that we have not explored yet? Experiments on colloidal
systems by Osterman et al. [106], in particular, give insight on the variety of phases that we
could observe. Indeed, even though dissipative collisions and friction in our system may lead to
novel phases, many of the parameters relevant in our experiments are also relevant for colloidal
systems. For example, a collisionless square ordered phase at low density is obtained in [106],
which differs from the hexagonal crystalline phase that we described in Chapter 4. Such a state
exists when, although chain formation does not occur, interactions are too strong for the hexag-
onally ordered phase to be stable. Indeed, a square lattice enables reducing the magnetic forces
by distortion without geometrical frustration (particles are then alternatively in contact with



Conclusion 167

the bottom and top plate), which is impossible to achieve in a triangular lattice.
In order to thoroughly explore the parameter space of the magnetic granular gas (particle

area fraction, applied magnetic field, gap size, etc.), we are currently working in collaboration
with Eric Opsomer and Nicolas Vandewalle from University of Liège, Belgium, on molecular
dynamics simulations of this system. So far, we have simulated a system of particles with mass,
size and permeability identical to those used in the experiments, in a square cell of side 25mm.
The roughness of the bottom plate is not physically represented but is accounted for by ran-
domly scattering the particles after a particle-plate collision, a process for which we adjusted
the parameters so as to obtain particle velocity distributions that match the experimental ones.
We have successfully checked for a particle density ϕ ∼ 0.2 that the results of the simulations
quantitatively match those of the experiments across the “crystallization” transition when we
increase B0.

With these simulations, we have so far explored the phases of the magnetic granular gas, on
one hand for a fixed gap size of e/a = 1.5, in the plane (ϕ,B0), as shown in Fig. 7.1, and on the
other hand for a fixed magnetic field B0 = 400G, in the plane (ϕ, e), as shown in Fig. 7.2. In
Fig. 7.1, classical dissipative granular gas states are found along the row at B0 = 0G and for
increasing ϕ; the transition from a dissipative gas to a hexagonal crystalline state, as in Chap-
ter 4, along the column at ϕ = 0.2 and for increasing B0; and the transition from dissipative gas
to labyrinthine phase, as in Chapter 5, along the column at ϕ = 0.5 and for increasing B0. The
different states observed in the simulations are in good agreement with those observed in the
experiments, and generalize the picture that has emerged from the latter. Fig. 7.2 gives an idea
of the extremely wide variety of morphologies that can be accessed by varying the gap size e/a.
In particular, phases with square ordered regions resembling those in colloidal systems [106] are
found for e/a = 1.3 and ϕ ≳ 0.5. For gap size e/a ≥ 1.5, we obtain a labyrinthine phase whose
morphology strongly differs from one gap size value to an other. Specifically, when particles can
almost totally overlap, with e/a = 1.9, preferential directions of alignment of the short chains
appear, making these phases differ from the disordered labyrinthine phases that we have studied
in this thesis.

To conclude, these numerical simulations provide results that not only corroborate the ex-
perimental results presented in this thesis, but also challenge us to explain the large variety of
phases found in the different regions of parameter space. In the future, we will use them to
further explore the multi-dimensional phase space of the granular gas and to guide new experi-
ments. These simulations also offer the possibility to test the effects of other types of interaction
potentials, or of the influence of gravity, on the self-organization properties of this macroscopic
model system, which opens additional exciting perspectives.
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Figure 7.1 Phase diagram of the magnetic granular gas obtained from molecular dynamics
simulations, when the particle area fraction, ϕ, and the applied magnetic field, B0, are varied.
The gap size is e = 1.5 a. In particular, dissipative granular gas states are found along the row
with B0 = 0G, while the transition from dissipative granular gas to crystalline state (resp., to
labyrinthine phase), studied in Chapter 4 (Chapter 5), is observed along the column at ϕ = 0.2
(ϕ = 0.5).
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Figure 7.2 Phase diagram of the magnetic granular gas obtained from molecular dynamics
simulations, when the particle area fraction, ϕ, and the gap size, e, are varied. The applied
magnetic field is B0 = 400G. The morphologies of the phases strongly depend on the gap size
value. Contactless ordered phases are observed for e/a = 1.3, while phases mostly composed
of chains occupy the region e ≥ 1.5. The disordered nature of the labyrinthine phase discussed
in Chapter 5 and Chapter 6 seems to be partially lost for large gap sizes, like e/a = 1.9, where
chains clearly display preferential orientations.
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Abstract

If describing the collisions between two grains is the first stone for understanding the kinetics of
an ensemble of colliding granular particles, the collective properties of such a system are obtained
using statistical tools. Here, we explore two types of granular systems: first, in a transient state,
once the injection of energy is stopped, and second, with a homogeneous and continuous input
of mechanical energy. We aim at writing a constitutive equation and at characterizing the
velocity distributions in both cases. Most of what follows is inspired from the reference book of
Brilliantov and Pöschel [7] and of an article of van Noije and Ernst [38].

1 Homogeneous cooling granular fluid

Let us consider an ensemble of N identical granular particles of a mass m and a radius σ, in a
space of dimension d. Initially, these particles are agitated and thus constitute a granular fluid.
However, since collisions are dissipative, the system cools down at each collision. We study the
evolution of this system in the phase space.

1.1 Definitions

The single particle distribution function f(r,v, t) describes the probability of finding a particle
at the position r and with the velocity v at time t:

f(r,v, t) =
N∑
i=1

⟨δ(ri(t)− r)δ(vi(t)− v)⟩ (A.1)

where (ri(t),vi(t)) is the location of particle i at time t in the phase space. Moreover, the
integral of f over the full phase space equals the total number of particles:∫

f(r,v, t)dr dv = N. (A.2)
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We focus here on the case of a homogeneous system, which allows us to rule out the space
dependence of f . From this assumption, we can relate the moments of f with certain macroscopic
properties of the granular gas, namely with its number density, n, its flow velocity ⟨v⟩ (which
vanishes here), and its granular temperature, T :∫

f(v, t)dv = n (A.3)∫
vf(v, t)dv = n ⟨v⟩ = 0 (A.4)∫

1

2
mv2f(v, t)dv = n

⟨
1

2
mv2

⟩
=
d

2
nT (t). (A.5)

where the angle brackets denote an ensemble average.

We used here the term granular temperature, in analogy with the temperature in the theory
of molecular gases, which we defined as the average kinetic energy of the grains. Following this
analogy, we can define a thermal-like velocity, v0, such as

T (t) =
1

2
mv20(t). (A.6)

Note that for d = 2, first, v0 equals the standard deviation of the velocity distribution,
and second, Eq. A.5 simplifies into the expression of the two-dimensional granular temperature,
which we denote Tg,

Tg(t) =
1

2
m
⟨
v2
⟩
. (A.7)

1.2 Enskog-Boltmann equation

Very generally, the evolution of the homogeneous distribution f(v, t) with respect to time can be
seen as resulting from three contributions: the influence of external forces on the particles, the
(self-)diffusion of the particles, and the contribution of the collisions between particles. Hence
we can write the general equation

∂f

∂t
=

(
∂f

∂t

)
ext.

+

(
∂f

∂t

)
diff.

+

(
∂f

∂t

)
coll.

(A.8)

which becomes, in the absence of external forces and in the homogeneous case, i.e., when the
first and second terms of the RHS vanish,

∂f

∂t
=

(
∂f

∂t

)
coll.

. (A.9)

In other words, under these assumptions, the probability at time t of finding a particle with
a velocity comprised between v and v + dv is solely modified by the effects of collisions. The
collisions involving particles whose velocities are comprised in the interval [v,v + dv], or direct
collisions, mostly drive these particles into another velocity interval and hence correspond to a
loss in the RHS of Eq. A.9 ; while inverse collisions involve particles whose velocities are initially
outside the interval [v,v + dv], but end up being inside it, hence contributing as a gain.

The complete calculation of the RHS of Eq. A.9, i.e., the collision term, is done for example
in [7]. To make a long story short, the starting point of this calculation is the relationship
between the incoming velocities (v1 and v2) and outgoing velocities (v1

′ and v2
′) for two
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colliding identical particles 1 and 2,
v1

′ = v1 −
1

2
(1 + ϵ)(v12 · e12) e12

v2
′ = v2 +

1

2
(1 + ϵ)(v12 · e12) e12

(A.10)

where ϵ is the coefficient of restitution and e12 is the unit vector linking the center of particle 1

to the center of particle 2.
From this, one can count the number of particles entering and exiting the volume of the phase

space where particles have velocities comprised in the range [v,v+dv], as described above. The
gain and loss contributions of, respectively, the inverse and direct collisions, to the collision term
of Eq. A.9, can be written in the form of a bilinear collision operator, I[f, f ], called collision
integral. We will not make it explicit here, but will instead focus on the resulting formulation
of Eq. A.9, which is called the Boltzmann equation of a homogeneously cooling granular gas:

∂f

∂t
(v1, t) = I[f, f ]. (A.11)

This equation is actually based on the strong hypothesis of “molecular chaos” stating that
the velocities of two colliding particles are not correlated with each other. However, although
this hypothesis is relevant for ideal molecular gases, it has been shown both experimentally and
numerically that it does not properly fits to granular gases, even in the dilute case [20, 83, 126].
To tackle this problem, David Enskog had the idea of taking into account finite-size effects, which
increase collision frequency by comparison with a system of point-like particles [127]. Further
developing this original idea led to the Enskog-Boltzmann equation for the homogeneously cooling
granular gas [128]:

∂f

∂t
(v1, t) = gσ(n) I[f, f ] (A.12)

where gσ(n), called the Enskog factor, is the contact value of the pair correlation of hard spheres
at density n. Note that for the three-dimensional case, Carnahan and Starling [129] proposed
an expression of gσ(n) for hard sphere fluids at equilibrium, which is valid for a large density n,

gσ(n) =
2− ϕ

2(1− ϕ)3
(A.13)

where ϕ is the packing fraction, that is ϕ = 1
6πnσ

3, and whose expression in two dimensions
is [44, 69]:

g2D
σ (n) =

1− 7ϕ/16

(1− ϕ)2
. (A.14)

1.3 High-energy tails in the homogeneous cooling state

As demonstrated by Goldshtein and Shapiro [130], the Enskog-Boltzmann equation (i.e., Eq. A.12)
admits an isotropic scaling solution, f̃ , involving the thermal velocity defined by Eq. A.6:

f(v, t) = n

v20(t)
f̃

(
v

v0(t)

)
. (A.15)

In Eq. A.5, we introduced the granular temperature, T , in analogy with the thermodynamic
temperature. Even though, since collisions between grains are inelastic, one can expect the
velocity distribution function (VDF) of a granular gas to deviate from the VDF of a molecular
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Figure A.1 Gaussian velocity density function (VDF) and sketches of exponential and
stretched exponential high-energy velocity tails. Black curve: Gaussian VDF with zero mean
and a standard deviation of 1; Red curves: sketches of portions of a stretched exponential
(prop. factor 10, K2 = 1) for |c| > 5; Blue lines: sketches of portions of an exponential (prop.
factor 50, K3 = 3) for |c| > 5. Note that in experiments, measuring velocities such as c > 5
is rare enough so that measures of the VDF smaller than 10−4 are significantly noisy. It is
therefore hard to compare experimental results with these analytical predictions for |c| > 5.

gas, namely, the Maxwell-Boltzmann distribution:

fMB(v) =
( m

2πkT

)3/2
exp

(
−mv

2

2kT

)
. (A.16)

Investigating the shape of the high-energy tails of the VDF, that is, for c = |v|
v0(t)

≫ 1, Esipov
and Pöschel demonstrated [37] that the scaled distribution function has the form

f̃(c) ∝ exp(−Ac), (A.17)

where A is a constant. This means that the high-energy tails of homogeneously cooling granular
gases are overpopulated compared to Maxwell-Boltzmann’s VDF, which are proportional to
exp(−Bc2), with B a constant. We give a graphical representation of this overpopulation in
Fig. A.1, where we have plotted the normalized Gaussian distribution (in black) along with a
sketch of a high-energy exponential tail (in blue), gfit(c) ∝ exp(−K3c) (with K3 = 3 and a
proportionality factor of 50).

2 Uniformly heated granular fluid

When a horizontal monolayer of granular particles is fluidized by vertical vibrations of the plate
it reposes on, grains are mechanically agitated and energy input is homogeneous across the
system, that is, all grains receive on average the same amount of mechanical energy. Such a
system is called a uniformly heated granular fluid. In the absence of external magnetic field, the
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quasi-two-dimensional granular gas presented in this thesis is such a fluid.

2.1 Modified Enskog-Boltzmann equation

In the uniformly heated case, we can model the evolution of the velocity of particle i, vi, by the
stochastic equation:

dvi

dt =
Fi

m
+ ξ̂i (A.18)

with Fi the force due to inter-particles collisions and ξ̂i the random acceleration due to external
forcing. We assume that ξ̂i is a Gaussian white noise of strength ξ20 and uncorrelated for different
particles: ⟨

ξ̂iα(t) ξ̂jβ(t
′)
⟩
= ξ20δijδαβδ(t− t′) (A.19)

where δ is the Kronecker symbol, α and β represent dimensions, t and t′ two times, and the
angular bracket an ensemble average. This description is valid as long as the system is thermo-
dynamically large (i.e., N → ∞), and that the time between random kicks is small compared
to the mean free time of the equivalent homogeneously cooling state.

In order to account for the heating due to the random kicks modelled through the ξ̂i’s in
Eq. A.18, the Enskog-Boltzmann equation for the homogeneous single particle distribution func-
tion f(v, t), given in Eq. A.12, is corrected with a Fokker-Planck diffusion term, as demonstrated
by van Kampen [131]:

∂f

∂t
(v1, t) = gσ(n) I[f, f ] +

ξ20
2

(
∂

∂v1

)2

f(v1, t). (A.20)

In this equation, interestingly, the diffusion coefficient ξ20 for the velocities is proportional
to the rate of energy input d

2ξ
2
0 per unit mass, and even equals it in two dimensions. Note also

that this additional Fokker-Planck diffusion term does not correspond to the contribution of an
external force Fext, which would have led instead to a new term Fext ·∇v1f in the LHS of the
Enskog-Boltzmann equation.

2.2 High-energy velocity tails for the uniformly heated granular fluid

When heating exactly balances the dissipation of energy due to inelastic collisions, the particle
distribution function is stationary and the granular temperature is a constant. In order to find
a stationary solution to the modified Enskog-Boltzmann equation (Eq. A.20), Van Noije and
Ernst [38] used a scaled stationary distribution function f̃ in a similar fashion to what Goldshtein
and Shapiro did in the homogeneous cooling case:

f(v) = n

v20
f̃

(
v

v0

)
. (A.21)

Injecting this stationary particle distribution function in Eq. A.20 and denoting c1 = v1/v0
a scaled velocity yields:

Ĩ[f̃ , f̃ ] +
ξ20

2v30gσ(n)nσ

(
∂

∂c1

)2

f̃(c1) = 0, (A.22)

where Ĩ[f̃ , f̃ ] is the dimensionless form of the collision integral. The authors further show that
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inserting solutions of the form
f̃(c) ∝ exp(−Acβ) (A.23)

in Eq. A.22, with A a constant, yields for large rescaled velocities c≫ 1,

β =
3

2
. (A.24)

This result implies that in the uniformly heated case, granular gases display VDF high-
energy tails that are overpopulated in comparison with molecular gases (Gaussian VDF), while
being underpopulated relative to homogeneously cooling granular gases (exponential high-energy
VDF tails). Stretched exponential VDF tails with exponent β = 3/2 are sketched in Fig. A.1
(in red). It is important to remark that, as stressed by Barrat and Trizac [39], one has to be
careful when comparing experimental results with this theoretical prediction, since the condition
c ≫ 1 is rarely, if ever, verified using experimental data. Indeed, detecting a statistically
significant quantity of events with velocities of about 10 times (or even 5 times) the thermal-like
velocity is experimentally very hard to achieve. Hence, overpopulated VDF high-energy tails in
experiments for c ̸≫ 1 cannot be related to the present theory. However, considering velocity-
dependant coefficients of restitution in numerical simulations seemed to be the answer to the
question, since then, VDF from numerical simulations satisfyingly reproduce the experimental
VDF [34, 132].
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Auto-organisation de particules magnétiques vibrées :
Structure, dynamique et transitions

Résumé : Nous étudions l’auto-organisation dans un système modèle expérimental où l’agitation
des particules et leurs interactions à distance sont en compétition. Ce système est composé de
particules macroscopiques sphériques ferromagnétiques douces dans une cellule horizontale quasi-
bidimensionnelle. Les particules sont agitées par vibration verticale de la cellule et acquièrent
un moment magnétique induit en présence d’un champ magnétique externe vertical. En ajus-
tant l’équilibre entre les forces dipolaires répulsives résultantes et l’agitation, nous provoquons des
transitions entre des états de types fluides et solides. A faible densité de particules, nous exam-
inons les phases et les transitions de phases rencontrées lorsque nous renforçons les interactions
entre particules : d’abord un gaz granulaire dissipatif, puis un état dont les propriétés structurales
et dynamiques s’approchent de celles d’un gaz idéal à l’équilibre thermodynamique, et enfin un
état ordonné où les particules forment un réseau triangulaire. Nous nous intéressons aussi à l’auto-
organisation du système à plus haute densité de particules, où nous observons un état labyrinthique
désordonné principalement composé de chaînes de particules en contact. Ces chaînes, en zigzag en-
tre la surface de la cellule et le couvercle, sont énergétiquement favorisées par l’anisotropie des
interactions dipolaires. Nous caractérisons la transition de l’état de gaz granulaire vers cette phase
labyrinthique. Enfin, nous explorons l’évolution temporelle de la phase labyrinthique au moyen
d’une trempe magnétique. Nous observons une nucléation homogène aux temps courts et une
augmentation de la taille typique des chaînes via une relaxation lente aux temps longs.

Mots clés : Milieux granulaires, systèmes hors équilibre, transitions de phase, états désordonnés,
dynamique vitreuse.

Self-organization of vibrated and magnetized particles:
Structure, dynamics and transitions

Abstract : We study self-organization in an experimental model system in which particle agitation
competes with remote inter-particle interactions. This system is composed of macroscopic spherical
soft-ferromagnetic particles in a horizontal quasi-two-dimensional cell. The particles are agitated by
vibrating the cell vertically and are magnetized as induced dipoles by an external vertical magnetic
field. By tuning the balance between the resulting repulsive dipole-dipole forces and agitation, we
trigger transitions between fluid- and solid-like states. At low particle density, we examine the
phases and phase transitions that occur as we strengthen the inter-particle interactions: from a
dissipative granular gas, to a state whose structural and dynamical properties approach those of an
ideal gas at thermodynamic equilibrium, to an ordered state in which the particles form a triangular
lattice. We also investigate the self-organization of the system at a higher particle density, where
we observe a disordered labyrinthine state mostly composed of chains of particles at contact. These
chains, buckled between the top and bottom plates, are energetically favored due to the anisotropy
of the dipole-dipole interactions. We characterize the transition from the granular gas state to
this labyrinthine phase. Finally, we explore the temporal evolution of the labyrinthine phase by
applying a magnetic quench. We observe homogeneous nucleation at short times and coarsening
via slow relaxation at long times.

Keywords : Granular media, out-of-equilibrium statistical mechanics, phase transitions, disor-
dered states, glassy dynamics.
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