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Résumé

Les ondes à la surface d’un liquide résultent en général d’un échange continu entre l’énergie cinétique
du liquide et son énergie potentielle liée aux forces de gravité et de tension de surface. L’énergie
cinétique du liquide est alors mise en jeu à la fois dans les ondes de surface et dans les écoulements
hydrodynamiques qui peuvent prendre place sous la surface libre, ce qui peut mener à des interactions
spécifiques entre ondes et écoulements. Dans ce manuscrit, nous étudions ces interactions à travers
trois expériences couvrant différents types d’écoulements et de déformations de la surface libre.
Dans une première expérience, nous étudions les ondes à la surface d’un liquide engendrées par
la déformation 2D d’un fond mobile, en lien avec le cas géophysique des tsunamis. Par la mesure
simultanée des déformations de la surface libre et du champ de vitesse sous la surface par PIV
(vélocimétrie par images de particules), nous étudions l’influence des caractéristiques spatiales et
temporelles de la déformation du fond sur les mouvements induits dans le fluide et à la surface
libre. Nous mettons notamment en évidence différents régimes dépendant du rapport entre la durée
typique du mouvement du fond et la période de l’onde engendrée. Par exemple, si la déformation du
fond n’est pas très rapide, la forme de la vague engendrée dépend notablement de la dynamique du
fond, habituellement négligée dans les simulations de tsunamis. Par ailleurs, pour une déformation
rapide, nous développons un modèle capable de prédire la forme de la vague engendrée en fonction de
la structure spatiale de la déformation, y compris dans le cas d’une profondeur d’eau non uniforme.
Nous nous intéressons, dans une deuxième expérience, aux ondes stationnaires à la périphérie
d’une goutte de liquide sensible au champ magnétique (ferrofluide). Lorsque celle-ci est soumise
à une vibration verticale, elle présente des lobes oscillants à sa périphérie. Nous montrons que
les fréquences de résonance de ces ondes stationnaires sont ajustables par un champ magnétique
extérieur. Par un modèle capable de prédire l’évolution de ces fréquences propres avec le champ,
nous démontrons que le champ magnétique permet de contrôler la tension de surface effective de la
goutte.
Enfin, la troisième expérience met en jeu un large spectre d’échelles spatiales et temporelles en
sondant les interactions entre une surface libre et une turbulence hydrodynamique, générée par des
jets sous la surface. Nous étudions par des mesures PIV comment la turbulence hydrodynamique
est modifiée par la présence d’une surface libre. Inversement, nous analysons les déformations de la
surface libre induites par la turbulence par des mesures de la surface pleinement résolues en temps
et en espace. Nous mettons en évidence la présence d’ondes de surface, qui sont toutefois dominées
par les empreintes de l’écoulement turbulent sous la surface. Enfin, nous observons comment les
caractéristiques spatiales et temporelles d’ondes générées à la surface du liquide au moyen d’un
batteur sont affectées par la présence de turbulence hydrodynamique sous la surface.
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Abstract

Waves on the surface of a liquid generally result from a continuous exchange between the kinetic
energy of the liquid and its potential energy associated with gravity and capillary forces. Thus the
kinetic energy is involved both in surface waves and hydrodynamic flows which may take place
beneath the free surface. This can lead to specific interactions between waves and flows. In the
present manuscript, we investigate theses interactions through three experiments involving different
types of flows and free-surface deformations.
In a first experiment, we study the waves on the surface of a liquid caused by the 2D deforma-
tion of a moving bottom, in connection with the geophysical case of tsunamis. By simultaneously
measuring the free-surface deformations and the velocity field under the surface by PIV (particle
image velocimetry), we study how the spatial and temporal characteristics of the bottom deforma-
tion affects the motion induced in the fluid and at the free surface. We especially highlight different
regimes depending on the ratio between the typical rise time of the bottom motion and the period
of the generated wave. For instance, if the deformation of the bottom is not very fast, the shape of
the generated wave significantly depends on the bottom dynamics, usually overlooked in tsunami
simulations. Besides, for a fast motion, we develop a model able to predict the shape of the generated
wave according to the spatial structure of the bottom deformation, even in the case of a nonuniform
water depth.
A second experiment is focused on the standing waves at the periphery of a drop of liquid sensitive
to a magnetic field (ferrofluid). When the drop is subjected to a vertical vibration, it displays lobes
oscillating at its periphery. We show that the resonant frequencies of these standing waves can be
adjusted by an external magnetic field. By means of a model able to predict the evolution of these
natural frequencies with the field, we demonstrate that the magnetic field can control the effective
surface tension of the drop.
Finally, the third experiment involves a broad range af spatial and temporal scales by probing
the interactions between a free surface and a hydrodynamic turbulence generated by jets under the
surface. We measure by PIV how hydrodynamic turbulence is modified by the presence of a free
surface. Conversely, we analyze the deformation of the free surface induced by turbulence through
measurements of the surface fully resolved in time and space. We observe the presence of surface
waves, which are however found to be dominated by the footprints of the turbulent flow under
the surface. Finally, we see how the spatial and temporal characteristics of waves generated by a
wavemaker on the free surface are affected by the presence of hydrodynamic turbulence below the
surface.
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INTRODUCTION 17

La propagation d’ondes intervient dans de nombreux domaines de la Physique : l’électromagné-
tisme, l’acoustique, les séismes, ou encore la mécanique quantique. En hydrodynamique, des ondes
internes peuvent jouer un rôle important à grande échelle dans le mélange des masses d’eau océa-
niques, tandis qu’à l’interface avec l’atmosphère, ce sont des ondes de surface qui se manifestent
par exemple sous forme de vagues. Ces ondes de surface sont généralement le résultat d’un échange
entre énergie cinétique et énergie potentielle. Cette dernière est la somme d’une énergie potentielle
de gravité et d’une énergie potentielle dite de capillarité liée aux effets de tension de surface. En
effet, lors d’une perturbation locale à la surface d’un liquide, la gravité exerce une force qui ramène
le liquide à une même hauteur et la capillarité, qui traduit les forces de cohésion dans le liquide,
s’oppose aux courbures de la surface. Ces deux forces de rappel tendent à aplanir la surface, la
première étant dominante aux grandes échelles (à partir de quelques centimètres) et la seconde aux
plus petites échelles (en-dessous du centimètre). En cas de perturbation, ils vont donc ramener la
surface à sa position d’équilibre. Un échange continu entre énergie cinétique du liquide d’une part
et énergie potentielle d’autre part peut alors s’installer, entraîner une oscillation de la surface libre
et se traduire par des ondes de surface. L’énergie cinétique du liquide étant mise en jeu à la fois
dans l’écoulement et dans les ondes de surface, on s’attend à observer des interactions particulières
entre ces deux types de mouvement. Durant cette thèse, nous avons sondé les interactions entre un
écoulement hydrodynamique et une surface libre à travers trois expériences, qui couvrent différents
types d’écoulement, des déformations de la surface libre de différentes natures (ondes propagatives,
ondes stationnaires ou empreintes des structures spatiales de l’écoulement), tout en mettant en jeu
différentes échelles et différentes énergies (capillarité, gravité mais aussi magnétisme).
Dans la première partie, nous étudions la génération d’ondes de surface gravitaires dans une
cuve dont le fond est localement déformé par un piston subissant une impulsion verticale. Par la
mesure simultanée des déformations de la surface libre et du champ de vitesse sous la surface par
PIV (Particle Image Velocimetry – vélocimétrie par images de particules), nous étudions le rôle des
caractéristiques spatiotemporelles de la déformation du fond, en lien avec le cas géophysique des
tsunamis. En deuxième partie, nous nous sommes intéressés aux ondes stationnaires à la surface
et à la périphérie d’une goutte de liquide sensible au champ magnétique (ferrofluide), lorsque celle-
ci est soumise à un champ magnétique constant et à une vibration verticale. Selon l’amplitude
de vibration, cette goutte présente alors des ondes circulaires à sa surface supérieure ou des lobes
oscillants à sa périphérie. Nous montrons que les fréquences de résonance de ces ondes stationnaires
sont ajustables par le champ magnétique extérieur. Nous développons un modèle qui est capable de
prédire l’évolution de ces fréquences propres avec le champ en fonction des paramètres du système.
Dans le cas des lobes périphériques, le rôle du champ magnétique permet notamment de contrôler
la tension de surface effective de la goutte. Enfin, la troisième partie met en jeu diverses échelles
spatiales et temporelles en sondant les interactions entre la turbulence hydrodynamique et la surface
libre. La turbulence est générée au sein d’un fluide par des jets verticaux situés au fond d’une cuve.
Nous étudions par des mesures PIV comment la turbulence hydrodynamique est modifiée par la
présence d’une surface libre et nous caractérisons l’écoulement turbulent généré en volume et sous
la surface. Des ondes de surface planes monochromatiques sont ensuite produites par un batteur
à la surface du fluide. Nous analysons par des mesures spatiotemporelles 2D des déformations de
la surface libre comment celles-ci sont affectées par la présence de la turbulence en volume. Enfin,
la même méthode de mesure nous permet d’observer les déformations de la surface libre induites
par la turbulence hydrodynamique, mettant en évidence la présence d’ondes de surface dominées
par des oscillations à basse fréquence, probables empreintes des structures spatiales de l’écoulement
turbulent sous la surface.
Durant cette thèse, j’ai également pris part à une étude de la turbulence d’ondes en grand bassin
au sein de la collaboration Turbulon qui réunit quatre laboratoires (MSC, CEA Saclay, ENS Paris
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et EC Nantes). J’ai participé à quatre campagnes de mesures à l’Ecole Centrale de Nantes dont les
résultats ont été publiés dans Journal of Fluid Mechanics [1]. J’ai par ailleurs contribué à une étude
sur la dynamique de particules magnétiques macroscopiques qui présentent une transition vers une
phase labyrinthique, dont les résultats ont été publiés dans Physical Review E [2]. Les résultats de
ces deux études n’ont pas été développés dans ce manuscrit.



Première partie

Génération d’ondes de surface par un
fond mobile
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Chapitre 1

Introduction

1.1 Contexte

L’étude de cette partie consiste à observer la façon dont des ondes sont générées à la surface d’un
fluide lorsque le fond subit une déformation verticale. Il s’agit d’étudier à la fois les déformations de
la surface libre et le champ de vitesse sous la surface. Nous nous intéressons en particulier aux effets
des caractéristiques spatiotemporelles de cette déformation. Cette problématique est directement
reliée au cas géophysique des tsunamis engendrés par un séisme sous-marin. Ceux-ci consistent typi-
quement en une déformation du fond de l’océan d’amplitude ∼ 1m, sur une zone d’étendue ∼ 100 km
dans une océan de profondeur ∼ 1 − 10 km. La vitesse typique de propagation est comprise entre
500 et 1 000 km/h. Afin de pouvoir prévenir les risques induits par un tel évènement, les systèmes
d’alerte calculent et prédisent en temps réel les caractéristiques de l’onde produite, notamment en
termes d’amplitude. Les modèles analysent en particulier la propagation en pleine mer des tsuna-
mis à partir des équations non linéaires en eau peu profonde. En revanche, le mécanisme de leur
génération est souvent très simplifié : la condition initiale souvent considérée pour la surface libre
avant la propagation est égale à la déformation finale du fond directement translatée à la surface et
immobile. Ceci correspond à l’hypothèse d’une déformation du fond instantanée et d’une étendue
de la zone déformée grande devant la profondeur de l’océan. La cinématique de la déformation du
fond, c’est-à-dire ses caractéristiques spatiotemporelles, sont donc ici négligées. En pratique, les si-
mulations numériques qui considèrent le couplage entre la cinématique du fond et la surface de façon
plus complète ont souvent des coûts de calcul importants, ce qui les rend difficilement utilisables
pour des systèmes d’alerte. Une revue de la littérature, des problèmes rencontrés et des évolutions
en cours dans le cadre de la prédiction des tsunamis est réalisée en introduction de notre article
publié au chapitre 4.
Après de premiers travaux théoriques de Kajiura en 1963 [3], Hammack [4, 5] développe en 1972
une théorie linéaire des ondes de surface 1D générées par un fond mobile. Il montre ainsi le rôle des
caractéristiques spatiotemporelles de la déformation lors de la génération de telles ondes. Son étude
contient également des expériences dont les résultats se trouvent en bon accord avec les prédictions
théoriques. Il identifie différents régimes en comparant le temps caractéristique de la déformation
du fond au temps typique de propagation de l’onde sur la zone déformée. Si Hammack [4] aborde
brièvement les calculs 2D dans le cas d’une déformation axisymétrique du fond, c’est Dutykh et
al. [6] qui généralisent la théorie aux deux dimensions horizontales, permettant d’élargir l’étude à
des déformations du fond plus générales. En les comparant à des modèles non linéaires, Kervella
et al. [7] ont montré que les théories linéaires étaient généralement suffisantes pour modéliser la
génération de tsunamis.
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Les théories linéaires développées supposent généralement que la profondeur d’eau est uniforme
sur l’ensemble de la zone de génération, même si Kajiura [8] s’est intéressé au cas théorique spé-
cifique d’une déformation du fond près d’un plateau continental. En 2015, Stefanakis et al. [9] ont
quant à eux étudié analytiquement le cas d’une génération de tsunami au-dessus d’une surélévation
cylindrique du fond.
D’un point de vue fondamental, ce sujet entre dans le cadre de notre étude sur les interactions entre
ondes de surface et écoulements hydrodynamiques. Il s’agit notamment d’analyser le comportement
du champ de vitesse sous la surface pour mieux comprendre la relation entre les champs de vitesses
sous la surface et la déformation de la surface libre lors de la génération. Les champs de vitesses ont
été calculés [10] et utilisés théoriquement pour des considérations énergétiques [11] ou à la surface
libre [12], mais leur structure spatiale et leur évolution temporelle n’a jamais été étudiée.
Les expériences de laboratoire s’intéressant à la génération d’ondes de surface par des mouvements
du fond restent rares et sont souvent basées sur des mesures de la surface libre [5, 13–16]. Les
seules mesures du champ de vitesse en laboratoire concernent le cas de génération de tsunami par
glissements de terrain [17, 18]. La plupart de ces expériences sont par ailleurs réalisées dans des
canaux, ne considérant ainsi que des ondes se propageant dans une seule direction.

1.2 Plan de la partie

Dans cette partie, nous avons réalisé des expériences de génération d’ondes de surface 2D à partir
d’une déformation du fond axisymétrique. La déformation de la surface libre et le champ de vitesse
ont été mesurés simultanément pour la première fois. Le chapitre 2 présente le dispositif expérimental
constitué d’une cuve carrée dont le fond a été troué en son centre et recouvert d’une membrane
élastique. Cette dernière est déformée par un piston relié à un vibreur électromagnétique. Nous
décrivons l’algorithme que nous avons développé permettant la génération d’impulsions verticales
de forme temporelle, d’amplitude et de durée contrôlées. Les techniques de mesures du champ de
vitesse et de la surface libre sont également présentées. Le chapitre 3 introduit la théorie linéaire
de Hammack ainsi que certains outils théoriques. Enfin, les résultats obtenus sont présentés dans le
chapitre 4 sous forme d’un article publié dans Proceedings of the Royal Society A [19] précédé d’un
résumé. Les régimes rapide, lent et intermédiaire de déformation du fond relevés par Hammack [5]
sont mis en évidence par l’observation de l’évolution temporelle de la surface libre et présentent des
différences avec le cas 1D. Les champs de vitesse sous la surface caractérisent eux aussi ces différents
régimes puisqu’ils présentent des structures spatiales et des évolutions temporelles spécifiques.
Cette partie a été réalisée en collaboration avec le postdoctorant Leonardo Gordillo et des expériences
préliminaires avaient été effectuées par Gerardo Ruiz-Chavarría, professeur invité à MSC.



Chapitre 2

Dispositif expérimental

La présente étude s’intéresse à la génération d’ondes de surface par les mouvements verticaux d’un
fond mobile. Nous décrivons donc ici le dispositif permettant l’observation de tels phénomènes par
la production d’impulsions verticales bien définies et la mesure simultanée du champ de vitesse sous
la surface et des déformations de la surface libre.

2.1 Présentation de l’expérience

Le dispositif expérimental mis en place pour l’étude des ondes de surface générées par un fond
mobile consiste en une cuve carrée de 1.1m de côté, remplie d’eau jusqu’à une hauteur de quelques
centimètres (Fig. 2.1). Son fond a été troué en son centre de façon circulaire (rayon r2 = 3.25 cm)
et recouvert d’une membrane élastique. Afin de générer des ondes de surface, la membrane subit
des déformations verticales impulsionnelles de quelques millimètres d’amplitude, au moyen d’un
piston circulaire (rayon r1 = 2.5 cm) situé sous la membrane et relié à un vibreur électromagnétique
(VTS-100 Vibration Generator).

water + PSP

basin
(110 cm × 110 cm)

shaker + piston

elastic sheet

vibrometer

laser sheet
generator

high-speed
camera

Figure 2.1 – Dispositif expérimental pour l’étude des ondes de surface générées par un fond mobile.

Le mouvement du fond est alors axisymétrique et peut être décrit comme le produit d’une fonction
spatiale et d’une fonction temporelle :
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ζ(r, t) = ζmα(r)β(t). (2.1)

ζm est l’amplitude de la déformation, α(r) est le profil spatial selon la coordonnée radiale r et β(t)
est la fonction temporelle de déplacement imposée par le vibreur (Fig. 2.2). En notant τb le temps
caractéristique de montée du fond, le déplacement peut être de type exponentiel :

βexp (t) = 1− e−t/τb (2.2)

ou sinusoïdal :

βsin (t) =

sin2 πt

2τb
si t ≤ τb

1 si t > τb

(2.3)

Ces deux types d’impulsion sont représentatifs de fonctions temporelles plus générales, corres-
pondant à des déplacements à vitesse initiale respectivement non nulle (βexp(t ∼ 0) ∝ t) et nulle
(βsin(t ∼ 0) ∝t∼0 t

2).

bottom motion function
ζ ( r, t ) = ζm α ( r )β( t) ×

r 1 r 2

1 r (cm)

spatial profile α ( r )

1 − e− t/τ b

sin2 (πt/ 2τb)
1

t (s)

temporal function β( t)

Figure 2.2 – Décomposition de la déformation du fond en un produit du profil spatial (à gauche) et
d’une fonction temporelle (à droite). La fonction temporelle représentée en bleu (resp. rouge) correspond
au déplacement de type exponentiel βexp (resp. sinusoïdal βsin).

La vitesse de déplacement du vibreur est mesurée par un vibromètre laser, représenté sur la Fig. 2.1
(Polytec OFV-5000 Vibrometer Controller – OFV-505 Vibrometer Sensor Head). Le principe est
le suivant : le vibromètre émet un faisceau laser, qui, après réflexion sur une partie mobile du
vibreur, est renvoyé vers l’appareil. La fréquence de l’onde réfléchie est modifiée par effet Doppler.
La différence entre les fréquences des signaux émis et reçus est alors mesurée par l’interférence des
deux faisceaux, ce qui permet de calculer la vitesse du vibreur.
Pour obtenir les impulsions voulues β(t), le signal temporel à communiquer au vibreur est obtenu
par un algorithme détaillé dans la section 2.2. Le champ de vitesse est déterminé grâce à la véloci-
métrie par images de particules (PIV, section 2.3.1) et la déformation de la surface libre est mesurée
par transformée de Radon sur les images de PIV (voir section 2.3.2). Dix réalisations sont effectuées
pour chaque jeu de paramètres afin d’améliorer la précision des mesures. Les parois latérales du
bassin sont suffisamment éloignées de la zone de déformation pour qu’aucune onde ne soit réfléchie
pendant la génération ou la mesure.

2.2 Génération d’impulsions

2.2.1 Réponse en fréquence du vibreur

La génération d’impulsions de formes et de durées contrôlées nécessite la prise en compte de la
réponse du vibreur. En effet, pour des temps de montée inférieurs à quelques dixièmes de secondes,
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l’évolution temporelle du vibreur ne suit pas celle du signal électrique reçu. Si le comportement du
vibreur est linéaire et invariant temporel, on peut définir une réponse impulsionnelle h(t) telle que
[20] :

b(t) = h(t) ∗ u(t) ≡
∫ +∞

−∞
h(t− τ)u(τ)dτ (2.4)

où b(t) est la fonction temporelle de déplacement du vibreur et u(t) la tension appliquée en entrée.
b(t) est alors le produit de convolution de la réponse impulsionnelle et de la tension en entrée du
vibreur. La transformée de Fourier F de la réponse impulsionnelle est la réponse en fréquence f du
vibreur H(f) :

H(f) ≡ F {h(t)} (f) ≡
∫ +∞

−∞
h(t)e−i2πftdt (2.5)

qui satisfait l’équation suivante :

B(f) = H(f).U(f) (2.6)

où B(f) et U(f) sont les transformées de Fourier respectives de b(t) et u(t). Les Eqs (2.4) et (2.6)
sont alors équivalentes.
Disposant ici de signaux expérimentaux constituées de données temporelles discrètes, nous utilisons
des transformées de Fourier discrètes calculées par l’algorithme de transformée de Fourier rapide
(FFT). Par abus de langage, nous confondrons donc FFT et transformée de Fourier. Nous avons
mesuré la réponse en fréquence du vibreur en appliquant en entrée un bruit blanc filtré sur plusieurs
bandes de fréquences complémentaires entre 10−2 et 104 Hz et en mesurant le déplacement du vibreur
correspondant grâce au vibromètre laser. D’après l’Eq. (2.6), H(f) peut alors être déduit du rapport
des FFT des deux signaux.
La Fig. 2.3 représente sa valeur absolue |H(f)| en fonction de la fréquence. On observe qu’au-delà
de 1Hz, l’amplitude de déplacement du vibreur décroît fortement avec la fréquence, ce qui explique
que le vibreur ne suive pas les variations rapides du signal électrique reçu.
En supposant que le comportement du vibreur est linéaire, on peut déterminer, à partir de
l’Eq. (2.6), le signal corrigé ucor(t) à envoyer au vibreur afin d’obtenir le déplacement voulu βth(t) :

ucor(t) = F−1
{
F {βth(t)}
H(f)

}
(2.7)

La Fig. 2.4 représente un exemple de signal corrigé envoyé au vibreur et le déplacement obtenu.
On remarque qu’un pic de tension au début de l’impulsion (t = 0) permet de compenser la faible
réponse du vibreur à haute fréquence. Cependant, le déplacement obtenu de cette manière reste
différent du déplacement voulu.
Ce désaccord est dû au comportement non linéaire du vibreur. Par exemple, la gravité crée une
asymétrie entre les mouvements du vibreur dirigés vers le haut et vers le bas. Par ailleurs, outre les
non-linéarités internes du vibreur, les forces extérieures exercées sur le vibreur, liées à la hauteur
d’eau ou la tension élastique de la membrane, dépendent de l’amplitude du mouvement et varient
au cours de la déformation.
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Figure 2.3 – Valeur absolue de la réponse en fréquence du vibreur |H(f)| en fonction de la fréquence f .
H(f) est obtenue selon l’Eq. 2.6 par la mesure de l’amplitude de déplacement du vibreur et de la tension
appliquée.
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Figure 2.4 – Obtention d’une déformation du fond de type exponentiel (temps de montée τb = 20 ms,
amplitude ζm = 2mm) avec prise en compte du spectre de réponse en fréquence. Les lignes représentent le
signal envoyé au vibreur après correction selon l’Eq. (2.7) (rouge), la déformation du fond obtenue (bleu)
et celle voulue (noir).

2.2.2 Algorithme par affinements successifs

A notre connaissance, il n’existe pas de méthode pour ce type de situation, l’asservissement n’étant
pas suffisamment précis. Pour prendre en compte les non-linéarités du système, nous avons eu l’idée
de concevoir un algorithme, mis en pratique avec Matlab, fonctionnant par affinements successifs.
Il permet de déterminer une fonction de réponse en fréquence effective, spécifique au mouvement
du vibreur désiré. Nous décrivons ici son fonctionnement. Pour un déplacement voulu βth, une
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impulsion u1 de même forme est tout d’abord envoyée au vibreur. L’évolution réelle du piston β1 est
alors mesurée par le vibromètre laser (Fig. 2.5). Le ratio des FFT de β1 et u1 fournit une fonction
de réponse effective H1.

H1(f) = F {β1(t)}
F {u1(t)} (2.8)

Sur le modèle de l’Eq. (2.7), on peut calculer une impulsion corrigée u2 qui est alors à nouveau
envoyée au vibreur :

u2 = F−1
{
F {βth(t)}

H1

}
(2.9)

Comme le montre la Fig. 2.5, le déplacement obtenu β2 reste différent du déplacement voulu βth.
Cependant, le ratio des FFT de β2 et u2 fournit une fonction de réponse effective H2 plus spécifique
au déplacement voulu que H1 car elle est calculée avec des signaux proches de ce cas précis. Comme
précédemment, on peut alors calculer un nouveau signal corrigé u3. Le signal à envoyer au vibreur
peut donc être obtenu par affinements successifs :

uj+1 = F−1
{
F {βth(t)}
F {βj(t)}

.F {uj(t)}
}
, j = 1, 2, 3, ... (2.10)

Le ratio F {βth(t)} /F {βj(t)} dans l’Eq. (2.10) joue finalement le rôle de facteur correctif pour
chaque composante fréquentielle du signal envoyé au vibreur. Nous observons sur la Fig. 2.5 qu’après
une série de cinq corrections, la différence entre l’impulsion voulue l’impulsion mesurée est très faible.
En pratique, elle ne dépasse jamais 5%.
Cette méthode permet d’obtenir des déplacements très rapides grâce au pic de tension envoyé au
démarrage. Ainsi pour une impulsion d’amplitude ζm = 5mm, on peut atteindre un temps de montée
inférieur à 10ms, alors que le temps de réponse du vibreur pour un échelon de tension correspondant
est de l’ordre de 100ms. L’algorithme que nous avons développé dans le cadre de cette thèse permet
alors d’atteindre les régimes de déformation rapide du fond nécessaires pour cette expérience. Il
pourrait bien sûr être utilisé pour d’autres applications nécessitant la production de mouvements
courts et contrôlés par un vibreur ou tout autre appareil présentant un comportement non linéaire.

Mise en pratique

Il est à noter que l’utilisation de la FFT suppose que le signal traité est périodique, la partie
considérée constituant alors une période. Il faut donc veiller à ce que les valeurs au début et à la fin
du signal soient identiques pour ne pas introduire de hautes fréquences liées à une discontinuité du
signal au bord. Dans notre cas, la fonction de déplacement complète est par conséquent constituée
successivement d’une phase de 5 s au repos, une montée de durée caractéristique τb, une pause de 5 s,
une redescente puis une pause d’environ 10 s pour s’assurer que le vibreur est effectivement revenu
à son niveau de repos (voir Fig. 2.6).
Par ailleurs, dans le cas de l’impulsion exponentielle βexp, le début de la déformation voulue implique
une discontinuité en vitesse en t = 0 qui correspond à une accélération infinie initiale (voir Fig. 2.7).
Pour ce démarrage, l’algorithme produit alors un pic de tension à envoyer au vibreur qui tend vers
l’infini. Pour ne pas entraver le bon fonctionnement de l’algorithme, nous avons remplacé la partie
en question par un polynôme du troisième degré d’une durée de 1ms (voir Fig. 2.7). Cette durée
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Figure 2.6 – Déplacement complet du vibreur lors d’une mesure pour une déformation du fond de type
exponentiel (τb = 20 ms, ζm = 2mm).

est suffisante pour éviter toute saturation en tension dans l’ensemble des mesures effectuées. Le
polynôme est déterminé en imposant des conditions aux limites de continuité avec la fonction βexp
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ainsi que sa dérivée temporelle.

−1 −0.5 0 0.5 1

0

2

4

6

8

10
x 10

−5

t (ms)

β ex
p (

m
m

)

 

 

Déplacement initial voulu β
exp

Déplacement modifié

Figure 2.7 – Zoom sur le démarrage d’une impulsion de type exponentiel (τb = 20 ms, ζm = 2mm).
Déplacement initial voulu (noir) et déplacement modifié pour éviter la production d’un pic de tension infini
(bleu).

2.3 Techniques de mesures

Les expériences réalisées permettent la mesure simultanée sur les mêmes images du champ de
vitesse sous la surface et des déformations de la surface libre. Pour cela, on analyse le mouvement
de particules isodensité dispersées dans l’eau et d’autres piégées à la surface libre.

2.3.1 Vélocimétrie par images de particules (PIV)

Le champ de vitesse au sein du liquide a été mesuré par vélocimétrie par images de particules (Par-
ticle Image Velocimetry - PIV). Des particules de polyamide (diamètre 50µm) diffusant la lumière
sont dispersées dans le volume du fluide et une nappe laser éclaire une tranche verticale du fluide
passant par le centre du bassin. Une caméra rapide Phantom (V9) est placée perpendiculairement
à la nappe laser (voir Fig. 2.1). Le champ de vitesse est déterminé à partir du déplacement local de
particules entre deux images successives.
L’algorithme de PIV a été réalisé par Leonardo Gordillo et est détaillé dans sa thèse [21]. Le principe
est le suivant : les images enregistrées par la caméra sont découpées en fenêtres d’interrogation carrées
(par exemple 64×64 pixels) au sein desquels on calcule la fonction de corrélation croisée spatiale 2D
entre deux images successives. La position du maximum de la fonction de corrélation correspond
alors au déplacement moyen des particules contenues dans la fenêtre d’interrogation considérée. On
accède ensuite à des fenêtres d’interrogation de taille plus petite (par exemple 32 puis 16 pixels de
côté), et donc à une meilleure résolution, par une méthode itérative avec raffinements successifs [22] :
les fenêtres d’interrogation de 32 pixels de la deuxième image sont translatées du déplacement calculé
pour la fenêtre d’interrogation de 64 pixels qui la contient (voir Fig. 2.8). Ceci permet d’obtenir un
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nombre maximal de particules en commun entre les fenêtres d’interrogation des deux images et ainsi
d’améliorer les résultats de la PIV.

Figure 2.8 – La fenêtre d’interrogation de la deuxième image (à droite) subit un décalage prédit par des
calculs à plus grande échelle pour que les fenêtres d’interrogation des deux images aient le maximum de
particules en commun. Source de l’image : [23]

Le caractère axisymétrique du dispositif et l’absence de vitesse orthoradiale permettent ainsi de
connaître le champ de vitesse 3D dans l’ensemble du fluide à partir de ces mesures.

Mise en pratique

La reproductibilité des expériences permet de réaliser 10 mesures pour chaque jeu de données. La
superposition de 10 images à chaque instant permet d’augmenter la densité de particules sur chaque
image et d’améliorer les résultats [24] (voir Fig. 2.9).
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Figure 2.9 – Exemple d’image utilisée pour le traitement PIV. z est la profondeur du fluide et r le rayon
depuis le centre de la cuve.

Pour éviter la sédimentation des particules de polyamide, du sel est dissout dans l’eau avec une
concentration massique de 2.7% pour obtenir la même densité que celle des particules (d = 1.03).
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2.3.2 Détection de la surface libre par transformée de Radon

Dans le cas linéaire, la mesure de la déformation de la surface libre est réalisée sur les mêmes images
que les mesures de PIV. Au-delà de l’intérêt de mesurer simultanément la surface libre et le champ
de vitesse, ceci permet d’améliorer l’algorithme de PIV. En effet, sur les images de la caméra, la
surface libre joue le rôle d’un miroir pour les particules de PIV car l’angle d’incidence des rayons
lumineux est important. Des particules fantômes apparaissent alors au-dessus de la surface libre sur
les images analysées (voir Fig. 2.9). Si ces particules sont contenues dans les fenêtres d’interrogation
de PIV, elles faussent les mesures du champ de vitesse. La détection de la surface libre rend possible
la création de masques dynamiques afin de supprimer, sur les images, les particules situées au-dessus
de l’interface.
Pour cela, la surface est recouverte de particules de polyamide de 50µm. Ces dernières flottent
par effet de tension de surface et forment une ligne identifiable mais discontinue (voir Fig. 2.9). La
détection par transformée de Radon est alors adaptée à ce type de situation. Le principe, décrit par
Sanchis et Jensen [25], est de découper l’image en une succession de fenêtres autour de la surface.
On cherche dans chaque fenêtre la plus lumineuse des lignes définies par :

ρ− x cos θ − y sin θ = 0 (2.11)

avec ρ la distance au centre de l’image et θ l’angle avec la verticale (voir Fig. 2.10).

Figure 2.10 – Schéma du principe de la transformée de Radon. Source de l’image : [25]

La transformée de Radon intègre l’intensité lumineuse I(x, y) le long de ces lignes :

R(ρ, θ) =
x

I(x, y)δ(ρ− x cos θ − y sin θ)dxdy (2.12)

avec δ la fonction de Dirac. En faisant parcourir à ρ et θ un espace limité aux valeurs plausibles, on
calcule les valeurs pour lesquelles R est maximal. La transformée de Radon détecte ainsi la ligne la
plus lumineuse de chaque fenêtre. Une ligne continue est alors obtenue en interpolant les segments
calculés sur l’ensemble des fenêtres le long de la surface libre. Pour chaque série de mesures, les
résultats sont moyennés sur 10 mesures identiques. Un exemple de surface détectée est tracé sur la
Fig. 2.9.
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Chapitre 3

Outils théoriques

3.1 Théorie linéaire

Nous présentons ici la théorie linéaire des ondes de surface générées par un fond mobile proposée
par Hammack [5]. Nous considérons le cas axisymétrique 1 développé en partie dans sa thèse [4] et
que nous complétons, notamment par le calcul des champs de vitesse.
Nous nous plaçons dans un domaine de fluide D, muni d’un repère en coordonnées cylindriques
(r,θ,z), situé entre le fond du bassin et la surface libre, et supposé infini horizontalement. La coor-
donnée z = 0 est définie par la surface libre au repos. En notant h la hauteur d’eau, le fond non
déformé est alors défini par z = −h. Les variables sont supposées indépendantes de θ en raison
de la symétrie axiale du problème. Pour t > 0, la surface libre est décrite par z(r, t) = η(r, t) et
le fond est décrit par z(r, t) = −h + ζ(r, t), où ζ(r, t) = ζmα(r)β(t) est le produit de l’amplitude
de la déformation ζm, du profil spatial α(r) et de la fonction temporelle de déplacement β(t) (voir
section 2.1). On suppose par ailleurs limr→∞ ζ(r, t) = 0.
Nous écrivons maintenant les équations de la mécanique des fluides dans l’hypothèse d’un écou-
lement irrotationnel. Il existe donc un potentiel de vitesse φ(r, z, t), tel que v = ∇φ, où v est le
vecteur vitesse. Comme le fluide est incompressible, ∇.v = 0 et φ satisfait l’équation de Laplace
dans le domaine D :

∆φ = ∂2φ

∂r2 + 1
r

∂φ

∂r
+ ∂2φ

∂z2 = 0 (3.1)

Les conditions aux limites à la surface libre et au fond peuvent respectivement s’écrire :
∂φ

∂z
= ∂η

∂t
+ ∂φ

∂r

∂η

∂r
en z = η(r, t) (3.2)

∂φ

∂z
= ∂ζ

∂t
+ ∂φ

∂r

∂ζ

∂r
en z = −h+ ζ(r, t) (3.3)

On considère par ailleurs que l’écoulement est non visqueux et que les effets capillaires sont négli-
geables 2. La condition dynamique à la surface libre peut alors s’écrire :

∂φ

∂t
+ 1

2 |∇φ|
2 + gη = 0 en z = η(r, t) (3.4)

1. Le caractère axisymétrique de la déformation de la surface libre a été vérifié a posteriori dans les expériences.
2. Ces hypothèses sont justifiées dans la partie 3.c de l’article reproduit en section 4.2.
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Hammack [5] a montré que trois régimes de déformation du fond peuvent être considérés : le cas
rapide ou impulsionnel lorsque le temps caractéristique de déformation τb est petit devant la demi-
période de la vague τw (τb � τw) ; le régime lent ou rampant, pour lequel τb � τw ; et le régime
intermédiaire pour lequel τb ∼ τw. Pour le cas rapide, Hammack a montré qu’il était possible de
linéariser le système d’équations (3.1)-(3.4) pour l’aspect génération si l’amplitude de la déformation
du fond est négligeable devant la hauteur d’eau : ζm/h � 1. Dans le cas lent, aucune condition de
linéarité n’est requise lors de la génération.
Dans le cadre de notre étude expérimentale, ζm/h = 0.06 pour le cas rapide et évolue progressi-
vement jusqu’à ζm/h = 0.2 pour le cas lent. Nous linéarisons le système d’équations (3.1)-(3.4) en
négligeant les termes non linéaires et les nouvelles équations sont appliquées au fond et à la surface
libre au repos (non déformées). Le système d’équations devient :

∂2φ

∂r2 + 1
r

∂φ

∂r
+ ∂2φ

∂z2 = 0 (3.5)

∂φ

∂z
− ∂η

∂t
= 0 en z = 0 (3.6)

∂φ

∂z
− ∂ζ

∂t
= 0 en z = −h (3.7)

∂φ

∂t
+ gη = 0 en z = 0 (3.8)

Les Eqs (3.6) et (3.8) peuvent être combinées pour donner la condition à la surface libre suivante :

∂2φ

∂t2
+ g

∂φ

∂z
= 0 en z = 0 (3.9)

Nous pouvons désormais utiliser des transformées intégrales pour résoudre ce système d’équations
linéaires. Elles vont permettre de remplacer les dérivées radiales et temporelles par des produits.
Comme les variables du problème sont définies uniquement pour t ≥ 0, nous appliquons la transfor-
mée de Laplace dans le domaine temporel :

f̃(s) ≡ L{f(t)} (s) ≡
∫ +∞

0
f(t)e−stdt (3.10)

Dans le domaine spatial, nous utilisons la transformée de Hankel d’ordre zéro, qui est équivalente
à la transformée de Fourier 2D pour une géométrie cylindrique :

f̂ (k) ≡ H0 {f(r)} (k) ≡
∫ +∞

0
rJ0 (kr) f (r) dr (3.11)

où J0 est la fonction de Bessel de première espèce et d’ordre zéro. En appliquant ces deux trans-
formées aux Eqs (3.5), (3.9), (3.7) et (3.6), et en notant que H0

{
d2f

dr2 + 1
r

df

dr

}
(k) = −k2f̂(k), on

obtient :
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∂2 ˜̂
φ(k, z, s)
∂z2 − k2 ˜̂

φ(k, z, s) = 0 (3.12)

∂
˜̂
φ(k, z, s)
∂z

∣∣∣∣∣
z=0

+ s2

g
˜̂
φ(k, 0, s) = 0 (3.13)

∂
˜̂
φ(k, z, s)
∂z

∣∣∣∣∣
z=−h

− s ˜̂
ζ(k, s) = 0 (3.14)

∂
˜̂
φ(k, z, s)
∂z

∣∣∣∣∣
z=0

− s˜̂η(k, s) = 0 (3.15)

L’Eq. (3.12) est une équation différentielle dont les solutions sont de la forme :

˜̂
φ(k, z, s) = A(k, s) cosh kz +B(k, s) sinh kz (3.16)

L’utilisation des conditions aux limites décrites par les Eqs (3.13) et (3.14) mènent à :

˜̂
φ(k, z, s) = gs

˜̂
ζ(k, s)

(s2 + ω(k)2) cosh kh

(
s2

gk
sinh kz − cosh kz

)
(3.17)

où ω(k) =
√
gk tanh kh est la relation de dispersion des ondes de gravité.

La déformation du fond étant séparable en temps et en espace, c’est également le cas de sa trans-
formée : ˜̂

ζ(k, s) = ζmα̂(k)β̃(s). Il vient donc :

φ (r, z, t) = H−1
0

{
ζmα̂ (k)
cosh kh · L

−1
{

gsβ̃ (s)
s2 + ω (k) 2

(
s2

gk
sinh kz − cosh kz

)}
(k, z, t)

}
(3.18)

L’Eq. (3.6) permet alors d’obtenir la déformation de la surface libre :

η (r, t) = H−1
0

{
ζmα̂ (k)
cosh kh · L

−1
{

s2β̃ (s)
s2 + ω (k) 2

}
(k, t)

}
(3.19)

Hammack ne s’est pas intéressé au champ de vitesse dans le cadre de son étude. Toutefois,
l’Eq. (3.18) donne accès à la vitesse puisque v = ∇φ. En remarquant que H1

{
df

dr

}
(k) = kH0{f}(k)

avec H1 la transformée de Hankel d’ordre un 3, on a :

vr(r, z, t) = H−1
1 {kφ̂(k, z, t)} = H−1

1

{
kζmα̂ (k)
cosh kh · L

−1
{

gsβ̃ (s)
s2 + ω (k) 2

(
s2

gk
sinh kz − cosh kz

)}
(k, z, t)

}
(3.20)

3. La transformée de Hankel d’ordre un est définie de la même manière que la transformée de Hankel d’ordre zéro
(voir Eq. (3.11)) en remplaçant la fonction de Bessel d’ordre zéro, J0, par une fonction de Bessel d’ordre un, J1.
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vz(r, z, t) = H−1
0

{
∂φ̂(k, z, t)

∂z

}
= H−1

0

{
ζmα̂ (k)
cosh kh · L

−1
{

gsβ̃ (s)
s2 + ω (k) 2

(
s2

g
cosh kz − k sinh kz

)}
(k, z, t)

}
(3.21)

Les Eqs (3.18)-(3.21) vont permettre de comparer les résultats expérimentaux du chapitre 4 aux
prédictions de la théorie linéaire. Pour cela, il est nécessaire de calculer les transformées de Laplace
et de Hankel ainsi que leurs inverses qui interviennent dans ces équations. Nous détaillons dans la
section suivante comment ces transformées intégrales sont estimées en pratique.

3.2 Implémentation numérique

3.2.1 Transformée de Laplace

Les transformées de Laplace, intervenant dans les Eqs (3.18)-(3.21), peuvent être calculées de façon
analytique pour les fonctions temporelles utilisées dans l’expérience, βexp et βsin (Eq. (2.2)-(2.3)) [5] :

β̃exp(s) = 1
s(τbs+ 1) (3.22)

β̃sin(s) = π2(1 + e−sτb)
2s(τ 2

b s
2 + π2) (3.23)

Ces expressions peuvent alors être injectées dans les Eqs (3.18)-(3.21). Les transformées de Laplace
inverses peuvent également être calculées de façon analytique, en utilisant notamment le théorème
des résidus et le fait que pour une fonction f , L−1 {e−csf̃(s)

}
= H(t− c)f(t− c), avec H la fonction

de Heaviside. A titre d’exemple, les déformations de la surface libre peuvent respectivement s’écrire :

ηexp(r, t) = H−1
0

{
ζmα̂(k)
cosh kh

1
1 + τ 2

b ω(k)2 [cosωt+ τbω sinωt− e−αt]
}

(3.24)

ηsin(r, t) = H−1
0

{
ζmα̂(k)

2 cosh kh
π2

π2 − τ 2
b ω

2 [cosωt− cosπt/τb +H(t− τb)(cosω(t− τb) + cosπt/τb)]
}

(3.25)

Il est à noter qu’il n’existe pas à notre connaissance de transformée de Laplace discrète pour
laquelle le couple transformée/transformée inverse peut être aisément calculé à partir d’un signal
discret arbitraire. Pour décrire la déformation du fond, il est donc nécessaire d’utiliser des fonctions
temporelles analytiques pour lesquelles les transformées de Laplace peuvent être calculées.
Après que les transformées de Laplace des Eqs (3.18)-(3.21) et leurs inverses ont été calculées, il
reste donc à évaluer les transformées de Hankel et leurs inverses comme celles présentes dans les
Eqs (3.24) et (3.25).

3.2.2 Transformée de Hankel

La transformée de Hankel H0 du profil spatial de la déformation du fond peut être calculée analyti-
quement. En revanche, les transformées de Hankel inversesH−1

0 etH−1
1 dans les Eqs (3.18)-(3.21) sont
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compliquées et il ne nous est pas possible d’en donner une expression analytique. Nous avons donc
écrit un algorithme pour les calculer numériquement à l’aide de transformées de Hankel discrètes.
Pour cela, nous nous inspirons des travaux de Yu et al. [26], qui utilisent les séries de Fourier-Bessel
pour évaluer les transformées de Hankel d’ordre zéro. Cette méthode a par ailleurs été étendue aux
transformées de Hankel d’ordres supérieurs [27]. Les séries de Fourier-Bessel pour la transformée de
Hankel sont équivalentes aux séries de Fourier pour la transformée de Fourier.
Une fonction réelle f définie sur un intervalle [0, a] (a > 0) peut être décomposée en une série de
Fourier-Bessel sous la forme :

f(r) =
∞∑
m=1

cpmJp

(
αpm

r

a

)
, 0 ≤ r ≤ a (3.26)

avec αpm la mème racine de la fonction de Bessel Jp de première espèce et d’ordre p et :

cpm = 2
a2J2

p+1(αpm)

∫ a

0
f(r)Jp

(
αpm

r

a

)
rdr (3.27)

On suppose qu’on peut choisir a tel que f(r > a) = 0. Alors :

∫ a

0
f(r)Jp

(
αpm

r

a

)
rdr =

∫ ∞
0

f(r)Jp
(
αpm

r

a

)
rdr = f̂p

(αpm
a

)
(3.28)

avec f̂p = Hp{f} la transformée de Hankel d’ordre p de la fonction f . La fonction f peut alors
s’écrire :

f(r) =
∞∑
m=1

2Jp
(
αpm

r
a

)
a2J2

p+1(αpm) f̂p
(αpm
a

)
, 0 ≤ r ≤ a (3.29)

L’Eq. (3.29) permet ainsi de calculer les transformées inverses des Eqs (3.18)-(3.21) et donc d’ac-
céder aux vitesses et aux déformations de toute la surface libre sur le domaine de rayon inférieur à
a.

Mise en pratique

La valeur a intervenant dans l’Eq. (3.29) doit être choisie de telle sorte que les grandeurs calculées
soient nulles pour r > a. Nous choisissons donc toujours a plus grand que la distance maximale
parcourue par les ondes sur la durée considérée. Dans le cadre de ce travail, les mesures durent 1 s
et les vitesses de propagation sont de l’ordre de 0.5m.s−1. La valeur a = 0.7m est donc choisie.
Par ailleurs, le nombre de racines connues pour les fonctions de Bessel étant fini, on remplace la
borne ∞ de la somme dans l’Eq. (3.29) par la borne N lors des calculs. C’est la convergence de la
somme qui détermine cette borne. On remarque que cette convergence a lieu lorsque les fréquences
spatiales atteintes correspondent à une résolution spatiale adéquate, de l’ordre du centimètre pour
notre problème. Pour les calculs de cette partie, nous avons choisi N = 3000, soit une résolution
spatiale de 0.2mm.
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3.3 Conclusion

Nous avons donc décrit ici la théorie linéaire de Hammack qui s’applique aux ondes générées
par une déformation du fond axisymétrique. Le calcul aboutit aux Eqs (3.18)-(3.21) exprimant
analytiquement les déformations de la surface libre et les vitesses dans le fluide lors d’une telle
déformation. L’accès à ces grandeurs se fait par le calcul des transformées de Laplace et de Hankel
et de leurs inverses, qui interviennent dans les Eqs (3.18)-(3.21). Nous avons alors présenté la façon
dont elles sont calculées afin d’accéder aux déformations de la surface libre et aux vitesses dans
l’ensemble du domaine de fluide affecté par les déformations du fond et les ondes de surface générées.



Chapitre 4

Résultats

4.1 Résumé

Les résultats obtenus dans le cadre de cette étude ont fait l’objet d’un article publié dans Proceedings
of the Royal Society A [19], reproduit dans la section suivante. Avec le dispositif expérimental décrit
dans le chapitre 2, nous étudions le rôle des caractéristiques spatiotemporelles de la déformation du
fond sur la génération des ondes de surface dans le régime linéaire. La cuve carrée de 1m de côté
est remplie d’une hauteur d’eau h = 2.5 cm. Le piston circulaire situé au fond de la cuve, de rayon
r1 = 2.5 cm, subit alors une impulsion verticale de forme temporelle exponentielle ou sinusoïdale, de
durée caractéristiques τb ∈ [10; 500]ms et d’amplitude ζm ∈ [1.5; 5.0]mm. Comme dans le cas 1D de
Hammack [5], trois régimes peuvent être distingués à partir du rapport, τ̄ ≡ τb/τw, entre le temps
caractéristique de déformation du fond τb et la demi-période de l’onde générée τw ≈ 130ms : le cas
rapide (τ̄ � 1), le cas lent (τ̄ � 1) et le cas intermédiaire (τ̄ ∼ 1).
Nous montrons que les champs de vitesse sous la surface illustrent bien la transition entre ces trois
régimes. Dans le cas rapide, pendant la déformation du fond, on observe un mouvement d’ensemble
vertical du liquide situé au-dessus de la zone déformée (voir Fig. 3.a de l’article). Le champ de vitesse
à la surface est alors vertical. A la fin de la déformation, le fluide est immobile. Nous montrons ainsi
qu’il n’y a pas d’inertie avant que l’onde commence à se propager. Dans le cas intermédiaire, la
propagation de l’onde débute avant la fin de la déformation du fond, ce qui entraîne la coexistence
d’un champ de vitesse initié par cette déformation et un autre lié à la propagation de l’onde (voir
Fig. 3.b de l’article). Enfin, dans le cas lent, la surface libre est presque immobile et la composante
verticale de la vitesse devient nulle à la surface (voir Fig. 3.c de l’article). Le champ de vitesse est
alors orienté vers l’extérieur de la zone déformée et ressemble à l’écoulement non visqueux d’un jet
face à une paroi.
Les déformations de la surface libre ont également été analysées. Dans le cas rapide (τ̄ � 1),
on observe, comme dans le cas 1D [5], que l’amplitude et la forme spatiale de la surface libre à
la fin de la déformation du fond (t = τb) sont indépendantes de τb et du type d’impulsion (voir
Fig. 5 de l’article). Le profil spatial de la surface libre est égal à celui de la déformation finale du
fond filtré par un filtre passe-bas (voir Fig. 6.a de l’article). A la fin d’une déformation rapide du
fond, le liquide est donc immobile et la structure spatiale de la surface libre est indépendante de la
forme temporelle de l’impulsion. L’onde générée et son évolution temporelle lors de la propagation
sont alors également indépendantes des paramètres temporels de la déformation du fond. Nous
retrouvons là le cas instantané souvent considéré dans les simulations numériques de tsunamis des
systèmes d’alerte en temps réel. Nous avons vu dans le chapitre 1 d’introduction que ces codes
numériques utilisent souvent une condition initiale immobile pour la propagation des tsunamis qui
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est la translation directe de la déformation finale du fond à la surface libre. Cette approche est donc
en partie validée pour les déformations du fond rapides, sauf que ces simulations ne prennent pas en
compte l’effet du filtre passe-bas spatial, qui joue un rôle lorsque la hauteur d’eau n’est pas petite
devant l’étendue de la zone déformée.
Lorsque τ̄ & 1, l’onde de surface générée n’est plus indépendante des paramètres temporels de la
déformation du fond et l’amplitude de l’onde générée diminue avec τ̄ (voir Fig. 5 de l’article) puisque
la propagation a lieu avant la fin du mouvement du fond. Pour τ̄ � 1, l’amplitude maximale de
l’onde évolue alors comme τ̄−1 si l’impulsion est de type exponentiel et comme τ̄−7/4 si elle est de
type sinusoïdal. Ce dernier résultat est différent du cas 1D [5] pour lequel une évolution en τ̄−1

était observée pour les deux types d’impulsion. Par ailleurs, l’ensemble des résultats expérimentaux
sont trouvés en bon accord avec la théorie linéaire de Hammack présentée dans la section 3.1. Ils
mettent en évidence que la colonne d’eau située au-dessus de la zone déformée joue le rôle d’un filtre
passe-bas spatial couplé avec un filtre passe-haut temporel.
Enfin, nous avons montré dans cet article que dans le système d’équations, pendant l’étape de
déformation du fond, le cas rapide (τ̄ � 1) correspond à une gravité nulle et le cas lent (τ̄ � 1) à
une gravité infinie. Le caractère ondulatoire des déformations de la surface libre n’intervient donc
pas. Ces deux cas asymptotiques peuvent alors être décrit par des systèmes d’équations simplifiés,
où la déformation de la surface libre est découplée du champ de vitesse. Le potentiel vitesse est
alors décrit par l’équation de Laplace associée à des conditions aux limites bien définies en z = 0 et
z = −h. Dans le cadre de ces approximations, la structure spatiale du champ de vitesse est conservée
tout au long du mouvement du fond (voir notamment les lignes de courant en gris sur les Figs 3.a et
c) et l’amplitude des vecteurs vitesses est simplement proportionnelle à la vitesse de déformation du
fond. Dans le cas rapide, la forme spatiale de la surface libre est également conservée tout au long du
mouvement du fond et l’amplitude de déformation est proportionnelle à l’amplitude de déformation
du fond. Dans le cas lent, la surface libre est immobile.
Dans les cas lent et rapide, il est alors possible d’obtenir l’ensemble des caractéristiques spatiotem-
porelles du système à partir d’un calcul unique. La simplification des systèmes d’équation permet
de plus de les résoudre dans des cas où la profondeur d’eau n’est pas uniforme, ce qui n’est pas le
cas de la théorie linéaire de Hammack [5]. Nous avons ainsi réalisé une expérience de déformation
rapide du fond dans le cas où le piston était surélevé avant le début de la déformation d’une hauteur
ζ0 = 9mm dans une eau de profondeur h∞ = 30mm. Nous montrons que la forme de la surface
libre obtenue à la fin de la déformation du fond est bien prédite par le nouveau système d’équations.
Cette approche a l’avantage d’avoir un coût de calcul faible et de s’adapter aux profondeurs d’eau
non uniforme, une situation fréquemment rencontrée près des zones de subduction qui donnent nais-
sance aux tsunamis. A terme, elle pourrait être utilisée dans les simulations numériques en temps
réel pour déterminer la structure spatiale de la surface libre à la fin d’une déformation rapide du
fond.

4.2 Article publié dans Proceedings of the Royal So-
ciety [19]
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We report laboratory experiments on surface waves
generated in a uniform fluid layer whose bottom
undergoes an upward motion. Simultaneous measure-
ments of the free-surface deformation and the fluid
velocity field are focused on the role of the bottom
kinematics (i.e. its spatio-temporal features) in wave
generation. We observe that the fluid layer transfers
bottom motion to the free surface as a temporal high-
pass filter coupled with a spatial low-pass filter. Both
filter effects are often neglected in tsunami warning
systems, particularly in real-time forecast. Our results
display good agreement with a prevailing linear
theory without any parameter fitting. Based on our
experimental findings, we provide a simple theoretical
approach for modelling the rapid kinematics limit
that is applicable even for initially non-flat bottoms:
this may be a key step for more realistic varying
bathymetry in tsunami scenarios.

1. Introduction
Most tsunamis are triggered by sudden displacements
of the seabed during earthquakes. To predict tsunami
hazards in real time, actual warning models require, first
and foremost, data of the free-surface initial waveform
in the open seas. Buoy networks dedicated to detect
tsunamis may provide direct measurements of wave
heights at fixed positions across the oceans [1], which
can be used to reconstruct the initial tsunami waveform

2015 The Author(s) Published by the Royal Society. All rights reserved.
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through inversion. However, these data only become available after the tsunami waves have
reached the buoy locations. As reconstruction comes from inversion, data are not only required in
a single buoy but in a set of them, which means that waveform estimations become reliable only
after tsunamis have travelled an important distance across the sea. Far-field locations can thus
rely on buoy network data, but not near-field locations, which are usually struck by the tsunami
waves before the initial waveform can be reconstructed.

Tsunami warning systems thus require an alternative way to estimate the tsunami initial
waveform while buoy records are unavailable. The standard is to use a faster indirect method
based on the fault source and the seismic data from nearby stations. The seabed displacement
is computed numerically from the fault slip parameters using Okada’s model [2], and then
translated to the ocean free surface. The technique provides a fast estimation of the initial
waveform that can be used as an input for tsunami-propagation codes. Tsunami risks at different
locations can then be forecasted using a discretized version of the estimated waveform via ready-
to-use offline calculations (Green’s functions) [3]. However, this procedure often underestimates
the surface wave amplitude (e.g. for the 2004 Indian Ocean tsunami [4]).

Several reasons have been proposed to explain this bias [5–12], including the seabed-
kinematics role during an earthquake (i.e. its spatio-temporal features) [12–15]. Bottom
displacement is considered to be instantaneous if its typical rise time is small compared with the
time scale of the generated waves at the free surface [14]. Most earthquakes meet this condition,
although other remarkable tsunamigenic events barely satisfy it: for instance, in two of the largest
tsunamis ever registered, the bottom displacements may have been notably slow [16]. Numerical
codes used in warning systems, however, are more focused on analysing wave propagation on the
varying bathymetry of oceanic basins, which is achieved via numerical integration of nonlinear
shallow water equations (e.g. the MOST [17] and the TUNAMI [18]). Warning codes are prone
to neglect seabed kinematics and consider that bottom displacements are instantaneous. Thus,
they use as initial condition a simple translation of the final deformation of the source bottom to
the ocean surface. On the other hand, numerical simulations that do suitably consider bed-sea
kinematic coupling during displacements are at hand and in a broad range of approaches: linear
three-dimensional (3D) potential flow [19], higher order nonlinear shallow-water theory [20],
fully nonlinear potential flow [21,22] and full Navier–Stokes equations [23,24] (for a comparison
between several approaches, see [25]). Computational costs however remain high in most cases,
which makes their application for real-time forecasting hard. Furthermore, numerical simulations
also require bottom kinematics a priori, an input that is hard to determine during events. During
the last few years, a powerful non-hydrostatic numerical model, NHWAVE have come into scene
[26]. The model is able to predict 3D effects for a given initial condition (i.e. initially non-flat
bottom) with an outstanding accuracy and lower computational cost by splitting the ocean in
very few vertical layers. Results are very promising [27].

Numerical simulations, theory and experiments show that bottom dynamics play a role.
Even if the deformation happens at the instantaneous limit, the free-surface displacement is not
equal to the bottom one as considered by translational models [28–30]. In realistic scenarios,
hindcast simulations have also shown that bed dynamics do have an effect. For the 2011 Tohoku
tsunami, Grilli et al. [27] showed using both NHWAVE and high-order Boussinesq simulations
that dynamic-source models yield tsunami waveforms remarkably different than instantaneous
source models. Indeed, dynamic models show an excellent agreement with field measurements.

On the other hand, laboratory experiments dealing with the influence of bed-uplift kinematics
in tsunami generation are rare and have been based on measurements of the free-surface
deformation [29,31–33], providing limited information about the fluid dynamics. Velocity
measurements in the bulk are even rarer and only concern landslide-triggered tsunamis [34,35].
Furthermore, most of these laboratory experiments have been performed in channels overlooking
the 3D geometry of real scenarios [29,32,34–36]. The lack of tsunami-oriented experiments
contrasts with their unquestionable importance. Controlled laboratory experiments not only
supply a way to validate numerical simulations under well-known inputs (cf. [37]), but also may
elucidate which physical mechanisms dominate a given regime.
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In this article, we analyse experimentally and theoretically the hydrodynamic coupling
between the bottom and the free-surface motion in a 3D fluid layer, focusing on the role that
the bottom kinematics play in wave generation. We aim to better understand how spatio-
temporal features of the bottom deformation affect the shape and the amplitude of the generated
waves. For this purpose, we designed an idealized scenario where waves are generated by an
axisymmetric deformation in the centre of a flat-bottom laboratory tank. We performed combined
measurements of the free-surface deformation and the fluid velocity field. Our results are then
compared with a linear theory for underwater moving bottoms [38]. Although some of our
experimental parameters are by orders of magnitude far from real tsunami-generation conditions,
essential features are still well reproduced. Based on our experimental findings, we also provide
a theoretical framework that gives a simple and different insight on the generation of waves by
impulsive bottom motions. The results could be applied to determine initial waveforms in uneven
bottom configurations.

2. Experimental set-up
We performed our experiments in a 110 × 110 × 30 cm3 Plexiglas basin filled with water to a depth
of h = 2.5 cm. A circular region (radius r2 = 3.25 cm) was carved in the bottom centre and covered
with a stretched elastic sheet. The sheet is deformed by means of a solid flat circular piston
(r1 = 2.5 cm) placed beneath the membrane and attached to an electromechanical shaker (figure 1).
As a result of the set-up geometry, the bottom vertical motion can be described as a separable
spatio-temporal function with circular symmetry, ζ (r, t) = ζmα(r)β(t), where ζm is the maximal
bottom deformation; α(r) is the spatial profile along the radial horizontal coordinate r (figure 1
(inset)); and β(t) is the displacement time function. The last one was arbitrarily chosen to be an
exponential rise, βexp(t) = 1 − e−t/τb , or a half-sine one, βsin(t) = sin2[π t/(2τb)] if t ≤ τb or 1 if t > τb;
where τb is defined as the rise time. To achieve this, the shaker input signal was determined by
exploiting the bottom velocity records from a laser Doppler vibrometer. Our system can be used
to study several rise times, and upward bottom amplitudes. Value ranges are displayed in the
following table:

bed displacement function τb ζm

exponential βexp(t) 10 − 500 ms 1.5 − 5.0 mm
half-sinus βsin(t) 10 − 500 ms 1.5 − 5.0 mm

Thus, typical bottom velocities vary from 1 to 30 cm s−1. A total number of 22 different
scenarios (different bed displacement function, τb and ζm), each consisting of 10 runs, were
analysed. The basin extent was chosen to avoid wave reflections on the lateral walls during the
generation process.

The velocity field in the bulk during bottom and surface deformations is obtained using
Particle Image Velocimetry (PIV). A laser sheet passing through the basin centre illuminated a
vertical slice of water seeded with 50µm polyamide particles (PSP), as shown in figure 1. To
avoid particle settling, the water was mixed with some NaCl (up to a mass concentration of 2.7%)
so the aqueous solution matches the density of particles. A high-speed camera placed in front of
the illuminated region provided an imaging area of 71 × 30 mm2 (1600 × 692 pixels), which was
recorded at 500 Hz during τm = 1 s (τm is defined as the measurement time). Since the system is
axisymmetric, these measurements build a 3D picture of the flow. The surface of the water layer
was blown with more particles, which due to their surface tension, tend to rest in the surface.
In the images, the particles form an identifiable line, which can be used for detection (figure 2).
The free-surface vertical deformation η(r, t) was then obtained by applying a Radon transform
algorithm on the images [39]. This algorithm integrates the intensity along all the possible straight
lines contained in a sub-window and finds the maximal value. A continuous and smooth curve
is then obtained by interpolating the segments (slope and position) along the whole free surface.
An example of the detected free surface by the algorithm is plotted in figure 2. Finally, we applied
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Figure 1. Experimental set-up. A layer of water is contained in a basinwhere a shaker-piston vertically deforms an elastic sheet
placed at the bottom centre. The pistonmotion is recorded using a laser vibrometer. Images from a sectional cut of the fluid are
obtained using a laser sheet generator and a high-speed camera. The bottom dimensionless spatial profile α(r) and the time
displacement functionβ(t) are also displayed. (Online version in colour.)
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Figure 2. A typical image of the region of interest (side view) for the study of waves generated by amoving bottom. The liquid
is seededwith particles (white points) both in the bulk and in the free surface. Those at the free surface form a quasi-continuous
brighter line that is used to identify the position of the free surfaceη(r, t). The bottomposition ζ (r, t) can also be detectedwith
standard contrast techniques. The snapshot was taken at t = 80 ms in a half-sinus bed deformation scenario (ζm = 5 mm,
τb = 150 ms, h= 2.5 cm). (Online version in colour.)

a PIV grid-refining scheme [40] (up to 16 × 16 pixels windows, no overlapping) using an average
correlation method [41] on 10 experimental runs for each set of parameters.1 All the data used
throughout this article are available at a public repository at [42].

The two time scales in our experiment are the bottom rise time τb and the typical time of
the generated waves τw. We defined τw as the semi-period of the wave, i.e. the time between

1Owing to the reproductibility of experiments, we superimpose pictures of 10 identical runs to increase the number of
particles on the processed images, improving PIV results.
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the first maximum and minimum of the water surface deformation at the basin centre (r = 0).
In our experiment, τw � 130 ms is the same for any displacement time function β and most
of rise times τb (see results below). This value is related to the dominant wavelength of the
generated wave λw ≈ 10 cm (according to acquired images), through the dispersion relation τw =
π/
√

gkw tanh kwh, where g is gravity and kw is the dominant wavenumber of the generated wave.2

Note that λw > 2r2 = 6.5 cm. During measurements, capillary waves were not observed3 (see
discussion in §3c). We focus on one experimental time ratio simply defined as τ̄ = τb/τw, which
varies between 0.08 and 4. The relevance of the time ratio in tsunami generation was noticed by
Hammack [29], who suitably identified three wave-response regimes to bottom deformations:
impulsive (τ̄ � 1), transitional (τ̄ ∼ 1) and creeping ones (τ̄ � 1). The Froude number in our
measurements Fr = ζm/τb

√
gh varies between 0.02 and 0.3.

3. Results and discussion

(a) Velocity field
Within the above classification, we display (in figure 3) three characteristic snapshots of the wave-
generation velocity fields for half-sine type displacements. The vertical coordinate is denoted
as z such that at rest, the free surface matches z = 0 and the bottom, z = −h. When τ̄ � 1,
we observe an upward global motion during the bottom uplift. Indeed, the velocity field just
below the free surface is vertical (figure 3a) as predicted in [43]. Gravity-wave propagation
starts remarkably after the end of the bottom motion as shown in videos.4 When τ̄ ∼ 1, the
flow resembles that of figure 3a at short times. However, before the bottom motion ends, waves
start to propagate radially from the generation region: an oscillating flow occurs right beneath
the free surface (figure 3b). In this case, both bottom deformation and wave propagation occur
simultaneously suggesting that the bottom kinematics affects induced waves. For τ � 1, the
free surface remains mostly stationary and accordingly, the vertical component of the velocity
vanishes when approaching the free surface (figure 3c). In this stage, the outward flow reminds
that of a moving bottom in the presence of a fixed boundary at z = 0. We observed that
exponential-rise bottom displacements (not shown) display similar behaviour.

To quantify the transition between the slow and rapid regimes, we compute the kinetic energy
from the fluid velocity field. Figure 3 shows that the region r < 7 cm contains most of the kinetic
energy during the bottom deformation. As shown in figure 4 (inset), the kinetic energy within this
volume, EK, captures also the main temporal features of the motion (see also [44]). The bottom
uplift induces an intense first maximum of EK. As the bottom stops afterwards, a local minimum
E−

K appears and later, a second maximum E+
K emerges induced by wave propagation. We define

the contrast of kinetic energy as (E+
K − E−

K)/(E+
K + E−

K). As shown in figure 4, the contrast is close
to unity for τ̄ � 1: the liquid can be considered as motionless at the end of the bottom deformation
(E−

K ≈ 0), with its velocity being negligible compared with those due to wave propagation. Inertia
seems to be absent since no flow outlasts the bottom motion: the liquid layer and the bottom
behaves like a single block. For larger τ̄ , the wave propagation begins while the bottom is still
moving so the energy contrast decreases to zero. Furthermore, for τ̄ � 1.4, the contrast is not
defined any more because the bottom deformation and the wave propagation overlap so much
that E−

K and E+
K do not exist at all. This shows that the energy contrast depicts well the transition

between rapid and slow scenarios. The data scattering observed in figure 4 has no physical origin
and is inherent to PIV measurements as the technique holds some uncertainties. For exponential

2The generated wave is mainly dispersive as λw = 4h, in contrast with real tsunami scenarios where waves are less dispersive.

3The electromechanical shaker was intentionally decoupled from the tank (no solid contact) so that high-frequency vibrations
could not be directly transferred to the tank. The only contact took place between the piston and the soft membrane used for
the bottom deformation. This configuration avoids the emergence of capillary waves due to shocks at small τb bed uprise
motion. Notice that PSP particles at the free surface are likely to inhibit capillary waves.
4See the electronic supplementary material for velocity-field videos of the runs depicted in figure 3.
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Figure 3. Experimental velocity fields in the water during half-sine bottom displacements for three typical τ̄ values. The
streamlines (set of grey curves) in (a,c) were computed numerically using an asymptotic model for the τ̄ � 1 and τ̄ � 1
cases (see explanation in §3d). In all cases, the free-surface deformation is significantly smoother than the bottom one. (Online
version in colour.)

bottom motions (not shown), times at which extrema of EK occur are different from the half-sine
case,5 but the contrast of kinetic energy behaves similarly with τ̄ .

(b) Free surface
Since the fluid velocity field is coupled with the free-surface deformation, both quantities share
related spatio-temporal features.6 The insets of figure 5 depict the bottom and the free-surface
elevations at r = 0, ζ0(t) and η0(t), as a function of time. We observe in all cases that the free surface
and the bottom are synchronized at the beginning of the motion. For τ̄ � 1, this is true throughout
the bottom uplift and regardless of the displacement time function β(t) as time satisfies
t < τb � τw (figure 5a–b). Besides, the subsequent stage is independent of the displacement-time

5For example, the first intense maximum of EK occurs at t = 0 for the exponential case.

6Coupled in the same sense that velocity is coupled with position in a harmonic oscillator, i.e. with a 90◦ phase difference.
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history of the bottom. Contrariwise, for τ̄ � 1, exponential and half-sine bed displacements induce
free-surface responses that not only differ from rapid ones, but also from one another (figure 5c, d),
e.g. the negative part of η0 is more pronounced for the half-sine case. This evidences that for τ̄ � 1
the generated-wave shape depends on the nature of β(t) as well as on its typical time τb, which
confirms that the bottom kinematics is crucial in non-impulsive wave generation.

To understand more precisely its role, we plot in figure 5 the dimensionless maximal elevation
of the free surface at r = 0, η0,m/ζm, as a function of the time ratio τ̄ . As expected, η0,m decreases
with τ̄ and converges to the same asymptote for τ̄ � 1 independently of the nature of β(t).
For τ̄ � 1, we observe two different behaviours: η0,m decreases as τ̄−1 for exponential bottom
displacements and as τ̄−7/4 for half-sine ones. This differs from one-dimensional experiments
where a τ̄−1 power law fits both cases [29]. To summarize, when motion is transferred from the
bottom to the free surface, the fluid layer behaves as a temporal high-pass filter (cut-off at τ̄−1 ≈ 1).
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Note that η0,m/ζm does not reach unity when τ̄ → 0, as a consequence of the spatial low-pass
filtering effects. The effects are highlighted in figure 6a, where we plot the spatial profiles of the
bottom and the free surface at the end of an impulsive bed motion (t = τ ; τ̄ � 1). We observe
that the free surface is smoother than the bottom so the water column acts as a spatial low-pass
filter. Note that this final free-surface profile is independent of τ̄ and of the nature of β(t) (as long
as τ̄ � 1). Low-pass filtering effects also explain why the dominant wavelength in our results,
λw ≈ 10 cm, is larger than the size of the deformed region, 2r2 = 6.5 cm.

(c) Linear theory
The experimental data displayed in figures 4–6 are all found to be in good agreement
with theoretical curves without any parameter fitting. The curves were calculated using
the axisymmetric version of Hammack’s tsunami-generation theory which neglects capillary,
compressibility and viscous effects [38]. In our experiments, capillary effects are indeed
negligible since the typical wavelength λw ≈ 10 cm is nearly 1 order of magnitude larger than
the critical wavelength of capillary waves, λc = 2π

√
γ /(ρg) ≈ 1.4 cm (γ ≈ 50 dyn cm−1 is the

surface tension and ρ ≈ 1 g cm−3 the fluid density). The observed flow is also incompressible as
({ζm/τb, h/τb, r1/τb} � cs, where cs ≈ 1500 m s−1 is the sound speed in water [45]). Viscous effects
are also absent as time scales associated with viscous processes, τν � 10 s, are much larger than
the experimental time scales.7

7Three different time scales, each of them associated with a different viscous process, can be calculated: (i) the decay
time of the generated gravity waves due to the viscous boundary layer on the bottom: τb

ν = τν sinh 2kwh ≈ 50 s, where τν =√
λ2

ωτω/2π3ν (ν ≈ 10−2 cm2 s−1 is the kinematic viscosity), (ii) the wave decay time due to the viscous boundary layer on the
free surface is τ s

ν = 2τν tanh kwh ≈ 10 s, and (iii) the viscous-diffusion characteristic time in the bulk τ v
ν = λ2

w/8π2ν ≈ 200 s [46].
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After neglecting capillary, compressibility and viscous effects, the flow can be assumed to be
irrotational and hence the system can be expressed in terms of a velocity potential φ that satisfies

∇2φ = 0 (3.1)

in the bulk. The experimental amplitude parameter ζm/h is small enough to linearize boundary
conditions [38]. Thus, if the bottom is initially flat, the dynamic condition at the free surface as
well as the kinematic boundary conditions can be written as

∂tφ|z=0 + gη = 0, (3.2)

∂zφ|z=−h − ∂tζ = 0 (3.3)

and ∂zφ|z=0 − ∂tη = 0. (3.4)

To solve this system of equations, we apply the Laplace transform in t to the displacement
time function, β̃(s) ≡L{β(t)}(s), and the Hankel transform of zeroth order in r to the spatial
profile, α̂(k) ≡H0{α(r)}(k) ≡ ∫+∞

0 rJ0(kr)α(r) dr, where J0 is the zeroth-order Bessel function of the
first kind. The latter is equivalent to a two-dimensional (2D) Fourier transform under circular
symmetry. Accordingly, the Hankel transform of the free-surface deformation may be written
as [38]

η̂(k, t) = ζmα̂(k)
cosh kh

· L−1

{
s2β̃(s)

s2 + ω(k)2

}
(k, t), (3.5)

where ω(k) =√
gk tanh kh is the gravity-wave dispersion relation. The direct and inverse Laplace

transforms in equation (3.5) can be evaluated in closed form for both βexp(t) and βsin(t).
Besides, the spatial transform α̂(k) may be computed numerically. The spatio-temporal free-
surface deformation η(r, t) =H−1

0 {η̂(k, t)} can be found likewise using a Fourier–Bessel series
representation of H−1

0 [47]. The velocity field can also be obtained by calculating the velocity
potential φ through the formula

φ̂(k, z, t) = ζmα̂(k)
cosh kh

· L−1

{
gsβ̃(s)

s2 + ω(k)2

(
s2

gk
sinh kz − cosh kz

)}
(k, z, t). (3.6)

Theoretical dashed lines in figures 4–6 are computed using equations (3.5) and (3.6) and
display very good agreement with experimental data. The first factor in equation (3.5) is
the Hankel transform of the final bottom deformation but modulated with a low-pass filter,
(cosh kh)−1, that smooths the free surface as shown in figure 6. The second factor is spatio-
temporal and relates the time t (corresponding to s in the Laplace domain) with the two
characteristic times: the wave semi-period τw (corresponding to ω) and the bottom rise time τb
(contained in β̃(s)).

(d) Asymptotic analysis (decoupled boundary value problem approach)
In this section, we make an asymptotic analysis of (3.5) and (3.6), i.e. the linear model for tsunami-
waves generation, for both the impulsive case (τ̄ � 1) and the creeping case (τ̄ � 1).

For the asymptotic expansion, consider first the impulsive limit τ̄ � 1, so the expansion is
made in terms of τ̄ . We consider t � τw, s2 + ω2 ∼ s2, the second factor of equation (3.5) becomes
simply β(t) (and ∂tβ(t) sinh kz/k in equation (3.6)), gravity effects vanish yielding interface
elevations instantaneously equal to the bottom low-pass-filtered deformations

η(r, t) =H−1
0

{
ζmα̂(k)
cosh kh

}
(r)β(t) + O(τ̄ 2) (3.7)

and

φ(r, z, t) =H−1
0

{
ζmα̂(k) sinh kz

k cosh kh

}
(r)∂tβ(t) + O(τ̄ 2). (3.8)

The asymptotic expansion is valid only for t � τb. This is consistent with the behaviour observed
experimentally at short times: the fluid and the free surface moves synchronously with the bottom
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(figures 3a and 5 (insets)). For later times, t � τb, β(t) can be considered as a Heaviside function
H(t) provided that τ̄ � 1. Hence, β̃(s) = H̃(s) = s−1, and the second factor in equation (3.5) becomes
a propagation term: η̂(k, t) = ζmα̂(k) cos ω(k)t/ cosh kh. As stated by Kajiura [28], this is equivalent
to a Cauchy–Poisson wave problem in which only the final bottom deformation is low-pass
filtered and transferred to the surface as an initial condition. Likewise, we have shown that the
fluid is motionless when the bottom motion ends. No trace from the temporal features of the
initial motion is left. This explains the memory loss of the bottom-displacement history observed
in our experiments.

Like free-surface deformation, velocity potential for the impulsive limit (τ̄ � 1) has a striking
feature: gravity plays no role during the bottom motion, i.e. t ≤ τb � τw (equations (3.5) and
(3.6)). Accordingly, we analyse the limit g → 0. At leading order, we can drop the gravity term
in equation (3.2), so φ|z=0 = 0 and the free surface η decouples from equations (3.1)–(3.3). This
yields a decoupled boundary value problem (DBVP) for the velocity potential φ, equivalent to
solve Laplace equation with given boundary conditions:

∇2φ = 0, φ|z=0 = 0 and ∂zφ|z=−h = ∂tζ . (3.9)

The free-surface deformation η may then be obtained from equation (3.4). Note that for any
bed motion ζ (x, y, t) separable in space and time, i.e. ζ (x, y, t) = ζmα(x, y)β(t), the velocity field
generated by (3.9) scales with the velocity of the bottom, ∂tβ, while the streamlines and vector
orientation are steady. The boundary condition φ|z=0 = 0 is consistent with the experimentally
observed features in figure 3a: a vertical velocity field at the free surface.

Another interesting limit stands for the creeping case where τ̄ � 1. Accordingly, the expansion
now given in terms of τ̄−1. We consider t � τw, the free-surface deformation from (3.5) and the
velocity field from (3.6) yield at dominant order to

η(r, t) =H−1
0

{
ζmα̂(k)

gk sinh kh

}
(r)∂ttβ(t) + O(τ̄−4) (3.10)

and

φ(r, z, t) =H−1
0

{
− ζmα̂(k) cosh kz

k sinh kh

}
(r)∂tβ(t) + O(τ̄−2). (3.11)

Again, the velocity potential is independent of g. Although, the dependence on k is different than
in the impulsive case. Note that the free-surface-deformation dominant term is not O(1), which
is equal to zero, but the following one, which is O(τ̄−2). The term is proportional to the ratio of
the bottom acceleration and gravity.8 Be aware that there is not any conflict between the form of
the asymptotic expansions and the asymptotic behaviour of η0,m/ζm in the creeping limit (τ̄ � 1)
depicted in figure 5. For our largest values of τ̄ , maximal deformations are attained at t � τw, for
which the asymptotic expansion is not valid.

Another DBVP can be found for this case. Consider g → ∞ in equation (3.2): hence η = 0. The
new DBVP is again equivalent to solve Laplace equation but with a different boundary condition
at z = 0

∇2φ = 0, ∂zφ|z=0 = 0 and ∂zφ|z=−h = ∂tζ . (3.12)

The properties are similar to those of the impulsive case: proportionality to ∂tβ and steady
streamlines for space–time separable functions. We find again in ∂zφ|z=0 = 0 that the velocity field
is horizontal at the free surface as observed experimentally in figure 3c.

For both limits, τ̄ � 1 and τ̄ � 1, the DBVP can be straightforwardly solved using a finite-
difference scheme for the Laplace equation [48, pp. 1024–1031]. The method differs from Green’s
function approach developed in [43]. The computed streamlines fit in an excellent way the
measured velocity field (figure 3a,c). On the other hand, while for τ̄ � 1, η � 0, for initially flat
bottoms undergoing impulsive uplifts (τ̄ � 1), η can be obtained from equation (3.4). This leads
to the spatial low-pass filtered results found previously.

8The asymptotic expansion goes as τ−2n as a consequence of the term s2/(s2 + ω2) inside the inverse Laplace transform in
equation (3.5).
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The DBVP approach has another great advantage: it can be adapted to initially arbitrary-
shaped-bottom basins by simply writing the bottom condition as ∂zφ|z=−h(x,y) = ∂tζ . To
experimentally validate the DBVP approach under this configuration, we considered a
non-flat-bottom initial condition in our tank, i.e. the piston was raised above the basin-bottom
level beforehand (figure 6b (inset)). In figure 6b, we plot the spatial profile of the free surface
at the end of an impulsive bottom deformation (τ̄ � 1). We observe that the DBVP results
displays very good agreement with the experimental profile. Comparison with other initially
flat-bottom models is not straightforward: for instance, the water depth h used in Hammack’s
linear theory is not defined anymore. Two different water depths are involved: h0 above the
piston and h∞ elsewhere. The spatial profiles obtained with Hammack’s linear theory, using either
h = h0 or h = h∞, are significantly different from the experimental profile. This demonstrates the
usefulness of the DBVP approach for taking into account varying bathymetry, if present (see the
discussion below).

Note that dependence on time in the DBVP equations is slaved to ζ (t). Thus, to compute free-
surface deformation during an impulsive bottom motion (τ̄ � 1, t ≤ τb), Laplace equations need
to be solved just once and then scaled by β(t). For later times (t > τb), classical wave-propagation
routines can be easily plugged. The initial waveform will be provided by the impulsive DBVP at
the end of the bottom motion (static initial condition).

Owing to its low cost, one solving-Laplace-equation step, the method may be used as
a computationally affordable routine to incorporate terrain conditions in impulsive tsunami
generation real scenarios.

(e) Application to tsunamis
Tsunami-generation experiments in laboratory tanks deal with a clear compromise between
scalability to realistic scenarios and feasibility, controllability and measurability. The aim of
our experiments was to understand the role of the spatio-temporal features of bottom motion
on induced waves (e.g. measuring simultaneously the velocity field and the free-surface
deformation during the process). Thus, we had to make a suitable choice of the dimensions
of the experiments. Accordingly, our experimental parameters (ζ †

m/h† = 0.06 − 0.2, r†
1/h† = 1,

τ †
b = 10 − 500 ms) obviously differ from those of real tsunamis (ζ ∗

m/h∗ ∼ 10−3, r∗
1/h∗ ∼ 10 − 20,

τ∗
b ∼ 1 − 100 s) by several orders of magnitude. Notwithstanding, we have shown that at our

chosen scales, bottom-induced wave generation is governed by Hammack’s linear theory, and
in its fast and slow asymptotics, by the DBVP framework. In this section, we carefully check the
validity of the same theoretical frameworks when scaled up to typical tsunami scales. The check-
up requires not only the analysis of the linear-theory assumptions but also the evaluation of some
key dimensionless numbers.

— Concerning viscosity and capillarity effects, we can verify that both effects decrease as
length scales increases. This means that in real scenarios, they should be even smaller
than in our set-up.9

— Nonlinear effects are measurable through the dimensionless quantity ζm/h, which is
much lower in real-tsunami scenarios than in our experiments ζ ∗

m/h∗ ∼ 10−3 � ζ †
m/h† ∼

10−1). This means that for real-tsunami scenarios linear theory should fit even better.10

— Geometry issues, which can be quantified by the size ratio r1/h, require a deeper analysis.
In our experiments, we fixed r†

1/h† = 1 to highlight the spatial low-pass filtering. For
accepted tsunami values (r∗

1/h∗ ∼ 10 − 20), filtering effects are expected to be weak.
However, recent and more direct evidence shows that tsunami initial waveforms have a

9Compressibility, on the other hand, may have some effect as h/τb and r1/τb become non-negligible compared with the
speed of sound cs at plausible tsunami scenarios. However, it is far from being dominant. Numerical integrations show that
acoustic-gravity waves just superpose on a main signal which is equal to incompressible gravity wave (see e.g. fig. 2 in [45]).
10Since, η/ζm and φ/ζm are independent of ζm (see equations (3.5) and (3.6)), as a consequence of linearity, our experiments
are able to capture the dynamic features for smaller amplitude waves, as those from real-tsunami scenarios.
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complex spatial distribution with significantly smaller length scales: r∗
1/h∗ � 5, as shown

with data from two recent tsunami sources (including the large 2011 Tohoku tsunami
in Japan) [49,50]. Their spatial distributions may be approximated by spherical-cap
deformations, which yield low-pass filtering η∗

0,m/ζ ∗
m-corrections of 10% [28].

— Dynamic effects, can be analysed in terms of the time ratio τ̄ = τb/τw. In this case,
the typical tsunami range of time ratios τ̄∗ ∈ [0.003, 0.3] is located on the left-hand
side of figure 5, which makes them suitable for the impulsive DBVP approach. In our
experiments, τ̄ † ∈ [0.08, 4]. First, notice that although the fastest tsunamis are beyond
our experimental range, the asymptote for τ̄ � 1 is largely attained within it, so that
our work covers faster tsunamigenic earthquakes. Besides, temporal high-pass filtering
effects become significant for slowest tsunami scenarios. For instance, the 2004 Sumatra-
Andaman tsunamigenic earthquake in Indonesia displayed rise times estimated at
τ∗

b ≈ 3 min while τ∗
w ≈ 10 min (i.e. τ̄∗ ∼ 0.3) [51]. According to our results, this yields

η0,m/ζm-corrections from 10% (half-sine displacement time function) to 40% (exponential
rise) compared to the nearly instantaneous case. Furthermore, as earthquakes may
involve different timescales between rise and subsidence times, our extended range of
τ̄ †-values is of importance to know from which timescales surface waves generated by a
bottom motion become negligible.11

— Effects due to bathymetry (non-flat bottoms initial conditions) are hard to quantify
by a single dimensionless parameter, since corrections will depend on the particular
geometrical features around the source. However, it is known that water depth may
vary abruptly in the fault crosswise direction in subduction zones, the archetype of
tsunamigenic regions. To illustrate with one case, water depth varies by a factor of 3 over
60 km at the source of the 2011 Tohoku tsunami [52]. Although the source bathimetry of
this event is far from being axisymmetric, the initial condition is roughly comparable to
figure 6b. Finally, we have shown that the DBVP approach that we provide in this study
may be applied to uncover bathymetry effects on tsunami waveforms.

Note that the application of some of our results to real-time tsunami forecasts may be limited by
the fact that seismical data do not provide much details about the seabed kinematics (e.g. rise time,
spatial resolution). For instance, the currently used spatial resolution for bottom deformations
at tsunami sources is 25 × 50 km2 (NOAA SIFT Green’s functions). However, higher spatial
resolutions in tsunami sources may become available soon in standard real-time simulations.
Indeed, Crowell et al. [53] have recently shown that it is possible to obtain seabed deformations at
high resolutions within 2 min after the strike of an earthquake using GPS data.

4. Conclusion
In conclusion, we have investigated the generation of free surface waves by an underwater
moving bottom. The experiments, which included simultaneous measurements of fluid velocity
field and free-surface displacement in an initially flat-bottom configuration, display excellent
agreement without any parameter fitting with a linear theory of gravity waves. Although the
small scale of our wave-generation set-up cannot be compared to real-tsunami scenarios, our
experiments are able to capture underlying features of dynamic coupling in tsunami-wave
generation. Essentially, the fluid layer transfers motion from the bottom to the free surface as
a temporal high-pass filter coupled with a spatial low-pass filter. Transfer models that perform a
simple translation, such as those used by tsunami warning systems, overlook both filters effects.
Supported on measured velocity fields, we have developed an alternative theoretical guideline
for taking into account spatial filtering for impulsive bottom uplifts. Furthermore, the impulsive

11However, linear-theory corrections due to ‘uprise slowness’ yield lower amplitudes, while those of the observed tsunami
were larger. The cause may be a resonance mechanism due to a richer bottom kinematics, e.g. a slowly spreading fault, as
predicted in [15]. To analyse this, we are running experiments on a new setup that supports complex-dynamics scenarios.
Results are far from the scope of this manuscript and will be published separately.
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model was adapted to predict the initial waveforms generated for initially non-flat-bottom
configurations. This is achieved via a one-step-in-time numerical integration of Laplace equation
in a suitable domain and under given boundary conditions. The results have been successfully
validated with experiments. The new guideline may help to include in situ bathymetry data in
tsunami scenarios at low computational cost: this would be a key for improving real-time forecast
tsunami simulations.

Further experimental work will involve studying other spatial/dynamic features of realistic
tsunami scenarios, e.g. non-axisymmetric spatial distribution, complex bottom kinematics (e.g.
spreading faults). Beyond tsunami-oriented experiments, we also intend to probe nonlinear
effects for larger bottom deformations. Further theoretical work, will include a rigorous higher
order analysis of the asymptotic expansions for the impulsive and creeping limits.
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Chapitre 5

Conclusion et perspectives

Dans cette partie, nous avons étudié la génération d’ondes à la surface d’un fluide par un fond
mobile. Nous avons pour cela utilisé un dispositif expérimental de laboratoire constitué d’une cuve
d’environ un mètre de côté, remplie d’une hauteur d’eau de quelques centimètres. Le centre de la
cuve était alors troué et remplacé par un piston circulaire subissant des impulsions verticales. Nous
avons réussi à obtenir des impulsions de formes temporelles et d’amplitudes bien contrôlées grâce à
un algorithme que nous avons développé. Des mesures simultanées des déformations de la surface
libre et du champ de vitesse ont alors été réalisées pour la première fois. Les résultats expérimentaux
obtenus sont résumés dans la section 4.1. Comme dans le cas 1D étudié par Hammack [5], différents
régimes sont observés et sont trouvés dépendant du rapport τ̄ entre le temps caractéristique de
déformation du fond τb et la demi-période de l’onde τw.
Nos résultats mettent en évidence les rôles de filtre passe-bas spatial et de filtre passe-haut temporel
joués par la colonne d’eau située au-dessus de la zone déformée. En effet, dans le cas rapide (τ̄ � 1),
l’amplitude et la forme de l’onde générée ne dépendent pas de τb mais la forme spatiale atteinte à
la fin du mouvement du fond correspond à une version lissée et atténuée de la déformation finale
du fond, révélant le filtre passe-bas spatial. Le filtre passe-haut temporel est visible car pour les
déformations moins rapides (τ̄ & 1), l’amplitude de l’onde diminue avec τ̄ . Dans ce cas, l’évolution
de l’onde générée dépend de la forme temporelle du déplacement du fond.
Nous avons par ailleurs montré que la structure du champ de vitesse est spécifique au régime
de déformation considéré. Les déformations rapides du fond (τ̄ � 1) induisent des mouvements
d’ensemble de la colonne d’eau au-dessus de la zone déformée et les vitesses à la surface sont
verticales. Le fluide devient immobile à la fin de la déformation, avant le début de la propagation de
l’onde. Les déformations lentes (τ̄ � 1) sont associées à des écoulements horizontaux, dirigés vers
l’extérieur de la zone déformée. Le régime intermédiaire (τ̄ ∼ 1) voit quant à lui la coexistence d’un
écoulement généré par le fond et d’un écoulement lié à la propagation de l’onde.
L’interaction entre écoulements hydrodynamiques et ondes de surface est ici mise en lumière par le
fait que τb est le temps caractéristique de l’écoulement, induit par le fond, alors que τw est celui des
ondes de surface. Le cas rapide correspond aux composantes hautes fréquences d’un écoulement, et
la surface libre est alors synchronisée avec les fluctuations de vitesses sous la surface. La gravité,
qui n’a pas le temps d’agir, peut être considérée comme nulle et le caractère ondulatoire de la
déformation de la surface libre n’intervient pas avant la phase de propagation. Au contraire, dans le
cas lent, la surface libre n’est pas déformée et c’est elle qui impose la structure spatiale du champ
de vitesse. Pour les fluctuations de vitesses de l’écoulement à basses fréquences, la gravité peut
alors être considérée comme infinie et la surface libre joue le rôle de paroi indéformable : l’énergie
cinétique verticale est alors redistribuée horizontalement.
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Ces résultats confirment l’importance des caractéristiques spatiotemporelles de la déformation du
fond dans le cas des tsunamis. Pour les tsunamis initiés par des déformations du fond de durée non
négligeables devant la période de l’onde, il est nécessaire de prendre en compte le fait que l’onde
débute sa propagation avant la fin de la déformation. Pour les déformations rapides, nous avons
proposé une approche théorique qui s’appuie sur le fait que la gravité peut être considérée comme
nulle dans ce cas. Nous avons pu obtenir un système d’équations simplifié qui permet de prédire,
avec un coût de calcul faible, la déformation de la surface libre à la fin du mouvement du fond
avant l’étape de propagation. Cette approche permet également de s’adapter à des générations en
profondeur non uniforme, ce que nous avons validé expérimentalement. Il s’agit d’un point important
puisque la profondeur peut varier de façon notable dans les zones de subduction, près desquelles on
observe des séismes sous-marins.
L’ensemble de nos résultats expérimentaux présente par ailleurs un bon accord avec la théorie
linéaire. Il s’agit là également d’une validation de notre dispositif expérimental, en particulier de sa
capacité à produire des déformations rapides, d’amplitude et de vitesse bien contrôlées (voir section
2.2). Les perspectives de notre étude concernent les régimes non linéaires en conditions contrôlées,
que nous avons commencé à explorer lors d’un stage de Florian Nguyen (étudiant de L3). On a vu
dans la section 3.1 que, dans le cas de déformations rapides du fond (τ̄ � 1), le critère de linéarité
retenu par Hammack [5] pour l’aspect génération est que l’amplitude de la déformation du fond ζm
soit petite devant la hauteur d’eau h (ζm � h). Nous avons donc sondé des déformations rapides
d’amplitude ζm ∼ h pour un déplacement du fond de type sinusoïdal.
Lorsqu’elles sont importantes, les déformations de la surface libre ne peuvent plus être mesurées
en détectant la ligne blanche délimitant l’interface sur les images PIV comme on l’a fait dans cette
partie (voir section 2.3.2). En effet, le positionnement de la caméra est tel que la surface libre
disparaît du champ si la déformation est trop importante car les rayons lumineux qui en sont issus
sont obstrués par la surface libre au repos. Pour ce régime non linéaire, de fortes déformations de
la surface libre sont combinées à une faible épaisseur d’eau. Nous utilisons donc la technique de
mesure de profilométrie par transformée de Fourier, décrite dans la partie III (voir section 13.5.2),
qui fournit une mesure spatiotemporelle 2D de la surface libre.
La déformation du fond est générée par un piston circulaire de rayon r1 = 25mm. La hauteur
d’eau est uniforme et a été choisie assez faible (h ≤ 10mm) pour atteindre des valeurs de ζm/h
suffisantes avec ζm ≤ 7.5mm. Après la fin de la déformation du fond, les mesures montrent alors
parfois l’apparition d’une onde centripète dans la région située juste au-dessus de la zone déformée.
La déformation de la surface libre reste axisymétrique. On trace donc sur la Fig. 5.1 les profils
spatiaux selon la coordonnée radiale pour différents temps de mesure après la fin de la déformation
(t ≥ τb). Pour t = τb, la déformation de la surface libre est proche de celle prédite par la théorie
linéaire, mais pour les temps supérieurs, un bourrelet circulaire apparaît à la périphérie de la zone
déformée puis se propage jusqu’au centre du piston.
Ce phénomène peut dans un premier temps s’expliquer par le fait qu’à la fin du mouvement du fond,
la profondeur d’eau n’est plus uniforme. Au bord du piston (r ≈ r1), la vitesse de phase de l’onde
cw ≈

√
gh est donc discontinue, ce qui provoque une réflexion de l’onde similaire à celles observées en

optique à l’interface de deux milieux d’indices différents. Ici, le caractère circulaire de la déformation
provoque le piégeage et la focalisation d’une onde centripète, comme prédit théoriquement par
Stefanakis et al. [9] dans une géométrie très proche de la nôtre.
Nous avons vu dans cette partie que, dans le cas rapide linéaire, la déformation de la surface libre
à la fin du mouvement du fond est indépendante de τb et le liquide est immobile. Si on conserve ces
hypothèses, on s’attend donc à ce que l’amplitude de l’onde centripète soit également indépendante
de τb si les autres paramètres sont fixés. Or, nous avons pu observer que cette amplitude augmente
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Figure 5.1 – Profils spatiaux de la surface libre η selon la coordonnée radiale r pour des temps successifs
après la fin de la déformation. Déplacement de type sinusoïdal. ζm = 7.5mm, h = 5mm, τb = 20ms. Rayon
du piston déformant le fond : r1 = 2.5 cm.

avec la vitesse de déformation du fond. Nous avons réalisé de premières analyses quantitatives à partir
de mesures des déformations de la surface libre pour différents τb, ζm et h. Nous avons pu montrer
que l’amplitude de cette onde semble contrôlée par le rapport sans dimension Π = ζm/(τb

√
gh).

La Fig. 5.2 montre l’amplitude maximale adimensionnée de la déformation au centre de la zone
déformée en fonction du rapport Π. On voit qu’il n’y a pas d’onde centripète lorsque Π . 1, alors
que le phénomène croît avec Π lorsque Π & 1.
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Figure 5.2 – Amplitude maximale adimensionnée au centre de la cuve en fonction du nombre sans
dimension Π.

On peut noter que Π est similaire à un nombre de Froude Fr puisqu’il est le rapport entre la
vitesse de déformation du fond ζm/τb et la vitesse de propagation des ondes de gravité en eau
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peu profonde
√
gh. Dans le cas des ondes, le nombre de Froude peut classiquement quantifier le

ratio entre la vitesse d’un écoulement horizontal et la vitesse d’ondes se propageant à sa surface.
Ici, la génération et la propagation sont orthogonales et ces deux processus sont a priori séparés
dans le temps (cas rapide), ce qui rend l’analogie difficile. Mais ces résultats préliminaires mettent
en évidence la présence d’effets inertiels. Le phénomène pourrait par exemple être lié à une inertie
encore présente dans le liquide à la fin du mouvement du fond ou à un mécanisme proche d’une onde
de choc. Il est également possible que, dans le cas de grandes amplitudes ζm ∼ h, la déformation de
la surface libre à la fin du mouvement du fond dépende de τb. Des analyses complémentaires doivent
donc être menées ainsi que des mesures du champ de vitesse pour mieux comprendre l’origine du
phénomène observé.



Deuxième partie

Oscillations d’une goutte de fluide
magnétique
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Chapitre 6

Introduction

6.1 Contexte

Négligées dans la partie précédente, les forces de tension de surface sont très importantes dans le cas
d’un petit volume de liquide tel qu’une goutte. Ces forces tendent à minimiser la surface du liquide en
contact avec l’air. Ainsi, lorsque la gravité est négligeable (i.e. goutte d’eau de diamètre D . 1mm),
ce sont elles qui imposent la forme sphérique du liquide. L’énergie capillaire, proportionnelle à la
surface, est alors minimale. Pour des gouttes de plus grande taille, la gravité intervient et aplatit la
goutte. A partir d’une certaine taille (D & 10mm), la goutte est de forme quasi-cylindrique.
Quand une goutte de liquide est excitée par une force extérieure, sa surface libre fait apparaître
des motifs oscillants pour certaines fréquences de résonance. Par exemple, dans le cas d’une goutte
sphérique, les perturbations induisent une augmentation de la surface libre et les forces de tension
de surface tendent alors à ramener la goutte à sa forme d’équilibre minimisant la surface. Des
oscillations résultent alors d’un échange entre énergie capillaire à la surface et énergie cinétique de
l’écoulement en volume.
Des comportements de goutte oscillante apparaissent dans différents domaines et à différentes
échelles. Ainsi, la dynamique oscillante d’une goutte liquide est utilisée pour modéliser des collisions
de masses stellaires ou les oscillations d’étoiles à neutrons en astrophysique [28], et les noyaux dans
la fission nucléaire [29, 30], ou en biologie cellulaire [31]. Ces gouttes sont également impliquées en
métrologie pour mesurer des viscosités [32] ou la tension de surface de matériaux fondus [33, 34]. A un
niveau plus pratique, la physique de la déformation de gouttes liquides intervient dans l’impression
(génération de gouttes d’encre), le mélange de nuages de gouttes, la manipulation de gouttes en
microfluidique, optofluidique, et dans l’industrie pharmaceutique [35]. Depuis les travaux pionniers
de Rayleigh [36], les fréquences de résonance des modes azimutaux à la périphérie d’une goutte
aplatie (voir Figs 6.1 et 6.2.a) ont été étudiées expérimentalement par différents modes de forçage :
goutte d’eau sur une plaque vibrée [37–40] ou sur un bain vibrant [41], en microgravité [42], par
lévitation acoustique ou sur coussin d’air [43, 44], ou encore sur sa propre vapeur (Leidenfrost)
[45–47]. L’excitation d’une goutte de métal liquide par les forces de Lorentz a également été étudiée
[48, 49].
Un nouveau défi consiste à contrôler et ajuster les oscillations d’une goutte de liquide de façon
non intrusive. Il serait par exemple intéressant de pouvoir décaler les fréquences propres pour éviter
certaines bandes de fréquences dans certaines situations pratiques. Les ferrofluides, constitués d’une
suspension stable de nanoparticules magnétiques, sont des liquides sensibles au champ magnétique.
Ils sont connus pour décaler les fréquences propres ou les seuils d’instabilités hydrodynamiques
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usuelles comme Kelvin-Helmholtz, Rayleigh-Taylor ou Rayleigh-Plateau [50, 51]. La manipulation de
gouttes de ferrofluides au moyen d’un aimant est par ailleurs largement utilisée en microfluidique ou
pour les technologies de laboratoires sur puce [52–54], et dans des dynamiques d’auto-assemblement
[55]. Il est à noter que cette partie s’inscrit ainsi dans la continuité de mon stage de Master 2 durant
lequel nous avions étudié l’instabilité d’un origami capillaire constitué d’une goutte de ferrofluide
dans un champ magnétique [56].

6.2 Plan de la partie

Nous nous intéressons dans cette partie aux oscillations d’une goutte aplatie de ferrofluide, déposée
sur un substrat superhydrophobe (et donc libre de ses mouvements latéraux), soumis à une vibration
verticale en l’absence et en présence d’un champ magnétique. Deux types d’oscillations sont alors
observées. Les premières sont des modes azimutaux, qui se caractérisent par la présence de lobes
oscillants à la périphérie de la goutte (voir Figs 6.1 et 6.2.a). Ces lobes apparaissent au-delà d’un
certain seuil d’accélération du vibreur et oscillent à la fréquence moitié de la fréquence de forçage.
Ils sont liés à une résonance paramétrique non linéaire (voir section 6.3.2). En-dessous du seuil
d’apparition des modes azimutaux, la goutte présente le deuxième type d’oscillations : des modes
axisymétriques qui sont liés à la présence d’ondes circulaires à la surface supérieure de la goutte
(voir Fig. 6.2.b). Cette résonance est linéaire et sans seuil.

n =  1                3                   4                 5

6                7                 8                 9

2
 c

m

fe

Figure 6.1 – Photos de modes azimutaux vus de dessus à la périphérie d’une goutte de ferrofluide aplatie
lorsque la fréquence d’excitation augmente. n est le numéro du mode. B = 0.

Le présent chapitre expose des rappels sur les modes azimutaux et axisymétriques ainsi que sur les
ferrofluides. Le dispositif expérimental général utilisé dans cette partie est présenté au chapitre 7.
Le chapitre 8 présente les résultats obtenus pour les modes azimutaux. Nous observons alors que les
fréquences propres des modes azimutaux dépendent de l’intensité du champ magnétique B. Nous
montrons expérimentalement et théoriquement que le champ nous permet de contrôler la tension
de surface effective de la goutte de ferrofluide. En effet, la contribution magnétique est équivalente
à celle d’une tension de surface négative.
Le chapitre 9 étudie les modes axisymétriques de la goutte qui se manifestent par des fluctuations
du rayon. Ces modes peuvent être décrits par des ondes circulaires à la surface de la goutte dont les
modes propres correspondent aux solutions stationnaires fixées par la géométrie de la goutte. Les
fréquences propres observées à champ nul sont ainsi très bien prédites par la relation de dispersion
des ondes gravito-capillaires. En présence de champ, l’ajout du terme magnétique dans la relation
de dispersion permet de prédire la dépendance en champ magnétique des fréquences propres des
différents modes avec un paramètre ajustable.
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(a)

(b)

Figure 6.2 – (a) Vue de dessus d’un mode azimutal (n = 7) à la périphérie d’une goutte aplatie. (b)
Vue de côté d’un mode axisymétrique (m = 3) à la surface de la goutte. Vue en coupe verticale passant
par le centre.

Enfin, le chapitre 10 reproduit les résultats du chapitre 8 en présence d’une plaque sur la surface
supérieure de la goutte. Cela permet d’éliminer les modes axisymétriques en supprimant les ondes
à la surface de la goutte et ainsi de vérifier que le couplage entre modes azimutaux et modes
axisymétriques n’intervient pas dans le décalage des fréquences propres des modes azimutaux avec
le champ magnétique.
Les séries de mesure de cette partie ont été réalisées par Yacine Djama (étudiant de L3) puis Claude
Laroche. Les analyses ont été discutées avec Jean-Claude Bacri.

6.3 Modes azimutaux à la périphérie d’une goutte aplatie :
rappels

6.3.1 Fréquences de résonance théoriques

Les modes azimutaux sont caractérisés par l’apparition de lobes oscillants à la périphérie de la
goutte aplatie, de forme cylindrique (voir Fig. 6.2.a). La présence de ces lobes augmente la surface
périphérique de la goutte et donc l’énergie capillaire. L’oscillation correspond alors à une compétition
entre l’inertie des lobes, caractérisée par l’énergie cinétique, et les forces de tension de surface,
tendant à ramener la goutte à sa forme cylindrique d’équilibre, à la manière d’un ressort.
Le calcul des fréquences propres des modes azimutaux consiste alors à écrire la conservation de
l’énergie de la goutte aplatie d(Ek + Ec)/dt = 0, où Ek est l’énergie cinétique et Ec est l’énergie
capillaire. Ce calcul, proche de celui réalisé par Rayleigh [36] dans le cas d’un colonne de fluide, est
décrit en détail dans l’annexe A. Nous introduisons ici seulement les éléments nécessaires à la bonne
compréhension de la physique du phénomène.
Considérons une goutte cylindrique de hauteur h et de rayon R (voir Fig. 6.3.a). On note S⊥
la surface perpendiculaire à la gravité, constituée du dessus et du dessous de la goutte, et S‖ la
surface périphérique de la goutte. Les lobes sont décrits par de petites déformations radiales de
la périphérie de la goutte, d’amplitude an(t) � R autour d’un rayon instantané moyen R̄(t). En
coordonnées polaires, le rayon s’écrit : r(θ, t) = R̄(t) + an(t) cos(nθ) avec n le nombre de lobes (voir
Fig. 6.3.b).
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(a) (b)

Figure 6.3 – Vue schématique de la goutte aplatie. (a) Au repos, la goutte est assimilée à un cylindre.
(b) En présence de lobes, la surface périphérique augmente.

On peut montrer qu’en présence de lobes, S⊥ reste constante alors que la surface périphérique S‖
augmente de la quantité :

∆S‖(t) ≡ S‖(t)− S‖,0 = πha2
n(t)(n2 − 1)

2R (6.1)

L’indice “0” désigne le cas au repos. La variation d’énergie capillaire vaut donc :

∆Ec(t) = γ∆S‖(t) = γπha2
n(t)(n2 − 1)

2R (6.2)

Il s’agit d’un accroissement de l’énergie (∆Ec > 0) car la surface augmente en s’éloignant de la
forme cylindrique. On peut montrer par ailleurs que l’énergie cinétique s’écrit :

Ek(t) = πρhR2

2n

(
dan
dt

)2

(6.3)

La conservation de l’énergie, qui s’écrit d(Ek + Ec)/dt = 0, permet d’obtenir l’équation régissant
l’amplitude des lobes, initialement obtenue par Rayleigh [36] :

d2an
dt2 + ω2

nan(t) = 0,

avec ω2
n = γ

ρR3n(n2 − 1)
(6.4)

A noter que cette fréquence peut aussi se déduire en partie de l’analyse dimensionnelle [ω2
n ∼

γ/(ρR3)], mais ceci ne permet pas de connaître la dépendance en n. L’amplitude des lobes est donc
de la forme an(t) = An cosωnt et fn = ωn/(2π) est la fréquence propre du mode azimutal constitué
de n lobes. Un moyen de faire apparaître ces lobes est l’instabilité paramétrique, via une excitation
verticale.

6.3.2 Instabilité paramétrique

Une excitation paramétrique des modes azimutaux consiste à moduler leurs fréquences propres
dans le temps, provoquant ainsi une résonance non linéaire. D’après l’Eq. (6.4), la modulation des
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fréquences propres est possible en faisant varier le rayon de la goutte, par exemple par une excita-
tion verticale. Considérons que le rayon modulé s’écrit R̄(t) = R (1 + ε cosωet), avec ε l’amplitude
adimensionnée de l’oscillation du rayon et ωe = 2πfe la pulsation d’excitation. Pour de petites
amplitudes (ε� 1), l’équation paramétrique gouvernant l’amplitude des lobes s’écrit alors :

d2an
dt2 + ω2

n (1− 3ε cosωet) an(t) = 0 (6.5)

L’Eq. (6.5) est une équation de Mathieu [57], dont les solutions peuvent être représentées sous
forme de “langues” d’instabilité, dans un diagramme de phase en fonction de l’amplitude 3ε des
oscillations de la fréquence propre et du rapport au carré de la fréquence propre et de la fréquence
d’excitation, f 2

n/f
2
e . Ainsi, sur la Fig. 6.4, les courbes représentent l’amplitude seuil 3εc au-delà de

laquelle on observe le mode azimutal en fonction de la fréquence d’excitation. Ces courbes, dites
de marginalité, séparent les zones de stabilité (goutte cylindrique) des zones d’instabilités (mode
azimutal) pour différents coefficients de viscosité (κ).

f 2
n/f

2
e

εε

3ε

Figure 6.4 – Diagramme de phase de l’instabilité paramétrique en fonction de l’amplitude 3ε des oscilla-
tions de la fréquence propre et du rapport au carré de la fréquence propre et de la fréquence d’excitation,
f2
n/f

2
e . κ représente un coefficient de viscosité. Image adaptée de [58].

La langue la plus à gauche (plus haute fréquence d’excitation) correspond au mode fondamental.
On observe que le seuil d’apparition de l’instabilité est minimal (et non nul en présence de viscosité)
lorsque f 2

n/f
2
e = 1/4, soit fe = 2fn. Les lobes à la périphérie de la goutte oscillent alors à la fréquence

moitié du forçage. Dans les chapitres 8 et 10, nous déterminons les fréquences propres des modes
azimutaux en évaluant ces minima de façon indirecte.
En effet, le paramètre d’excitation intervenant dans l’Eq. (6.5) est l’amplitude d’oscillation du rayon,
ε, différent du paramètre de contrôle de l’expérience, qui est l’accélération verticale du vibreur. Il
est alors généralement considéré que ces deux paramètres ont des rôles équivalents [37, 40]. C’est
l’hypothèse faite dans le chapitre 8. Toutefois, les observations dans le chapitre 9 remettent en cause
cette hypothèse car les oscillations du rayon présentent des résonances à certaines fréquences. Dans
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le chapitre 10, une plaque fixe dans le référentiel du laboratoire et située au-dessus de la goutte
permet alors de supprimer ces résonances et de relier directement les oscillations du rayon de la
goutte à l’amplitude d’oscillation verticale du vibreur.

6.4 Modes axisymétriques d’une goutte : rappels

L’instabilité paramétrique décrite précédemment est une résonance non linéaire. En présence de
viscosité, les modes azimutaux apparaissent au-delà d’un certain seuil d’excitation verticale. Dans le
chapitre 9, nous étudions les modes axisymétriques de la goutte présentés sur la Fig. 6.2.b. Ces modes
sont au contraire issus d’une résonance linéaire sans seuil et sont observables pour les amplitudes
d’excitation inférieures au seuil d’apparition des modes azimutaux. Le calcul exact des fréquences
propres des modes axisymétriques a été réalisé par le passé dans le cas d’une goutte sphérique
sans gravité [59] et un modèle les prédit de façon précise pour des gouttes sessiles (i.e. présentant
une ligne de contact à la périphérie) uniquement pour des angles de contact θc autour de 90◦ [60].
Toutefois, notre goutte est ici aplatie et placée sur une surface superhydrophobe (θc ≈ 165◦, voir
section 7.2).

6.4.1 Ondes gravito-capillaires

Même si notre goutte n’est pas sessile, notre cas est proche de celui des gouttes sessiles aplaties
que Noblin et al. [39, 61] ont étudiées. On peut comme eux interpréter les modes axisymétriques
par la présence d’ondes stationnaires à la surface de la goutte, excitées par la vibration du substrat.
On rappelle que la relation de dispersion pour des ondes de surface gravito-capillaires de pulsation
ω = 2πf (avec f la fréquence) et de nombre d’onde k = 2π/λ (avec λ la longueur d’onde) dans un
fluide de profondeur finie h s’écrit [62] :

ω2 =
(
gk + γk3

ρ

)
tanh kh (6.6)

Si les ondes à la surface de la goutte respectent l’Eq. (6.6), les résonances observées pour les fré-
quences propres des modes axisymétriques correspondent à des ondes stationnaires de longueurs
d’onde fixées par la géométrie du système. Noblin et al. [39, 61] interprètent les modes axisymé-
triques par une analogie avec les modes propres d’ondes de surface 1D pour deux types de conditions
aux limites. Pour une faible amplitude de vibration du substrat, les auteurs observent que la ligne
de contact entre la goutte et le substrat reste fixe. Elle est alors considérée comme un nœud pour
les ondes à la surface de la goutte (voir Fig. 6.5.a).
Les longueurs d’ondes des modes propres sont alors décrites par l’équation : (j − 1/2)λj = 2p, où
j = 2, 3, 4... et 2p est la longueur de l’interface liquide/air le long d’un plan vertical passant par
le centre la goutte (voir Fig. 6.5.b). Pour de grandes amplitudes de vibration du substrat, la ligne
de contact avec entre la goutte et le substrat devient mobile dans l’étude de Noblin et al. (voir
Fig. 6.5.c). Cette fois, la ligne de contact correspond à un ventre pour les ondes à la surface de la
goutte. La condition aux limites s’écrit alors : iλi = 2p où i = 1, 2, 3... Dans les deux cas, l’Eq. (6.6)
permet de prédire les fréquences propres des modes axisymétriques, correspondant aux longueurs
d’ondes fixées par la géométrie du système. Noblin et al. trouvent alors un bon accord général entre
les fréquences propres ainsi prédites et les fréquences propres mesurées expérimentalement [39, 61].
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(a) (b)

i

i

(c)

Figure 6.5 – Schéma des modes axisymétriques à la surface d’une goutte sessile aplatie dans les modèles
de Noblin et al. [39, 61]. Source des images : [63].

6.4.2 Ondes en géométrie cylindrique

Toutefois, l’analogie avec des ondes de surface 1D faite par Noblin et al. [39, 61] est limitée car
la géométrie de la goutte est cylindrique. Les nombres d’onde des modes propres en géométrie
cylindrique sont en effet différents du cas 1D. Soit un bassin de géométrie cylindrique, centré en
r = 0 dans un repère en coordonnées polaires (r, θ). Dans le régime linéaire d’ondes harmoniques,
la déformation verticale de la surface libre, η, pour des ondes circulaires symétriques s’écrit sous la
forme de fonctions de Bessel de première espèce et d’ordre zéro, J0 [62] :

η(r, t) = η0J0(kr) cosωt (6.7)

avec η0 une constante réelle. La première condition utilisée par Noblin et al. adaptée au cas cylin-
drique s’écrit donc : J0(kjp) = 0, soit kjp = 5.52, 8.65, 11.79, 14.93, 18.07... Pour le deuxième cas,
lorsque la ligne de contact est mobile, les ventres des ondes se trouvent à la périphérie de la goutte.
Cette condition s’écrit :

∂η

∂r

∣∣∣∣
r=p

= 0 ⇐⇒ J1(kip) = 0 (6.8)

Les nombres d’ondes des modes axisymétriques sont donc ici définis par les racines de la fonction
de Bessel d’ordre 1, J1 : kip = 3.83, 7.02, 10.17, 13.32, 16.47...
Les fréquences propres correspondant à ces nombres d’onde déterminés par les conditions aux
limites peuvent à nouveau être calculés avec l’Eq. (6.6). Il est à noter que le passage du cas 1D au
cas cylindrique améliore sensiblement la prédiction des fréquences propres dans notre expérience.

6.5 Ferrofluides : rappels

Les gouttes utilisées dans cette partie sont constituées de ferrofluide. En présence d’un champ
magnétique statique, l’énergie d’un tel liquide dépend de la forme de la goutte et de la valeur du
champ magnétique. Ceci introduit alors des forces supplémentaires complexes d’intensité contrôlable,
qui vont jouer un rôle dans les oscillations des gouttes puisque celles-ci modifient la forme de la
goutte. Nous présentons donc dans cette partie quelques propriétés des ferrofluides afin de mieux
comprendre l’influence du champ magnétique.
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La sensibilité d’un matériau ferromagnétique au champ magnétique se caractérise par sa susceptilité
magnétique χ, qui traduit sa capacité d’aimantation lorsqu’un champ magnétique B est appliqué.
Pour tous les matériaux ferromagnétiques connus, la température de Curie, qui correspond à la
transition entre l’état ferromagnétique (χ� 1) et l’état paramagnétique (0 < χ� 1), est inférieure
à la température de fusion [50]. Les liquides homogènes issus de la fusion des solides ferromagnétiques
sont alors peu sensibles au champ magnétique. Une solution consiste à utiliser des ferrofluides,
composés d’une dispersion colloïdale de fines particules magnétiques dans un liquide suspendant.
Ces liquides présentent une susceptibilité magnétique intermédiaire (χ ∼ 1) et leur forme est alors
très sensible au champ magnétique.

6.5.1 Stabilité des ferrofluides

Les ferrofluides utilisés pour cette expérience sont constitués de nanoparticules ferromagnétiques
dispersées dans l’eau. L’homogénéité et la conservation des propriétés d’un ferrofluide dans le temps
est indispensable à la reproductibilité expérimentale. La thèse de Julien Browaeys [64] compare
l’agitation thermique aux différents processus physiques susceptibles de provoquer l’agrégation ou la
sédimentation des particules magnétiques. Il montre que le faible diamètre et le traitement chimique
apporté aux particules magnétiques permettent d’éviter de tels phénomènes. La solution stable
obtenue présente un comportement de liquide magnétique dont nous allons décrire les propriétés
ci-dessous.

6.5.2 Propriétés magnétiques

Chaque particule colloïdale du ferrofluide porte un moment magnétique m. L’augmentation de
l’aimantation du ferrofluide avec le champ appliqué est le résultat de la compétition entre l’énergie
magnétique, qui tend à aligner ces moments avec le champ, et l’agitation thermique, qui, à champ
nul, les oriente aléatoirement. Les conditions à la surface des ferrofluides peuvent être modifiées par
déformation. En effet, la particularité d’un ferrofluide par rapport à un matériau ferromagnétique
solide est sa capacité à se déformer sous l’action d’un champ magnétique. La forme est alors le
résultat d’une compétition entre l’énergie magnétique et d’autres énergies comme l’énergie capillaire
ou l’énergie gravitationnelle.
Cette particularité donne lieu à des phénomènes intéressants, comme l’instabilité de Rosensweig [50]
qui fait apparaître un réseau de pics à la surface du ferrofluide au-delà d’un certain champ magné-
tique (voir Fig. 6.6). La distance entre les pics et le champ magnétique seuil de leur apparition sont
déterminés par la compétition entre énergie magnétique et énergie capillaire.

6.5.3 Energie magnétique et forme du ferrofluide

Les oscillations étudiées dans cette partie modifient la forme des gouttes de ferrofluide, modi-
fiant alors son énergie magnétique en présence d’un champ. Nous présentons donc dans cette sec-
tion les principes physiques qui permettent de déterminer l’énergie magnétique d’un volume de
ferrofluide en fonction de sa forme. Par souci de simplicité, on suppose ici que le champ magné-
tique est suffisamment faible pour que sa susceptibilité magnétique χ soit indépendante de B (i.e.
χ(B) ≈ χ(B = 0) = χ), comme c’est le cas pour les valeurs de B utilisées dans nos expériences.
L’énergie magnétique d’un système magnétique s’écrit alors [50] :
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Figure 6.6 – Un aimant placé sous du ferrofluide provoque l’instabilité de Rosensweig. Source :
Gregory F. Maxwell (wikipedia.org).

Em = −1
2B.

∫
V

MdV (6.9)

avec B le champ magnétique extérieur appliqué, V le volume du système et M l’aimantation. Dans le
cas d’une interface plane entre le milieu extérieur et le milieu magnétique, l’aimantation est uniforme.
De même, si le système initial observé est une goutte sphérique et que la gravité n’intervient pas, la
forme obtenue après déformation dans la direction du champ est très proche d’une ellipsoïde tant
que l’élongation n’est pas trop forte [65]. Dans ce cas, l’aimantation est également uniforme [66]. B
et M étant colinéaires, on a alors :

Em = −1
2VMB (6.10)

M est déterminé par les conditions aux limites entre le milieu extérieur et le milieu magnétique.
Considérons une interface plane d’étendue infinie et introduisons le champ magnétique auxiliaire H,
tel que M = χH. Le champ magnétique s’écrit alors [50] :

B = µ0(H + M) = µ0(1 + χ)H (6.11)

où µ0 = 4π.10−7 H.m−1 est la perméabilité magnétique du vide. Dans le milieu extérieur, on a
donc Hext ≡ B/µ0. En l’absence de courants surfaciques, les conditions aux limites entre le milieu
extérieur et le milieu magnétique s’écrivent :

∇.B = 0
∇×H = 0

(6.12)

Si le champ magnétique est parallèle à l’interface, il y a donc continuité de H. Dans le cas d’un
film magnétique d’étendue infinie, on a donc M = χHext = χB/µ0 (voir Fig. 6.7.a). Si le champ
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magnétique est normal à l’interface, il y a continuité de B, d’où Hext = (1 + χ)H. On a donc
M = χB/[µ0(1 + χ)] (voir Fig. 6.7.b).

(a) (b)

Figure 6.7 – Aimantation à l’intérieur d’un film magnétique d’étendue infinie parallèle (a) ou normale
(b) à B.

D’une façon plus générale, lorsque l’aimantation est uniforme, le champ H local à l’intérieur du
milieu magnétique peut aussi s’écrire comme le champ extérieur Hext diminué d’un champ déma-
gnétisant HD produit par le milieu magnétique et s’opposant à Hext [67] :

H = Hext −HD avec HD ≡ DM (6.13)

Le coefficient D est appelé facteur de démagnétisation, dépendant de la forme du matériau fer-
romagnétique. Il est d’autant plus faible que celui-ci est allongé dans la direction du champ. En
utilisant les Eqs (6.13) et (6.11), on obtient alors :

M = χB

µ0(1 + χD) (6.14)

Et d’après l’Eq. (6.10), on a alors [50] :

Em = − V χB2

2µ0 (1 + χD) . (6.15)

Dans le cas d’un plan, on a vu que D = 0 si B est parallèle à l’interface (Fig. 6.7.a) et D = 1 si B
est normal à l’interface (Fig. 6.7.b) [50]. Dans le cas d’une goutte de forme ellipsoïdale, l’aimantation
est uniforme dans le milieu magnétique. D est alors d’autant plus petit que la goutte est allongée
selon l’axe du champ magnétique (voir Fig. 6.8), puisqu’on a une augmentation de la surface alignée
avec B, pour laquelle D = 0. Une goutte de ferrofluide aura donc tendance à s’allonger selon l’axe
du champ magnétique pour minimiser son énergie magnétique.
On peut ainsi calculer la déformation d’une goutte de ferrofluide en l’absence de gravité et en
présence d’un champ magnétique. Ce calcul, basé sur la compétition entre énergie capillaire et
énergie magnétique, est présenté dans l’annexe B. Il est à noter que les ellipsoïdes (y compris leurs
formes extrêmes comme les plans) sont les seules formes pour lesquelles l’aimantation est uniforme
à l’intérieur du milieu magnétique.

6.5.4 Ondes à la surface d’un ferrofluide

Les oscillations de la goutte aplatie étudiées dans cette partie s’apparentent à des ondes de surface.
Or, les ondes à la surface d’un liquide modifient également les conditions à l’interface entre le milieu
extérieur et le milieu magnétique. L’effet du champ magnétique sur les ondes gravito-capillaires à la
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Figure 6.8 – Valeur du facteur de démagnétisation D pour différentes formes de gouttes de ferro-
fluide, décrites par rapport à la direction du champ magnétique B [50].

surface d’un ferrofluide a été étudié expérimentalement pour un champ parallèle ou perpendiculaire
à la surface ou à la direction de propagation des ondes [50, 68–71]. La relation de dispersion théorique
pour des ondes de surface gravito-capillaires linéaires à la surface d’un ferrofluide de profondeur et
d’étendue infinies en présence d’un champ magnétique s’écrit [50, 72] :

ω2 = gk + γk3

ρ
+ α

f(χ)B2k2

ρµ0
(6.16)

où f(χ) > 0 est une fonction de la susceptibilité magnétique, ω = 2πf la pulsation et k = 2π/λ
le nombre d’onde. Les deux premiers termes de l’Eq. (6.16) sont respectivement d’origines gravita-
tionnelle et capillaire. Le dernier terme est lié au couplage entre le champ magnétique et les ondes
de surface. α prend différentes valeurs (0, +1 ou -1) selon la direction du champ magnétique par
rapport à la surface libre et par rapport à la direction de propagation des ondes k.

z

x
y B Bz

x
y B B

a b c

k

Figure 6.9 – Couplage entre le champ magnétique B et les ondes à la surface d’un ferrofluide. (a) B est
parallèle à la surface au repos et normal à la direction de propagation : pas de couplage (α = 0) ; (b) B est
parallèle à la surface et à la direction des ondes : augmentation de leurs fréquences (α = +1) ; (c) B est
normal à la surface et à la direction des ondes : diminution de leurs fréquences (α = −1).

Si B est parallèle à la surface au repos et normal à la direction de propagation des vagues (Fig. 6.9.a),
l’ensemble de la surface reste parallèle à B avec ou sans les ondes de surface. Il n’y a pas de
couplage (α = 0) car B ne traverse jamais l’interface et il n’y a donc pas de modification de l’énergie
magnétique lorsque la surface se déforme [50].
Si B est à la fois parallèle à la surface au repos et à la direction de propagation des vagues
(Fig. 6.9.b), ce n’est plus le cas. Un couplage apparaît alors et α = +1, car B est modifié en raison
de la condition de continuité de B de l’Eq (6.12) [50].
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Enfin, quand B est normal à surface au repos (Fig. 6.9c), il y a également couplage mais α = −1,
provenant de la même condition aux limites de B à l’interface ayant pour effet de concentrer les
lignes de champ aux niveaux des pics de déformation de la surface [50].



Chapitre 7

Dispositif expérimental

Nous décrivons dans ce chapitre le dispositif expérimental utilisé pour l’étude des oscillations d’une
goutte de ferrofluide aplatie soumise à une vibration verticale. Nous présentons également les carac-
téristiques du substrat superhydrophobe et des ferrofluides utilisés.

7.1 Description du montage

La Fig. 7.1.a présente le schéma général du montage utilisé dans cette partie. Une goutte de liquide
(eau ou ferrofluide à base d’eau) de tension de surface γ est déposée sur une plaque de cuivre
cylindrique de diamètre 80mm, recouverte d’un substrat superhydrophobe (voir section 7.2). Les
forces s’opposant aux mouvements latéraux de la goutte sont alors très faibles. La goutte doit donc
être piégée pour ne pas glisser et sortir de la plaque lors de la réalisation des expériences. Pour cela,
la plaque a été usinée de façon conique avec une profondeur au centre de 1mm, ce qui correspond
à une pente de 1.4◦ avec l’horizontale (voir Fig. 7.1.b).
La goutte est de volume V choisi suffisamment grand pour qu’elle soit aplatie par la gravité et
adopte la forme d’une flaque cylindrique de hauteur h et de rayon R (voir encart de la Fig. 7.1.a).
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A  
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e

shaker
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e
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h(t)
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coil
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(a)

1 mm
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Figure 7.1 – (a) Schéma général du dispositif expérimental. (b) Vue en coupe de la forme conique du
substrat afin de piéger la goutte. L’échelle n’est pas respectée pour faciliter la compréhension.

Le substrat est relié à un vibreur électromagnétique Brüel & Kjær Type 4809, dont l’accélération

75
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est mesurée par un accéléromètre Brüel & Kjær miniature 4393 fixé sous le substrat.
Le champ magnétique est produit par deux bobines identiques horizontales et coaxiales de diamètres
intérieur Di = 25 cm et extérieur De = 53 cm (soit un rayon moyen Rm = 19.5 cm), de hauteur
H = 11.5 cm et de résistance interne Rb = 0.7 Ω. Elles sont espacées verticalement d’une distance
centre à centre e =18.5 cm. Ceci correspond à une configuration proche de celle des bobines de
Helmhotz, définie par Rm = e et qui permet une bonne homogénéité verticale. Toutefois, Rm et e
sont choisis légèrement différents afin d’obtenir une homogénéité horizontale sur l’ensemble de la
section (> 99% [64]).
Les bobines sont alimentées en série par une alimentation de puissance JFA Électronique, pouvant
délivrer une tension U = 0 − 50V et un courant I = 0 − 50A. Un courant maximal de 36A est
atteint pour une tension appliquée de 50V, produisant ainsi un champ magnétique B jusqu’à 780G
(1G=10−4 T). L’étalonnage des bobines, en mesurant le champ magnétique au niveau de la goutte
de ferrofluide, montre que la relation avec l’intensité est linéaire : B = aI, avec a = 2, 2.10−3T.A−1.
Ceci permet de connaître le champ magnétique appliqué par lecture de l’intensité parcourant les
bobines.

7.2 Substrat superhydrophobe

Un substrat superhydrophobe permet de minimiser les forces liées aux lignes de contact afin d’ob-
tenir des expériences beaucoup plus reproductibles [73, 74]. Ceci a nécessité l’application d’un trai-
tement sur la plaque utilisée pour faire vibrer la goutte.

Argent-HDFT

Nous avons dans un premier temps envisagé l’utilisation d’un traitement chimique décrit dans
[75]. Celui-ci consiste d’abord à déposer de l’argent sur la plaque de cuivre en la plongeant dans une
solution de nitrate d’argent (AgNO3) de concentration 0.01mol.L−1 pendant 3 minutes. Une réaction
d’oxydo-réduction entre les ions argent (E0

Ag+/Ag = 0.799V) et le cuivre (E0
Cu2+/Cu = 0.340V)

produit un dépôt d’argent sous forme de flocons (voir Fig. 7.2), une rugosité qui est le premier
facteur d’hydrophobicité. La plaque est ensuite plongée pendant 20 minutes dans une solution de
HDFT (heptadecafluoro-1-decanethiol) 1 à 10−3 mol.L−1. Les chaînes fluorées se fixent alors aux
atomes d’argent et sont le deuxième facteur d’hydrophobicité.
Ce traitement permet d’atteindre un angle de contact d’environ 170◦ entre une goutte d’eau et
le substrat. Toutefois, le ferrofluide 2 n’est pas compatible avec ce traitement car le dépôt d’une
goutte sur la plaque entraîne la destruction de la surface superhydrophobe. Une réaction chimique
a probablement lieu en raison des ions utilisés pour la stabilisation du ferrofluide.

Ultra Ever Dry

Nous nous sommes tourné vers le traitement industriel nommé Ultra Ever Dry [76]. Il consiste en
l’application de deux couches par pulvérisation. La composition n’est pas fournie par le fabricant
mais a été étudiée par le site internet Ars Technica [77]. La spectrométrie photoélectronique X
révèle que la première couche est composée de polymères afin de lier les particules de la deuxième

1. Plus précisément, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol
2. Le ferrofluide n◦2 (voir section 7.3.1) n’a pas été testé avec ce traitement
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Figure 7.2 – Image par microscopie électronique à balayage d’un dépôt d’argent sur du cuivre par réaction
d’oxydo-réduction. Source de l’image : [75]

couche au substrat. La deuxième couche contient des fluorocarbures (connus pour être hydrophobes,
comme le Teflon) et du dioxyde de silicium SiO2. Le substrat est alors lié à des chaînes ramifiées de
particules de SiO2, celles-ci étant alors entourées de fluorocarbures hydrophobes (voir Fig. 7.3). Le
principe de l’Ultra Ever Dry repose ainsi sur la combinaison des deux facteurs d’hydrophobicité du
traitement présenté précédemment.

Figure 7.3 – Image par microscopie électronique à balayage d’un dépôt d’Ultra Ever Dry. Source de
l’image : [77]

Le temps de séchage nécessaire pour l’Ultra Ever Dry est d’environ une heure pour la première
couche et est optimal après 2 heures pour la deuxième couche. Ses performances sont bonnes à la
fois avec l’eau et les ferrofluides. L’angle de contact entre la goutte et le substrat obtenu est de 165◦.
Il est à noter que le traitement doit être renouvelé après une journée complète d’expériences.
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7.3 Ferrofluides

7.3.1 Caractéristiques des ferrofluides utilisés

Dans cette partie, deux ferrofluides différents ont été utilisés en raison des quantités trop faibles
disponibles d’un même ferrofluide. Ils ont été synthétisés par Delphine Talbot et Sophie Neveu, du
laboratoire LI2C de l’Université Pierre et Marie Curie. Le tableau 7.1 regroupe leurs caractéristiques.

Caractéristiques Ferrofluide n◦1 (chap. 8) Ferrofluide n◦2 (chap. 9 et 10)
Type de particules Maghémite (Fe2O3) Ferrite de cobalt (CoFe2O4)
Type de ferromagnétique Doux Dur
Liquide suspendant Eau Eau
Stabilisation Ionique, Citrate de Sodium Ionique
Diamètre moyen d 7 nm 13.3 nm
Dispersité σ ± 0.3 nm ± 0.46 nm
Fraction volumique Φ 12.4% 7.5%
Susceptibilité mag. init. χi 1.0 3.2
Aimantation à saturation Ms 36 kA.m−1 -
Masse volumique ρ 1.55 g.cm−3 1.6 g.cm−3

Tension de surface γ 43mN.m−1 45mN.m−1

Viscosité dynamique η 1.4.10−3 Pa.s -

Table 7.1 – Caractéristiques des ferrofluides utilisés dans cette partie.

7.3.2 Mesures des tensions de surface

7.3.2.1 Ferrofluide n◦1 : balance d’arrachement

La tension de surface du ferrofluide n◦1, γ1, a été mesurée grâce à une balance d’arrachement : une
plaque en platine de longueur L et d’épaisseur d est suspendue à une balance et plongée dans un
bain de ferrofluide (Fig. 7.4). Le platine, pyrolisé au chalumeau avant l’expérience pour en enlever
les impuretés, permet de considérer que l’angle de contact avec le liquide est nul.

Figure 7.4 – Schéma de l’expérience de Wilhelmy (balance d’arrachement). Source de l’image :
www.lauda.fr

Lorsqu’on retire la plaque, la force dirigée vers le bas subie par la plaque passe par un maximum
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lors de l’arrachement Fmax = 2Lγ, indiquée par la lecture de la masse m sur la balance. On obtient
alors : γ1 = 43± 3mN.m−1.

7.3.2.2 Ferrofluide n◦2 : goutte pendante

En raison de la faible quantité de liquide disponible, la tension de surface du ferrofluide n◦2, γ2,
a été mesurée par la méthode de la « goutte pendante »[78]. Cette méthode consiste à former une
goutte de ferrofluide à l’aide d’une seringue (voir Fig. 7.5).

Figure 7.5 – Schéma de la méthode de la goutte pendante. Source de l’image : De Gennes [78].

En tout point de l’interface, la courbure C de la goutte doit alors obéir à l’équation γC = ρgz
où z est la profondeur et C la courbure, qu’on peut calculer en connaissant r(z) en coordonnées
cylindriques (voir Fig. 7.5). γ étant le seul paramètre ajustable, on peut en déterminer la valeur en
comparant la forme théorique de la goutte à celle obtenue grâce à un système optique l’enregistrant
et l’analysant. En raison de la pollution de la surface, la valeur mesurée décroît lors de son contact
avec l’air pour atteindre une valeur γ2 = 45± 5mN.m−1.

7.3.3 Mesures des caractéristiques magnétiques

7.3.3.1 Ferrofluide n◦1

Un ferrofluide d’interface parallèle au champ magnétique extérieur appliqué B a une aimantation
M = χB/µ0 (voir Fig. 6.7). La Fig. 7.6 représente la courbe d’aimantation du ferrofluide n◦1 (M
vs. B), réalisée dans ces conditions par le laboratoire LI2C. L’évolution est très nettement non
linéaire. On note cependant que que la susceptibilité magnétique à champ nul χ(B = 0) constitue
une bonne approximation pour les champs atteints lors de nos expériences (B < 100G). On mesure
χi,1 ≡ χ1(B = 0) = 1.0. La courbe d’aimantation fournit également la valeur de l’aimantation à
saturation Ms (non visible ici).

7.3.3.2 Ferrofluide n◦2

Nous ne bénéficions pas de la courbe d’aimantation pour le ferrofluide n◦2. Toutefois, nous avons
pu étudier la déformation d’une goutte sphérique de ce ferrofluide dans du fréon. En effet, la masse
volumique du fréon est proche de celle du ferrofluide, ce qui permet de négliger la gravité et retrouver
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Figure 7.6 – Courbe d’aimantation M vs. B du ferrofluide n◦1.

les conditions de l’annexe B. En mesurant l’élongation de la goutte avec B, nous avons alors mesuré
χi,2 = 3.2. Par analogie avec le ferrofluide n◦1, nous considérons que les champs magnétiques utilisés
(B < 70G) sont suffisamment faibles pour pouvoir considérer que l’aimantation du ferrofluide est
linéaire, c’est-à-dire χ2(B) = χ2(B = 0) ≡ χi,2.



Chapitre 8

Modes azimutaux à la périphérie d’une
goutte magnétique : influence du champ
magnétique

8.1 Résumé

Les résultats de ce chapitre ont été rédigés sous forme d’un article publié dans Physical Review
Fluids [79] et reproduit en section 8.2. Nous résumons ici les principaux résultats.
Dans cet article, nous étudions expérimentalement et théoriquement l’influence du champ magné-
tique sur les fréquences propres des modes azimutaux d’une goutte de ferrofluide. Le dispositif expé-
rimental utilisé est décrit au chapitre 7 (voir Fig. 7.1). Une goutte de ferrofluide de volume V = 1mL
est déposée sur un substrat superhydrophobe qui subit une vibration verticale de fréquence fe en
présence d’un faible champ magnétique vertical extérieur B. Au-delà d’une accélération seuil du
vibreur Γc, un motif azimutal, constitué d’un certain nombre de lobes n, apparaît à la périphérie
de la goutte et oscille à la fréquence moitié du forçage (voir Fig. 8.1 et section 6.3). Pour différents
modes azimutaux (n = 3, 4, 5 et 7) et différents champs magnétiques (B = 0, 22, 44, 55, 66, 77, 88 et
99G), on cherche la fréquence d’excitation fe du vibreur pour laquelle Γc est minimale (voir Fig. 3
de l’article). Cette fréquence correspond alors au double de la fréquence propre du mode, fn = fe/2,
comme attendu pour un forçage paramétrique (voir section 6.3.2).
Nous observons expérimentalement que les fréquences propres des modes azimutaux ainsi obtenues
diminuent en présence du champ magnétique (voir Fig. 3 de l’article). La Fig. 8.2 (Fig. 4 de l’article)
montre que la valeur absolue du décalage en fréquence ω2

n(B = 0) − ω2
n(B) (avec ωn = 2πfn) est

proportionnelle à B2n(n2 − 1).
Pour interpréter théoriquement ce décalage en fréquence, nous adoptons un raisonnement analogue
à celui du modèle de Rayleigh, présenté dans la section 6.3.1 mais qui ne tient pas compte du rôle
de B. Les fréquences propres peuvent à nouveau être obtenues par l’écriture de la conservation de
l’énergie, mais incluant cette fois l’énergie magnétique Em, qui dépend de la forme du ferrofluide.
Le calcul de Em nécessite a priori la connaissance de l’aimantation, mais celle-ci est connue en tous
points du fluide uniquement dans le cas d’un ellipsoïde car elle y est uniforme (voir section 6.5.3).
D’après l’Eq. (6.15), l’énergie magnétique peut s’exprimer dans ce dernier cas sous la forme :

Em = − χB2V

2µ0(1 +Dχ) (8.1)

81
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Figure 8.1 – (a) Schéma vu de dessus d’un mode azimutal (n = 7) à la périphérie d’une goutte aplatie.
(b) Photos de modes azimutaux vus de dessus à la périphérie d’une goutte de ferrofluide aplatie lorsque la
fréquence d’excitation augmente. n est le numéro du mode. B = 0.
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Figure 8.2 – Décalage en fréquence ω2
n(B = 0) − ω2

n(B) en fonction de B2n(n2 − 1) pour différents
modes :n = 3 (�), 4 (N), 5 (•) et 7 (�). La ligne noire, de pente 1, est la prédiction théorique sans
paramètre ajustable (voir Eq. 8.3). Encart : Décalage en fréquence en fonction de B. Les lignes noires en
pointillés représentent des lois de puissance en B2.

où D est un facteur de démagnétisation dépendant de la forme de l’ellipsoïde. Des expressions
de D effectives, qui correspondent à des aimantations moyennées sur le volume, existent pour des
géométries particulières telles que les parallélépipèdes rectangles [80] ou les cylindres [81]. Mais il
n’existe pas d’expressions générales pour le cas de formes complexes telles que celle d’une goutte
présentant des lobes périphériques. Toutefois, les expressions connues de D pour les géométries
particulières citées précédemment permettent de comparer ce facteur de démagnétisation au rapport
rS entre S⊥, la surface perpendiculaire à B (voir Fig. 6.3 ou Fig. 5 de l’article), et la surface totale
de la goutte, S⊥ + S‖. Nous montrons alors sur la Fig. 8.3 (Fig. 6 de l’article) que :
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D ≈ S⊥
S⊥ + S‖

≡ rS (8.2)
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Figure 8.3 – Facteurs de démagnétisation théoriques D en fonction du rapport des surfaces rs. La ligne
noire est calculée d’après [81] pour un cylindre d’axe parallèle à B. La ligne rouge est calculée d’après [80]
pour un parallélépipède rectangle. La ligne en pointillés représente le cas D = rS (pente 1).

D’après la section 6.3.1, l’apparition des lobes entraîne une petite variation ∆S‖ de la surface
périphérique de la goutte. Un développement limité permet de montrer que la variation d’éner-
gie magnétique liée à la présence de lobes azimutaux s’écrit : ∆Em = γm∆S‖, avec γm =
−χ2hB2/

[
4µ0 (1 + χ+ h/R)2] < 0. A la manière de la section 6.3.1, l’écriture de la conservation de

l’énergie dans le temps en présence de B, d(Ek + Ec + Em)/dt = 0, nous permet alors de montrer
que les fréquences propres des lobes s’écrivent :

ω2
n = γ + γm(B2)

ρR3 n(n2 − 1) (8.3)

L’Eq. (8.3) est à comparer avec l’Eq. (6.4) obtenue sans champ B. Le terme magnétique joue donc
ici le rôle d’une tension de surface négative proportionnelle à B2 qui permet de contrôler la tension
de surface effective de la goutte. La ligne noire tracée sur la Fig. 8.2 représente les décalages en
fréquence calculés à partir de l’Eq. (8.3). Les décalages en fréquence prédits par ce modèle simple
sont en très bon accord avec ceux observés expérimentalement, concernant à la fois la loi d’évolution
en B2n(n2 − 1) et le préfacteur.
Nous avons donc étudié ici les modes azimutaux à la périphérie d’une goutte aplatie de ferrofluide
déposée sur un substrat superhydrophobe soumis à une vibration verticale. Nous avons montré que
nous pouvons contrôler les fréquences propres de ces modes avec un champ magnétique. En effet,
l’apparition des lobes augmente l’aimantation de la goutte et fait diminuer l’énergie magnétique.
Nous avons montré que la contribution magnétique est alors équivalente à celle d’une tension de
surface négative. Un tel contrôle des fréquences propres via une tension de surface effective modulable
(jusqu’à 20% pour nos valeurs de B) permet d’envisager des applications pratiques nécessitant
d’atteindre ou d’éviter certaines bandes de fréquences.
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8.2 Article publié dans Physical Review Fluids [79]
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Tuning the resonant frequencies of a drop by a magnetic field

Timothée Jamin, Yacine Djama, Jean-Claude Bacri, and Eric Falcon*

Université Paris Diderot, Sorbonne Paris Cité, MSC, CNRS (UMR 7057), 75013 Paris, France
(Received 12 January 2016; revised manuscript received 8 February 2016; published 2 June 2016)

We report an experimental study of a magnetic liquid drop deposited on a superhy-
drophobic substrate and subjected to vertical vibrations in the presence of a static magnetic
field. It is well known that a flattened drop of usual liquid displays oscillating lobes at
its periphery when vibrated. By adding ferromagnetic nanoparticles to a water drop and
varying the strength of the magnetic field, we are experimentally able to efficiently tune the
resonant frequencies of the drop. By using conservation energy arguments, we show that
the magnetic field contribution is equivalent to adding an effective negative surface tension
to the drop. Our model is found to be in good agreement with the experiments with no
fitting parameter.

DOI: 10.1103/PhysRevFluids.1.021901

When a drop of liquid is dynamically driven by an external force, its free surface generally displays
an oscillating pattern at the drop resonant frequency. At a fundamental level, the dynamical study of
such an oscillating drop occurs in various domains at different scales. Indeed, liquid drop behavior
is used to model stellar mass collisions or neutron-star oscillations in astrophysics [1] and nuclei in
nuclear fission [2,3] or in cellular biology [4]. It is also involved in metrology for measuring viscosity
of liquids [5] or surface tension of molten materials [6,7]. At a more practical level, it includes printing
(ink drop generation), mixing of drop clouds, and droplet manipulations in microfluidic, optofluidic,
and pharmaceutical industry [8]. Since the pioneer works of Rayleigh [9], the resonant frequencies
of a drop have been studied experimentally by means of different forcing mechanisms: a water drop
on a vibrating plate [10–13] or on a vibrating bath [14], in microgravity [15], by acoustic or air-flow
levitation [16,17], by levitating it on its own vapor (Leidenfrost drops) [18–20], or by Lorentz force
for a metal liquid drop [21,22]. A new challenge would be to accurately control and tune the free
oscillations of a drop in a nonintrusive way. Notably, it would be of primary interest to be able to
shift the resonant frequencies of the drop to avoid, for instance, some annoying frequency bands in
practical situations.

In this Rapid Communication we study the dynamics of a flattened drop of magnetic fluid
deposited on a superhydrophobic substrate vertically vibrated in the presence of a weak magnetic field
of tunable amplitude. The fluid used is a ferrofluid consisting of a stable suspension of nanometric
magnetic particles diluted in a carrier liquid (water). Above a critical acceleration of vibrations, the
drop undergoes a parametric instability leading to an azimuthal pattern around the drop that oscillates
at half the forcing frequency. A star-shaped drop is then observed made of several oscillating lobes.
We observe that the resonant frequencies of the drop depend on the strength of the field. We show
quantitatively and theoretically that we are able to shift these frequencies by tuning the effective
surface tension of the drop through the field. Indeed, the contribution of the magnetic field is
equivalent to the one of a negative surface tension. Including nanometric magnetic particles within
a drop appears thus as a first step in being able to control and tune the free oscillations of a drop,
such a magnetic fluid being known to shift the onsets of usual hydrodynamics instabilities (such as
Kelvin-Helmholtz, Rayleigh-Taylor, or Rayleigh-Plateau ones) [23,24]. Finally, note that ferrofluid
drop manipulation with a magnet is also an important task in microfluidics or laboratory on-chip
technology [25–27] and in dynamic self-assembly phenomena [28].

*eric.falcon@univ-paris-diderot.fr
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FIG. 1. Experimental setup. The bottom inset shows a schematic of the puddle at two phases of the vibration.
The top inset shows the top view of the ferrofluid puddle at rest.

The experimental setup is shown in Fig. 1. A volume of ferrofluid (V = 1 mL) is put on a
plate. Due to gravity, the drop is flattened and looks like a puddle (radius R = 9.7 mm and thickness
h = 3.4 mm; see the insets of Fig. 1). The plate was coated with a spray [29] to obtain a contact angle
between the drop and the substrate measured of roughly 165◦. Such a superhydrophobic substrate is
crucial to minimize the pinning force of the drop at the contact line and thus to obtain much better
reproducible experiments [30,31]. The plate is then subjected to vertical sinusoidal vibrations by
means of an electromagnetic shaker. The frequency and amplitude of vibrations are in the ranges
0 � fe � 52 Hz and 0 � A � 3 mm, respectively. An accelerometer is fixed below the plate to
measure the normalized acceleration of vibrations � = Aω2

e/g with ωe = 2πfe and g = 9.81 m s−2

the acceleration of gravity. One has 0 � � � 4. The ferrofluid puddle on the plate is placed between
two horizontal coils (38 cm in mean diameter), generating a vertical static magnetic field B in the
range 0 � B � 100 G, 99% homogeneous in the horizontal plane [32]. The drop oscillations are
recorded by means of a high-speed camera (PhantomV10) located above the drop, with a 1000
frames/s sampling and a 1600 × 1200 pixel resolution.

The ferrofluid used is an ionic aqueous suspension synthesized with 12.4% by volume of
maghemite particles (Fe2O3, 7 ± 0.3 nm in diameter) [33]. The nanoparticle diameter and magnetic
field values are small enough to avoid sedimentation or agglomeration due to vibrations, gravity,
and magnetic fields [23]. The ferrofluid properties are density ρ = 1550 kg m−3, surface tension
γ = 43 ± 3 mN m−1, magnetic susceptibility χ (B) ≈ χ (B = 0) = 1.0 [34], magnetic saturation,
Msat = 36 × 103 A m−1, and dynamic viscosity 1.4 × 10−3 N s m−2. Its capillary length is then
lc = √

γ /ρg = 1.7 mm.
To accurately measure azimuthal drop oscillations, we use large flattened drops (R � lc; see

the bottom inset of Fig. 1). The Bond number, quantifying the ratio between gravity and capillary
forces acting on the drop, is Bo ≡ (R/lc)2 � 33. The ratio between magnetic and capillary forces
is quantified by the magnetic Bond number Bom ≡ B2R/μ0γ , with R the puddle radius and
μ0 = 4π × 10−7 H m−1 the magnetic permeability of the vacuum. For our range of B, one has
Bom � 2. Moreover, the magnetic effect is much smaller than that of gravity (Bom/Bo � 0.06),
meaning that the strength of B is weak enough to not deform the flattened region of the puddle at rest.

We first carry out experiments with no magnetic field (B = 0). Figure 2 shows the parametric
instability of a ferrofluid puddle subjected to vertical sinusoidal vibrations. Above a critical
acceleration of vibration �c, an azimuthal pattern is observed in the horizontal plane at the drop
periphery: Lobes oscillate radially at half the forcing frequency fe/2. When fe is increased, the

021901-2
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FIG. 2. Top view of the azimuthal pattern displayed around the drop as a function of fe. Above a critical
acceleration of vibration, an azimuthal pattern is observed normal to the vibration direction. When the forcing
frequency fe is increased (0 � fe � 52 Hz), the number n of lobes, oscillating radially at fe/2, increases from
n = 2 to 9 (from left to right and top to bottom). See a movie in the Supplemental Material [35]. The magnetic
field and the ferrofluid volume are B = 0 and V ≈ 1 mL, respectively.

number n of oscillating lobes (mode number) increases from n = 2 to 9 as shown in Fig. 2 and the
movie in the Supplemental Material [35].

The resonant frequencies fn of such an inviscid drop are independent of the nature of the forcing
and arise from an interplay between inertia and surface tension effects. In the limit 2R � h, the
flattened drop shape (see the inset of Fig. 1) is approximated by a cylindrical column of fluid.
The radial amplitude of the lobes an(t) is then governed by a harmonic oscillator equation of
eigenfrequency fn [9,36],

d2an(t)

dt2
+ ω2

nan(t) = 0, ω2
n = γ

ρR3
n(n2 − 1), (1)

with ωn = 2πfn.
A vertical sinusoidal vibration of the substrate is now applied to force the drop parametrically

by modulating gravity g → g(t) = g[1 + � cos(ωet)] with � = Aω2
e/g. In addition, the thickness

h of the puddle is usually given [10,13] by the quasistatic balance between gravity and capillary
energies per unit volume (2γ /h � ρgh/2), i.e., h � 2lc = 2

√
γ /ρg. The hypothesis of a constant

volume of the puddle V = πR2h then gives its radius R = √
V/πh. Thus, a temporal modulation of

gravity g(t) induces those of the puddle thickness h(t) ∼ g(t)−1/2, radius R(t) ∼ h(t)−1/2 ∼ g(t)1/4,
and eigenfrequencies ω2

n(t) ∼ R(t)−3 ∼ g(t)−3/4 using Eq. (1). For weak acceleration of vibrations
� 
 1, the parametric oscillator equation governing the amplitude of the lobes an(t) then
reads [10]

d2an(t)

dt2
+ ω2

n

[
1 − 3

4
� cos(ωet)

]
an(t) = 0. (2)

Equation (2) is the Mathieu equation whose solutions are marginality curves (or instability
tongues) separating stable zones (no deformation of the drop) and unstable zones where azimuthal
standing waves at the drop periphery oscillate at half the forcing frequency fe/2, near the resonant
frequencies fn [37]. This corresponds to the parametric instability shown in Fig. 2.

These tongues of instability are displayed in Fig. 3 in an acceleration-frequency phase space
(�c/�min

c vs fe) for B = 0 (open symbols). Data are obtained experimentally for various fe by
increasing � until we observe lobes at critical acceleration �c; �min

c is the minimum critical
acceleration of each tongue. Equation (2) predicts that the minimum of each marginality curve

021901-3
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FIG. 3. Phase diagram of normalized rescaled critical acceleration �c/�min
c vs fe. Curves are marginality

curves separating stable and unstable zones for different mode numbers n = 3 (♦), 4 (�), and 5 (◦). No
instability occurs for � � �c, whereas an azimuthal pattern around the puddle occurs within tongues. Open
symbols corresponds to B = 0, closed symbols to B �= 0: B = 44 [red (dark gray)], 77 (black), and 99 G [green
(light gray)]. When B is increased (see arrows), the tongue are shifted towards a lower frequency, for each
mode n.

occurs at twice the eigenmode fe = 2fn. Notice that experimental values for fn are smaller than
values given by Eq. (1). This difference (<18%) may be explained by the fact that the quasistatic
approximation yielding Eq. (2) is valid only for a low-frequency forcing. At higher frequency, the
existence of axisymmetric modes shifts the minima of the marginality curves [38,39]. Indeed, we
checked that this difference becomes negligible when we remove these axisymmetric modes by
performing a control experiment with a superhydrophobic steady plate in contact with the drop
top [40]. One can now wonder how an applied vertical magnetic field B affects the drop dynamics.

When B is increased for a fixed n, we observe that the instability tongue is shifted towards a lower
frequency (see arrows in Fig. 3). The minimum of this curve and thus the eigenfrequency fn(B) are
found to decrease with B. For n = 5, a relative shift of fn of 16% is observed between extreme values
of B used. One defines the absolute shift of the eigenfrequency as �	n(B) ≡ ω2

n(B = 0) − ω2
n(B),

taking thus positive values. We plot in the inset of Fig. 4 the frequency shift �	n(B) as a function of
B for different n. We find that �	n(B) ∼ B2 for our range of B regardless of n. All data in the inset
of Fig. 4 are found to collapse on a single curve when plotting �	n(B) as a function of B2n3 (not
shown). In order to compare with the model described below, �	n(B) is then displayed in Fig. 4 as
a function of B2n(n2 − 1), noting that n(n2 − 1) ≈ n3 for n � 3.

This frequency shift is not due to a geometrical effect mediated by B such as a drop lengthening
along the field direction [24,41,42]. Indeed, using Eq. (1), a decrease of the puddle radius R with
B (up to 6% here) would lead to an increase of the resonant frequency, a situation opposite to our
observations (see Fig. 3). Moreover, the results of Fig. 4 are found again when adding a steady
plate above the drop. Finally, note that no clear dependence of the critical acceleration �min

c on B is
observed.

An elegant way to understand the physical origin of the drop eigenfrequency shift with B is to
balance energies involved in this system. In a first step, we assume B = 0 and follow Rayleigh
model [9]. The flattened drop shape is approximated by a cylinder of fluid [see Fig. 5(a)]. We denote
by S⊥ its surface area normal to gravity and magnetic field (i.e., top plus bottom areas) and by S‖
the peripheral surface area. At rest, they are denoted by S⊥,0 and S‖,0, respectively. We consider
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FIG. 4. Eigenfrequency shift ω2
n(B = 0) − ω2

n(B) as a function of B2n(n2 − 1) for different modes n = 3
(�), 4 (�), 5 (•), and 7 (�). The solid line is the prediction from the model of Eq. (10) with no fitting parameter.
The inset shows an unrescaled frequency shift vs B. Dashed lines have a slope 2.

small radial deformations of the peripheral surface of amplitude an(t) 
 R around an instantaneous
radius R̄(t). In polar coordinates, this reads r(θ,t) = R̄(t) + an(t) cos(nθ ) [see Fig. 5(b)]. Here h

is assumed constant with time and thus also S⊥ due to volume conservation. It is known, since
Rayleigh [9], that the radial deformation an induces an increase in S‖ [see Figs. 5(a) and 5(b)] as

�S‖(t) ≡ S‖(t) − S‖,0 = πha2
n(t)(n2 − 1)

2R
. (3)

Thus, capillary energy increases by

�Ec(t) = γ�S‖(t). (4)

(a) (b)

(c) (d)

FIG. 5. Schematic view of the puddle. (a) At rest, the puddle is considered as a cylinder of liquid. (b) When
lobes appear, the peripheral surface S‖ increases as well as the capillary energy. Magnetization is illustrated
within a ferrofluid film (c) parallel or (d) normal to B.
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FIG. 6. Theoretical demagnetizing factors D vs surface ratio rS . The black line is computed from the model
in [43] for a cylinder of axis aligned with B; the red line (light gray) is computed from [44] for a square rod
aligned with B; � is for a cube (D = rS = 1/3 [44]); � is for an infinitely elongated square rod normal to B
(D = rS = 1/2 [44]). The dashed line represents D = rS (slope 1).

In addition, the kinetic energy of the liquid reads

Ek(t) =
(

dan

dt

)2
πρhR2

2n
. (5)

The conservation of energy d(Ek + Ec)/dt = 0 then leads to Eq. (1) [9].
Let us now introduce the magnetic energy Em in the Rayleigh model. For a linearly permeable

ferrofluid of volume V [34], one has Em = −B.
∫
V

MdV/2, with B the external magnetic field and
M the local ferrofluid magnetization [23]. The determination of M needs to take into account the
ferrofluid boundary conditions. For instance, for a plane parallel to B, one has Em = −χV B2/2μ0

[see Fig. 5(c)] and for a plane normal to B, Em = −χV B2/2μ0(1 + χ ) [see Fig. 5(d)]. Thus, the
magnetic energy of a ferrofluid layer is smaller when B is parallel rather than normal to its surface.

For an arbitrary ferrofluid shape, M is nonuniform and an effective demagnetizing factor D is
usually defined, with 0 � D � 1 (depending on the shape), such that [23]

Em = − χV B2

2μ0(1 + χD)
. (6)

For volumes bounded by surfaces either parallel or normal to B, we can define the ratio between the
surface area normal to B and the total surface area as rS ≡ S⊥/(S⊥ + S‖). Using known theoretical
values of D for different geometries [43,44], we show in Fig. 6 that D ≈ rS over the whole range of
aspect ratios. This means that Em decreases when the aspect ratio favors surfaces parallel to B, i.e.,
D → 0 when rs → 0.

We can then replace the demagnetizing factor D by rS in Eq. (6). The variation of S‖ due to
the presence of peripheral lobes induces a variation of Em through rS . Noticing that S⊥,0 = 2πR2

and S‖,0 = 2πRh at rest, a first-order Taylor expansion in �S‖ for small deformations (an 
 R)
leads to

�Em(t) = γm�S‖(t) (7)
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with

γm = − χ2hB2

4μ0(1 + χ + h/R)2
, (8)

a quantity always negative. Then, using �S‖ from Eq. (3) and energies from Eqs (4), (5), and (7),
the conservation of energy d(Ek + Ec + Em)/dt = 0 finally leads to the resonant frequencies of the
ferrofluid drop

ω2
n(B) = γ + γm(B2)

ρR3
n(n2 − 1). (9)

Using Eq. (1) then leads to

ω2
n(B = 0) − ω2

n(B) = −γm(B2)

ρR3
n(n2 − 1). (10)

The B2n(n2 − 1) scaling is in good agreement with the one found experimentally (see Fig. 4) as
well as for the theoretical prefactor with no fitting parameter.

Notice that Eq. (9) includes the usual capillary contribution γ and a magnetic one γm that depends
on B. The magnetic term thus plays the role of a negative surface tension (γm < 0) that thus reduces
the drop resonant frequencies. The magnetic field can be then used to tune the effective surface
tension γeff ≡ γ + γm and thus ωn. For our ranges of B, using ferrofluid properties and geometry,
one has γm ∈ [−8.5,0] mN m−1, which is up to 20% of γ . The analogy with surface tension arises
from �Em = γm(B2)�S‖. This means that an increase of the drop surface area parallel to B favors
its magnetization and thus decreases Em since γm < 0. Consequently, B has a stabilizing effect on
the lobes. Finally, note that a model of the dynamics of a ferrofluid drop confined between two
plates [45,46] mentioned such a possible negative surface tension effect, but requires χ 
 1 and
thus cannot apply here where χ = 1.

To conclude, we have studied the dynamics of parametric oscillations of a centimetric ferrofluid
drop on a superhydrophobic plate subjected to vertical sinusoidal vibrations and a constant magnetic
field. By adding ferromagnetic nanoparticles to a water drop, we are able to shift significantly its
eigenfrequencies by tuning the magnetic field strength. Using energy conservation, we extend the
Rayleigh model and show that the resonant frequency shift is well captured by our model with no
fitting parameter. We also show that the magnetic field acts as a negative surface tension and is a
way to tune the effective surface tension of the drop. Finally, the weakness of the field strength
and the small size of ferromagnetic particles are favorable to miniaturization to plan to control the
oscillations of centimeter-to-microscale drop in a new nonintrusive way for potential applications.

We thank D. Talbot for the ferrofluid synthesis, M. Berhanu, P. Brunet, M. Costalonga, and C.
Laroche for fruitful discussions, and A. Lantheaume, Y. Le Goas, and M.-A. Guedeau-Boudeville
for technical help. T.J. was supported by the DGA-CNRS Ph.D. program. This work was partially
financed by ANR Turbulon Grant No. 12-BS04-0005.
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Chapitre 9

Modes axisymétriques d’une goutte
magnétique vibrée verticalement

L’instabilité paramétrique provoquant l’apparition des modes azimutaux est liée à la modulation
du rayon induite par la vibration du substrat (voir chapitre 8). Il s’agit d’une résonance non linéaire
et les oscillations de la périphérie de la goutte apparaissent au-delà d’un certain seuil d’excitation.
Dans ce chapitre, nous étudions les fluctuations du rayon de la goutte avant l’apparition de ces
modes azimutaux. Ces fluctuations présentent des résonances à certaines fréquences, et nous nous
intéressons à l’effet du champ magnétique sur ces modes axisymétriques. A la différence des modes
azimutaux du chapitre précédent, cette résonance s’explique par la présence d’ondes de surface
linéaires circulaires sur la surface supérieure de la goutte (voir sections 6.4 et 9.2.2), excitées par la
vibration du substrat et provoquant des fluctuations du rayon. Cette résonance est donc linéaire,
sans seuil et de régime transitoire court.

9.1 Protocole expérimental

Le dispositif expérimental est celui décrit dans le chapitre 7. Les fluctuations du rayon ∆R ont été
mesurées en filmant le bord périphérique de la goutte avec une caméra PixeLink située à son aplomb
(voir Fig. 9.1). La résolution est de 99 pixels/mm. La position du bord de la goutte a été déterminée
par seuillage sur chaque image.
Les fréquences de résonance ont été étudiées en excitant le vibreur de deux manières :
— (i) par une tension sinusoïdale dont la fréquence fe est modulée linéairement par une rampe

entre 2 et 50Hz sur une durée de 200 s (fe = at+ b avec a = 0.24 s−2 et b = 2Hz), la résonance
des ondes de surface ayant un régime transitoire court.

— (ii) par un bruit blanc filtré dans la bande de fréquence [2, 50]Hz pendant une durée de 200 s,
la résonance étant linéaire sans seuil.

L’amplitude typique de vibration verticale du substrat est Av . 1mm et l’accélération correspon-
dante est Γ = Avω

2
e . 1 g = 9.81m.s−2. Nous n’avons pas observé d’effet de Γ sur les fréquences

de résonance observées, ce qui confirme le caractère linéaire de la résonance. Les résultats obtenus
avec les deux méthodes étant similaires, nous avons principalement réalisé des mesures avec le bruit
blanc. Sauf mention contraire, les résultats concernent cette excitation.
Les mesures en bruit blanc ont été réalisées pour 5 volumes différents de goutte de ferrofluide
(V = 1, 1.5, 2, 3 et 4mL), 5 modes (m = 1 à 5) et 9 champs magnétiques non nuls (B = 0, 22,
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Figure 9.1 – Schéma du dispositif expérimental pour l’étude des modes axisymétriques.

33, 40, 44, 48, 53, 57 et 62G). Toutes les combinaisons ont été réalisées, aboutissant à 225 mesures.
Pour les différents volumes, la goutte avait une hauteur typique h ≈ 3.5mm et des rayons respectifs
R = 9.7, 11.8, 13.5, 16.4 et 18.9mm.

9.2 Fréquences propres sans champ magnétique

9.2.1 Résultats expérimentaux

Le rayon de la goutte peut être écrit sous la forme R̄(t) = R+ ∆R(t) où R est le rayon à l’équilibre
et ∆R(t) � R sa variation autour de cette position d’équilibre dans le plan horizontal. La Fig. 9.2
montre les fluctuations du rayon ∆R observées lors de l’excitation par une rampe en fréquence. La
fréquence augmente donc linéairement avec le temps entre les fréquences 2 et 26Hz. On voit que
∆R atteint des maxima pour certaines fréquences.
La détermination des fréquences de résonance nécessite de calculer le spectre de puissance temporel
de ∆R(t), à partir de sa transformée de Fourier 1D :

S∆R(f) = 1
T

∣∣∣∆R̂(f)
∣∣∣2 avec ∆R̂(f) = 1√

2π

∫
∆R(t)ei2πftdt (9.1)

où T est la durée de la mesure. Ainsi, S∆R donne le contenu fréquentiel du signal temporel ∆R(t) et
permet de repérer les fréquences pour lesquelles il y a résonance. On représente cette grandeur sur la
Fig. 9.3 pour une excitation par un bruit blanc. La ligne rouge correspond au spectre de ∆R tandis
que la ligne noire représente le spectre de l’amplitude de vibration verticale du vibreur Av pour
comparaison. La position des pics observés correspondent aux fréquences de résonance de la goutte.
Dans la suite, les pics sont identifiés par ordre croissant avec le numéro du mode axisymétrique m.
Pour chaque pic, la position du maximum fm a été déterminée par un ajustement avec un polynôme
du second degré. On représente sur la Fig. 9.4 le carré de la pulsation ωm = 2πfm des différents modes
m en fonction du volume V de la goutte. On observe que pour chaque mode, les fréquences propres
diminuent lorsque le volume augmente. Dans la section suivante, nous tentons d’interpréter à la fois
les fréquences de résonance observées pour les différents modes m mais aussi leur dépendance avec
le volume de la goutte V .
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Figure 9.3 – Spectres de puissance temporels en fonction de la fréquence lorsque le vibreur est excité
par un bruit blanc filtré entre 2 et 50Hz. En noir : spectre du déplacement vertical du vibreur. En rouge :
spectre des fluctuations du rayon ∆R d’une goutte de volume V = 3mL. B = 0. m correspond au numéro
du mode axisymétrique.

9.2.2 Interprétation

9.2.2.1 Ondes cylindriques gravito-capillaires

Comme on l’a vu dans la section 6.4, les modes axisymétriques peuvent être interprétés par la
présence d’ondes stationnaires cylindriques à la surface de la goutte, excitées par la vibration du
substrat. On représente sur la Fig. 9.5 le cas correspondant à notre expérience.
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Figure 9.5 – (a) Vue latérale schématique du mode axisymétrique m = 3 (coupe verticale passant par le
centre). (b) Schéma de la goutte au repos sur laquelle on représente l’abscisse radiale curviligne r (flèche
noire épaisse).

On rappelle que la relation de dispersion pour des ondes de surface gravito-capillaires de pulsation
ω = 2πf (avec f la fréquence) et de nombre d’onde k = 2π/λ (avec λ la longueur d’onde) dans un
milieu de profondeur finie h s’écrit [62] :

ω2 =
(
gk + γk3

ρ

)
tanh kh (9.2)

On considère une abscisse curviligne r, schématisée sur la Fig. 9.5.b. L’origine r = 0 est au-dessus
de la goutte, centrée horizontalement, la direction de r est radiale et elle suit la courbure de l’in-
terface liquide/air. Par analogie avec les ondes harmoniques cylindriques en régime linéaire (voir
section 6.4.2), on considère que la déformation de la surface libre le long de cette abscisse peut
s’écrire sous la forme (voir Eq. (6.7)) :

η(r, t) = η0J0(kr) cosωt (9.3)

où η0 est l’amplitude de la déformation de la surface libre en r = 0 et J0 est la fonction de Bessel
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de première espèce et d’ordre zéro.
Si les ondes à la surface de la goutte respectent l’Eq. (9.2), les résonances observées pour les pul-
sations propres ωm des modes axisymétriques m devraient correspondre à des ondes stationnaires.
Les nombres d’onde km sont alors fixés par la géométrie du système et déterminés par des condi-
tions aux limites. Dans notre expérience, la condition aux limites considérée est que la périphérie
de la goutte constitue des ventres pour les ondes stationnaires (voir Fig. 9.5.a). L’abscisse curviligne
correspondant à ces ventres est donc r ≈ R + h/2 (voir Fig. 9.5.b). Cette condition s’écrit :

∂η

∂r

∣∣∣∣
r=R+h/2

= 0 ⇐⇒ J1

[
km

(
R + h

2

)]
= 0 (9.4)

Les nombres d’ondes des modes propres m sont donc définis par les racines de la fonction de Bessel
d’ordre 1, J1 :

km

(
R + h

2

)
= 3.83, 7.02, 10.17, 13.32, 16.47... (9.5)

Il faut noter que km augmente avec le numéro du mode m et diminue avec le volume V de la goutte.
Pour les différents modesm et les différents volumes de goutte V étudiés, on représente sur la Fig. 9.6
la pulsation propre au carré ω2

m mesurée expérimentalement en fonction des nombres d’ondes km
calculés à partir de l’Eq. (9.5). La ligne noire représente la pulsation propre prédite théoriquement
par la relation de dispersion (voir Eq. (9.2)). A noter que la connaissance de V et la mesure de R
fixe la valeur de h = V/(πR2) ≈ 3.5mm.
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Figure 9.6 – Pulsation propre au carré ω2
m en fonction du nombre d’onde km associé à chaque mode

(voir Eq. (9.5)). B = 0. Les volumes correspondent à h ≈ 3.5mm et 9.7mm ≤ R ≤ 18.9mm. La ligne
noire représente la relation de dispersion des ondes (voir Eq. (9.2)) ; les pointillés représentent la pulsation
prédite pour une résonance liée à l’écrasement de la goutte (voir section 9.2.2.2 et Eq. (9.9))
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On observe un très bon accord entre les résultats théoriques et expérimentaux, sauf pour le mode
m = 1 et dans une moindre mesure le mode m = 2. Pour ces deux derniers modes, la différence vient
du fait que k1 et k2 sont surestimés. En effet, on peut considérer que dans ces deux cas, la courbure
proche du bord de la goutte (r ≈ R) impose la présence d’un nœud. La Fig. 9.7.a représente le cas
du mode m = 1. On voit que la “demi-longueur d’onde” située entre les deux nœuds (≈ 2R) est plus
grande que celle prédite par l’Eq. (9.5) (≈ R). Le nombre d’onde théorique k1 est donc surestimé,
ce qui explique le décalage observé sur la Fig. 9.6.

Nœud Ventre

(a)

h(t)

R(t)

(b)

Figure 9.7 – (a) Vue latérale schématique du mode axisymétrique m = 1. (b) Schéma illustrant le mode
d’écrasement, modèle dans lequel la goutte conserve une forme cylindrique (voir section 9.2.2.2)

9.2.2.2 Mode d’écrasement (m = 1)

Pour le mode m = 1, la modélisation via des ondes cylindriques n’est donc pas adaptée et on peut
considérer qu’une meilleure approximation est le mode d’écrasement de la goutte, schématisé sur la
Fig. 9.7.b. Dans ce modèle, la goutte aplatie oscille librement autour de son équilibre (voir annexe C)
en conservant une forme cylindrique. Le calcul est détaillé dans l’annexe D. Il est à noter que h n’est
pas nécessairement négligeable devant R.
On suppose un substrat superhydrophobe sur lequel est déposée une goutte aplatie incompressible
de hauteur h et de rayon R à l’équilibre. Nous déterminons la fréquence d’oscillation de la goutte
en écrivant la conservation de l’énergie du système. Pour une petite variation du rayon de la goutte
autour du rayon d’équilibre ∆R = R̄−R� R, on montre que les variations d’énergies capillaire et
gravitationnelle s’écrivent :

∆(Ec + Eg) =
(

2πγ + 2γV
R3 + 3ρgV 2

2πR4

)
(∆R)2 (9.6)

L’énergie cinétique de la goutte associée à ces oscillations s’écrit par ailleurs :

Ek(t) = ρ

2

(
d∆R
dt

)2(
V

2 + 4πh̄(t)3

3

)
(9.7)

L’écriture de la conservation de l’énergie, d(Ek +Ec +Eg)/dt = 0, mène à l’équation décrivant les
fluctuations du rayon :

d2∆R
dt2 + ω2

1,écr∆R(t) = 0, (9.8)

avec ω2
1,écr =

(
V

2 + 4πh3

3

)−1(4πγ
ρ

+ 4πγh
ρR

+ 3πgh2
)

(9.9)
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ω1,écr = 2πf1,écr est la pulsation propre du mode m = 1 (d’où indice 1) par le modèle d’écrasement
de la goutte cylindrique. Sur la Fig. 9.6, on représente en pointillés la pulsation propre du mode
d’écrasement ω1,écr, prédite par l’Eq. (9.9) en fonction de k1 calculé par l’Eq. (9.5). On observe un
très bon accord avec les pulsations observées expérimentalement. La modélisation du mode m = 1
par un mode d’écrasement d’une goutte cylindrique semble donc une bonne approximation.
En l’absence de champ magnétique, la combinaison d’un mode d’écrasement pour le mode m = 1 et
d’ondes de surface circulaires pour les modes supérieurs permet donc de prédire de façon précise les
différentes fréquences de résonance du rayon de la goutte avant l’apparition des modes azimutaux.
L’accord est très bon pour les différents volumes de goutte utilisés.

9.3 Fréquences propres avec champ magnétique

Comme nous l’avons vu dans la section 6.5.4, la relation de dispersion des ondes gravito-capillaires
à la surface d’un ferrofluide est modifiée en présence d’un champ magnétique. On s’attend donc à
un effet du champ magnétique sur les fréquences propres des modes axisymétriques de la section 9.2
décrits par de telles ondes.

9.3.1 Résultats expérimentaux

La Fig. 9.8 représente les fluctuations du rayon ∆R lorsque la goutte est excitée par une rampe en
fréquence, dans les même conditions que la Fig. 9.2, mais en présence d’un champ magnétique B. On
rappelle que la fréquence d’excitation augmente avec le temps. De même, la Fig. 9.9 fait apparaître
le spectre de puissance temporel de ∆R dans le cas d’une excitation par un bruit blanc dans les
mêmes conditions que la Fig. 9.3, excepté la présence d’un champ magnétique.
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Figure 9.8 – Fluctuations du rayon ∆R en fonction du temps d’une goutte de ferrofluide de volume
V = 1.5mL excitée verticalement par une rampe en fréquence entre 2 et 26Hz (f = at+b avec a = 0.24 s−2

et b = 2Hz) pour trois champs magnétiques croissants B = 0G (rouge), B = 44G (vert) et B = 62G
(bleu).
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Figure 9.9 – Spectre de puissance temporel des fluctuations du rayon ∆R d’une goutte de volume
V = 3mL en fonction de la fréquence pour trois champs magnétiques croissants B = 0G (rouge), B =44G
(vert) et B =62G (bleu). Le vibreur est excité par un bruit blanc filtré entre 2 et 50Hz.

Ces deux figures montrent que les fréquences propres des modes axisymétriques de la goutte dimi-
nuent avec le champ magnétique. On note par ailleurs que l’amplitude des pics de résonance décroît
avec le champ magnétique. Ceci peut s’expliquer par l’augmentation de la viscosité effective du
ferrofluide avec le champ magnétique. En effet, les nanoparticules magnétiques composant le ferro-
fluide n◦2 sont en matériau ferromagnétique dur (voir section 7.3.1). Cela signifie qu’elles ont une
aimantation rémanente qui reste fixe dans le référentiel de la particule. Les particules elles-mêmes
(et non plus leur seule aimantation comme dans le cas d’un ferromagnétique doux) tendent alors
à s’aligner avec le champ magnétique. La perte progressive de deux degrés de liberté conduit à un
accroissement des frottements à l’intérieur du fluide et donc à une augmentation de la viscosité
effective.
Pour étudier le décalage des fréquence propres avec le champ magnétique, on trace sur la Fig. 9.10 la
différence entre les carrés des pulsations propres sans et avec champ magnétique, ω2

m(B = 0)−ω2
m(B),

en fonction de B, pour différents modes m. Comme les fréquences propres diminuent lorsque B
augmente, cette différence est positive. Pour chacun des modes, le décalage avec B suit des lois
de puissances proportionnelles à B2, représentées par les lignes noires. On en déduit que ω2

m(B =
0)− ω2

m(B) ∝ B2. Par ailleurs, on observe que le décalage en fréquence augmente avec m.

9.3.2 Interprétation

9.3.2.1 Relation de dispersion (m > 1)

Comme dans la section 9.2.2, nous allons interpréter les fréquences propres observées à partir des
ondes à la surface de la goutte. Comme on l’a vu dans la section 6.5.4, la relation de dispersion des
ondes à la surface d’un ferrofluide est modifiée en présence d’un champ magnétique. Lorsque B est
normal à la surface, la relation de dispersion pour des ondes gravito-capillaires à la surface d’un
ferrofluide de perméabilité linéaire, d’étendue infinie mais de profondeur finie s’écrit [69] :
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Figure 9.10 – Décalage des fréquences propres des modes 2 à 5 en fonction du champ magnétique B pour
une goutte de volume V = 2mL. Les lignes noires représentent des lois de puissance en B2.

ω2 =

gk + γk3

ρ
− χ2B2k2

ρµ0(1 + χ)(2 + χ)

 1−
(

χ
2+χ

)
e−2kh

1−
(

χ
2+χ

)2
e−2kh


 tanh kh (9.10)

La diminution des fréquences propres avec B s’explique donc par le fait que le terme magnétique
est négatif (le terme entre parenthèses est positif). On retrouve par ailleurs dans l’Eq. (9.10) la loi
de puissance en B2 observée expérimentalement et l’augmentation du décalage avec k et donc avec
le mode m.

9.3.2.2 Mode d’écrasement (m = 1)

Le décalage en fréquence du mode 1 peut à nouveau être interprété par le mode d’écrasement étudié
sans champ magnétique dans la section 9.2.2.2. Il suffit pour cela d’inclure l’énergie magnétique dans
le bilan de conservation de l’énergie : d(Ek+Ec+Eg+Em)/dt = 0. De la même manière, en utilisant
l’expression de l’énergie magnétique de l’Eq. (C.3), on peut montrer que pour une petite variation
du rayon de la goutte ∆R, la variation d’énergie magnétique s’écrit :

∆Em = 3χ2B2V 2

2πµ0R5(1 + χ+ V/(πR3))2

(
3V

πR3(1 + χ+ V/(πR3)) − 2
)

(∆R)2 (9.11)

Le principe du calcul est le même que dans la section 9.2.2.2. La fréquence propre du mode d’écra-
sement de l’Eq. (9.9) s’écrit en présence d’un champ magnétique :

ω2
1,écr =

(
V

2 + 4πh3

3

)−1(4πγ
ρ

+ 4πγh
ρR

+ 3πgh2 − 3πχ2B2h2[2(1 + χ)− h/R]
ρµ0R(1 + χ+ h/R)3

)
(9.12)

Pour les modes m > 1, les fréquences propres théoriques sont obtenues par la relation de dispersion
théorique d’Eq. (9.10), avec k = km le nombre d’ondes du mode propre m donné par l’Eq. (9.5).
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Ainsi, pour l’ensemble des modes m, le décalage théorique en fréquence avec B s’écrit :

ω2
m,th(B = 0)− ω2

m,th(B) =



3πχ2B2h2 [2(1 + χ)− h
R

]
ρµ0R

(
1 + χ+ h

R

)3 (V
2 + 4πh3

3
) pour m = 1

χ2B2k2
m

ρµ0(1 + χ)(2 + χ)

 1−
(

χ
2+χ

)
e−2kmh

1−
(

χ
2+χ

)2
e−2kmh

 tanh kmh pour m > 1

(9.13)
Sur la Fig. 9.11, on trace le décalage en fréquence observé expérimentalement ω2

m(B = 0)− ω2
m(B)

en fonction de celui prédit théoriquement par l’Eq. (9.13).
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Figure 9.11 – Décalage en fréquence expérimental des modes propres m en fonction du décalage prédit
théoriquement (voir Eq. (9.13)) pour différents m, V et B. La ligne noire représente le cas d’un accord
entre théorie et expérience (pente 1). La combinaison des différents modes, volumes et champs étudiés
correspond à 200 points de mesures pour les champs magnétiques non nuls. Pour une meilleure lisibilité,
seule une partie des volumes (correspondant à h ≈ 3.5mm et 11.8mm ≤ R ≤ 18.9mm), des modes et des
champ magnétiques (B = 33, 44, 53, 62G) réalisés expérimentalement sont représentés 1.

On observe que les points représentant l’ensemble des modes, des volumes et des champs ma-
gnétiques se rassemblent autour d’une même droite. La loi d’évolution du décalage des fréquences
propres en fonction de ces paramètres est donc bien prédit par le mode d’écrasement et la relation de
dispersion des ondes de surface en présence d’un champ magnétique. En revanche, l’amplitude réelle
du décalage des fréquences au carré est supérieure au décalage prédit théoriquement d’un facteur
proche de 2.

1. Il est à noter que le mode m = 1 du plus petit volume (V = 1mL) présente un comportement particulier qui
n’a pas été représenté pour faciliter la discussion.
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9.3.2.3 Explication du préfacteur observé

La relation de dispersion en présence d’un champ magnétique, décrite par l’Eq. (9.10), suppose
que le ferrofluide est d’étendue infinie. Dans cette hypothèse, le champ magnétique est normal à
l’ensemble de la surface et l’aimantation du ferrofluide au repos y est doncM = χB/[µ0(1+χ)] (voir
section 6.5.3). Dans notre cas, le ferrofluide étant d’étendue finie, l’aimantation n’est pas uniforme
et est supérieure à cette valeur. En effet, rappelons que l’aimantation dans le cas d’un plan parallèle
à B est de la forme M = χB/µ0 (voir section 6.5.3), soit 4.2 fois supérieure à celle considérée dans
la relation de dispersion (pour χ = 3.2). L’effet du champ magnétique sur les ondes de surface sera
donc supérieur à celui prédit par la relation de dispersion d’Eq. (9.10), en particulier au niveau des
bords de la goutte.
Dans l’annexe C, étudiant la déformation par le champ magnétique d’une goutte aplatie au repos,
nous montrons l’influence de cette aimantation plus forte à la périphérie de la goutte. La prise en
compte de ce phénomène permet d’expliquer l’apparition d’un bourrelet à la périphérie de la goutte
en présence de champ magnétique. On observe alors une variation du rayon supérieure à celle prédite
par la théorie. C’est d’ailleurs ce bourrelet qui permet d’expliquer la différence entre les décalages
en fréquence prédits et observés pour le mode d’écrasement (m = 1). En effet les fluctuations
du rayon observées sont probablement celles de ce bourrelet, dont l’aimantation est supérieure à
celle moyennée sur l’ensemble de la goutte car situé en périphérie. L’effet du champ magnétique
sera donc là encore plus grand que celui prédit par la théorie décrite dans la section 9.3.2.2. Cette
nouvelle géométrie est par ailleurs susceptible de modifier la fréquence propre indépendamment de
l’aimantation.
Enfin, la goutte au repos est déformée par le champ magnétique extérieur et R varie ainsi sen-
siblement avec B (voir annexe C). On peut imaginer que cela joue un rôle puisque, par exemple,
les nombres d’ondes km impliqués dans la relation de dispersion dépendent de R. Ce possible effet,
étudié dans l’annexe C, ne semble pas améliorer les prédictions théoriques.

9.4 Conclusion

Dans ce chapitre, nous avons étudié les fluctuations du rayon d’une goutte aplatie déposée sur
un substrat superhydrophobe, soumis à une vibration verticale de faible amplitude, en-dessous du
seuil d’apparition des modes azimutaux. Nous avons observé des résonances linéaires sans seuil du
rayon que nous avons expliquées par la présence d’ondes circulaires à la surface de la goutte qui
se propage jusqu’à la périphérie. Les modes propres axisymétriques correspondent alors aux ondes
stationnaires fixées par les conditions aux limites et donc la géométrie de la goutte. Nous avons
montré en l’absence de champ magnétique que les fréquences propres de ces modes sont prédites
théoriquement de façon précise à partir de la relation dispersion des ondes gravito-capillaires. La
fréquence de résonance la plus basse est quant à elle prédite par le calcul de la fréquence propre du
mode d’écrasement de la goutte.
Comme pour les modes azimutaux du chapitre précédent, nous observons une diminution des
fréquences propres des modes axisymétriques en présence d’un champ magnétique. L’ajout de termes
magnétiques dans les calculs permet de prédire la loi d’évolution des fréquences propres avec le champ
magnétique des différents modes pour différents volumes. De la même manière que celles des modes
azimutaux, les fréquences propres des modes axisymétriques d’une goutte de ferrofluide peuvent
donc être contrôlées par un champ magnétique.
Le décalage des fréquences propres des modes axisymétriques avec le champ magnétique est par
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ailleurs similaire à celui des modes azimutaux décrits au chapitre précédent. Dans les deux cas, le
décalage des fréquences propres au carré est proportionnel au carré du champ magnétique : f 2

m,n(B =
0) − f 2

m,n(B) ∝ B2. De plus, les fluctuations du rayon induites par les modes axisymétriques sont
le paramètre d’excitation des modes azimutaux. Une expérience contrôle apparaît donc nécessaire
pour vérifier que ce couplage entre modes axisymétriques et modes azimutaux n’est pas l’origine du
décalage observé avec le champ magnétique des fréquences propres des modes azimutaux.



Chapitre 10

Modes azimutaux : expérience contrôle

10.1 Problématique

Nous avons vu dans la section 6.3.2 que l’instabilité paramétrique provoquant l’apparition des
modes azimutaux à la périphérie de la goutte est pilotée par les fluctuations du rayon dont l’am-
plitude est le paramètre d’excitation. Dans le chapitre 8, nous avons supposé que ce paramètre
d’excitation était équivalent au paramètre de contrôle, l’accélération du vibreur. Nous avons donc
considéré que l’amplitude des oscillations du rayon de la goutte était proportionnelle à l’accélération
du vibreur. Toutefois, le chapitre 9 montre que des modes axisymétriques induisent des résonances
des fluctuations du rayon à certaines fréquences. De plus, les fréquences propres des modes azimu-
taux et des modes axisymétriques évoluent de la même manière avec le champ magnétique. Dans
les deux cas, le décalage des fréquences propres au carré est ainsi proportionnel au carré du champ
magnétique : f 2

n(B = 0)− f 2
n(B) ∝ B2.

On peut dès lors imaginer que le décalage avec le champ magnétique des fréquences propres des
modes axisymétriques pourrait expliquer celui des modes azimutaux. Ce chapitre propose une expé-
rience contrôle pour vérifier que ce dernier n’est pas piloté par le couplage entre modes axisymétriques
et modes azimutaux. Pour cela, nous avons posé une plaque, fixe dans le référentiel du laboratoire,
sur la surface supérieure de la goutte afin d’éliminer les modes axisymétriques.

10.2 Protocole expérimental

10.2.1 Modification du dispositif

Le dispositif expérimental, décrit au chapitre 7, a ainsi été modifié afin d’éliminer les modes axi-
symétriques provoqués par des ondes à la surface de la goutte. Nous avons disposé une plaque en
verre en contact avec la surface supérieure de la goutte. La plaque est fixe dans le référentiel du
laboratoire et parallèle au substrat vibré (voir Fig. 10.1). Elle a été traitée de façon superhydrophobe
avec l’Ultra Ever Dry (voir section 7.2). L’utilisation de verre permet de visualiser la goutte par le
dessus au cours de l’expérience.
Bien que cette deuxième plaque crée une force de frottement supplémentaire avec la goutte, les
avantages de la présence d’une plaque au-dessus de la goutte sont multiples :
— la plaque supprime les ondes de surface au-dessus de la goutte. Les modes axisymétriques

n’existent donc plus. L’amplitude ∆R d’oscillation du rayon avant l’apparition des modes azi-
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Figure 10.1 – Schéma du dispositif expérimental de l’expérience contrôle. A la différence du chapitre 8,
une plaque en verre, fixe dans le référentiel du laboratoire, est placée au-dessus de la goutte.

mutaux est donc directement contrôlée par l’amplitude du mouvement du vibreur. Nous avons
vérifié expérimentalement l’absence de résonances axisymétriques en présence de la plaque ;

— des déformations de la surface supérieure de la goutte, différentes des ondes circulaires, sont
visibles lors de l’apparition des lobes (voir Fig. 6.1). L’élimination de ces déformations avec la
plaque permet de vérifier que celles-ci n’ont pas d’effet dans le décalage en fréquence observé
dans le chapitre 8 ;

— les fluctuations du rayon de la goutte ∆R, qui sont le paramètre d’excitation de l’instabilité
(voir section 6.3.2), deviennent un paramètre de contrôle car ∆R est directement contrôlé par
la vibration du substrat. On peut par ailleurs atteindre des déformations importantes du rayon
pour des accélérations du substrat inférieures à celles du chapitre 8 ;

— il est possible de faire varier la hauteur initiale h de la goutte et ainsi d’étudier son influence.
Par ailleurs, pour les valeurs de B considérées, la goutte ne se déforme pas avec le champ
magnétique. Ainsi, h et R ne varient pas avec B.

10.2.2 Protocole

La détermination des fréquences propres des modes azimutaux à partir des minima des langues de
Mathieu n’a pas été possible avec ce dispositif. En effet, les mesures des amplitudes seuils du vibreur,
au-delà desquelles les modes azimutaux sont observés, présentent de fortes variations. Ce bruit dans
les mesures, présent malgré l’utilisation de rampes lentes en amplitude, ne permet pas la détection
de minima avec certitude. Comme alternative, nous avons tenté de détecter le seuil de disparition
des lobes avec une rampe décroissante en amplitude. Les “langues” de Mathieu obtenues de cette
manière sont beaucoup moins bruitées mais ne présentent pas de minima précis : l’amplitude seuil
de disparition est constante sur une grande partie du domaine de fréquence d’excitation où existe
un mode azimutal n donné.
Le protocole expérimental finalement retenu consiste alors à détecter les frontières des modes en
termes de fréquences : pour chaque mode azimutal constitué de n lobes, on détermine les fréquences
d’excitation minimale fe,n,min et maximale fe,n,max où existe ce mode pour une amplitude du vibreur
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maximale donnée (voir section 10.3). On considère alors que la fréquence centrale de ce domaine,
fe,n = (fe,n,max + fe,n,min)/2, est le double de la fréquence propre du mode azimutal, i.e. fe,n = 2fn
(voir explications dans la section 10.3).
Nous avons remarqué lors d’expériences préliminaires qu’à proximité des frontières entre modes,
l’amplitude du vibreur pouvait influer sur le nombre de lobes observés. Pour chaque mode azimutal,
l’amplitude de l’excitation a donc été conservée pour tous les champs magnétiques étudiés. De même,
la vitesse de croissance de l’amplitude du vibreur pouvait avoir un effet sur le nombre de lobes. Nous
avons donc utilisé une rampe en amplitude de durée 80 s pour chaque fréquence d’excitation fe.
L’étude a été réalisée sur 5 modes (n = 5 à 9), 4 rayons (R = 10.5, 14.5, 15 et 18mm) et 2 hauteurs
de goutte (h = 2.1 et 2.9mm). Pour chaque jeu de paramètres (n, R, h), les fréquences propres ont
été mesurées pour 5 champs magnétiques différents (B = 0, 33, 44, 55 et 66G). La résolution en
fréquence est de 0.1Hz. L’amplitude typique de l’accélération du vibreur est Γ ∼ 0.2 g = 2m.s−2, ce
qui correspond à des déplacements verticaux de l’ordre de 0.2mm selon la fréquence d’excitation.

10.3 Observations

La Fig. 10.2 représente le diagramme de phase des lobes en présence d’une plaque en fonction du
champ magnétique B appliqué et de la fréquence d’excitation fe. Chaque surface colorée représente
la zone d’observation où existe une goutte avec un certain nombre de lobes n à sa périphérie. On
observe que les domaines se déplacent vers les basses fréquences lorsque B augmente.
Nous souhaitons déterminer les fréquences propres fn des modes azimutaux à partir de ces do-
maines d’existence. Dans la section 6.3.2, nous avons représenté les zones d’instabilité d’un mode
azimutal dans un diagramme de phase présentant l’amplitude d’oscillation du rayon de la goutte,
ε, en fonction de la fréquence d’excitation (voir Fig. 6.4). Ces zones d’instabilité ont la forme de
langues. L’amplitude seuil d’apparition des lobes εc est minimale pour le mode fondamental lorsque
la fréquence d’excitation verticale est le double de la fréquence propre du mode fn (à gauche sur la
Fig. 6.4). Pour de faibles oscillations du rayon (ε� 1), la langue d’instabilité est symétrique autour
de cette fréquence. Nous considérons donc ici que la fréquence centrale du domaine d’existence d’un
mode azimutal, fe,n = (fe,n,max + fe,n,min)/2, tracée en pointillé sur la Fig. 10.2, correspond aussi à
ce minimum. La fréquence propre du mode azimutal n mesurée est alors fn = fe,n/2. On observe
donc immédiatement que fn décroît avec le champ magnétique, ce qui confirme qualitativement les
résultats du chapitre 8.

10.4 Modes propres sans champ magnétique

Comme dans le chapitre 8, en l’absence de champ magnétique, l’expression théorique de la pulsation
propre du mode n, ωn = 2πfn, est (voir Eq. (6.4)) :

ω2
n = γ

ρR3n(n2 − 1) (10.1)

Pour les différents modes, rayons et hauteurs étudiés, on trace sur la Fig. 10.3 la pulsation propre
mesurée expérimentalement en fonction de n(n2 − 1)/R3. La prédiction théorique tracée en noir
présente un très bon accord avec les données expérimentales pour l’ensemble des jeux de paramètres
étudiés.
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Figure 10.2 – Diagramme de phase pour une goutte de rayon R = 14.5mm et de hauteur h = 2.9mm,
représentant les domaines de fréquence d’excitation fe pour lesquels on observe un nombre n de lobes en
fonction du champ magnétique B. Les fréquences centrales des modes fe,n sont en pointillés. Les carrés
noirs représentent les champs pour lesquels les frontières entre modes ont été déterminées.

10.5 Modes propres avec champ magnétique

Comme on l’a vu sur la Fig. 10.2, les fréquences propres de la goutte diminuent en présence de champ
magnétique. On représente sur la Fig. 10.4 le décalage des pulsations propres au carré, ω2

m(B =
0)− ω2

m(B), en fonction du champ magnétique. Le décalage observé est proportionnel à B2.
Ceci est conforme au décalage en fréquence prédit par la théorie que nous avons développée au
chapitre 8 (voir Eq. (8.3)) :

ω2
n(B)− ω2

n(B = 0) = γm
n(n2 − 1)
ρR3

avec γm = − χ2hB2

4µ0 (1 + χ+ h/R)2 < 0
(10.2)

γm est équivalent à une tension de surface négative modulable avec le champ magnétique. L’Eq. (10.2)
montre que le décalage dépend aussi du nombre de lobes n, du rayon R et de la hauteur h de la goutte.
La Fig. 10.5 représente le décalage en fréquence observé en fonction de celui prédit théoriquement par
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Figure 10.4 – Décalage en fréquence des modes propres en fonction de B pour différents nombre de lobes
n (R =14.5mm, h =2.9mm). Les lignes noires représentent des lois de puissance en B2.

l’Eq. (10.2). On voit que l’ensemble des mesures qui font varier les quatre paramètres se rassemblent
sur une même droite. De plus, la prédiction théorique, représentée par la ligne noire de pente 1
sans paramètre ajustable, présente un excellent accord avec le décalage en fréquence observé. Les
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mesures expérimentales sont donc compatibles avec les dépendances en B, n, R et h des fréquences
de résonances prédites par notre théorie. On note par ailleurs qu’il n’y a pas de différence notable par
rapport aux résultats sans plaque (voir chapitre 8). L’influence des ondes sur la surface supérieure
de la goutte est donc faible.
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Figure 10.5 – Décalage en fréquence des modes propres en fonction du décalage prédit théoriquement
d’Eq. (10.2) pour différentes valeurs de B, n, R et h. La ligne noire représente le cas d’un accord entre
théorie et expérience (pente 1 sans paramètre ajustable).

10.6 Conclusion

Dans ce chapitre, nous avons étudié les modes azimutaux à la périphérie d’une goutte de ferrofluide
vibrée contrainte par une plaque fixée au contact de sa surface supérieure. Ainsi, contrairement au
chapitre 8, les ondes gravito-capillaires sur la surface supérieure de la goutte et donc les modes
axisymétriques (voir chapitre 9) ont ici été éliminés. Cette expérience constitue donc une expérience
contrôle visant à éviter tout couplage entre modes azimutaux et modes axisymétriques. La hauteur
et le rayon à l’équilibre de la goutte, ainsi que leurs fluctuations lors de l’excitation, sont par ailleurs
parfaitement contrôlés. En l’absence de champ magnétique, les fréquences propres observées des
modes azimutaux sont très bien prédites par la théorie de Rayleigh [36]. En présence de champ,
nous trouvons un excellent accord entre le décalage des fréquences propres de la goutte observé
expérimentalement et celui que nous prédisons théoriquement par le modèle développé au chapitre 8.
Ceci valide donc le mécanisme physique proposé, montrant que le champ magnétique permet de
moduler la tension de surface effective de la goutte dans ce problème et ainsi de contrôler ses
fréquences propres.



Chapitre 11

Conclusion

Dans cette partie, nous avons étudié les déformations d’une goutte de ferrofluide déposée sur un
substrat superhydrophope soumis à une vibration verticale en l’absence ou en présence d’un champ
magnétique. La goutte au repos était aplatie par la gravité et donc de forme quasi-cylindrique en
raison des grands volumes utilisés (1 ≤ V ≤ 4mL).
Pour des mouvements du substrat de faible amplitude, on observe des déformations au-dessus
de la goutte, provoquant des fluctuations de son rayon (voir chapitre 9). D’abord en l’absence de
champ magnétique, nous avons décrit ces déformations par des ondes circulaires gravito-capillaires
en régime linéaire à la surface de la goutte se propageant jusqu’à sa périphérie (voir Fig. 6.2.b). Les
fluctuations du rayon présentent alors des résonances sans seuil pour certaines fréquences d’excitation
qui correspondent à des ondes stationnaires gravito-capillaires. Nous avons montré que les fréquences
propres spatiales de ces modes axisymétriques sont fixées par les conditions aux limites et donc la
géométrie de la goutte. Les fréquences propres temporelles peuvent alors être retrouvées par la
relation de dispersion des ondes de surface gravito-capillaires.
Au-delà d’un certain seuil d’amplitude de vibration du substrat, des modes azimutaux apparaissent
sous forme de lobes à la périphérie de la goutte (voir chapitres 8 et 10 et Fig. 6.2.a). Il s’agit là d’une
instabilité paramétrique non linéaire à seuil. Les modes azimutaux peuvent être décrits par des ondes
stationnaires capillaires. La présence de lobes augmente la surface périphérique de la goutte. Les
forces de tension de surface tendent alors à ramener la goutte à sa forme cylindrique d’équilibre. Les
oscillations résultent alors d’un échange entre énergie capillaire et énergie cinétique. L’écriture de la
conservation de l’énergie permet de prédire les fréquences propres observées des modes azimutaux.
Nous avons alors étudié l’effet du champ magnétique sur ces modes propres axisymétriques et
azimutaux. Dans les deux cas, la fréquence du mode propre, fm ou fn, décroît en présence d’un
champ magnétique vertical B et le décalage de f 2

m ou f 2
n est proportionnel à B2. Cette diminution

s’explique par le fait que les déformations de la goutte liées à ces modes font diminuer l’énergie ma-
gnétique, proportionnelle à B2. En effet, on sait que l’aimantation d’un ferrofluide diminue lorsque
sa surface parallèle à B augmente. Ainsi, pour les modes azimutaux, les lobes à la périphérie de la
goutte entraînent une augmentation de la surface périphérique, parallèle à B, ce qui réduit l’éner-
gie magnétique de la goutte. De même, pour les modes axisymétriques, les ondes circulaires sur la
face supérieure de la goutte augmentent la composante de la surface parallèle à B. Comme l’éner-
gie magnétique diminue, la conservation de l’énergie impose que les fréquences des modes propres
azimutaux diminuent.
Nous sommes parvenus à expliquer théoriquement et quantitativement les décalages des fréquences
propres observés en présence de champ magnétique. Pour les modes axisymétriques, la relation de
dispersion des ondes gravito-capillaires peut être modifiée par l’ajout d’un terme magnétique, utilisé
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pour les ondes à la surface d’un ferrofluide en milieu infini. Ceci permet de prédire la loi d’évolution
du décalage observé des fréquences propres. Pour les modes azimutaux, nous avons développé un
modèle qui permet de décrire la contribution magnétique comme l’équivalent d’une tension de surface
négative. La tension de surface effective de la goutte peut ainsi directement être ajustée par le champ
magnétique. Le décalage observé expérimentalement des fréquences des modes propres azimutaux est
très bien prédit par ce modèle sans paramètre ajustable, à la fois qualitativement et quantitativement
pour différents nombre de lobes, volumes et champs magnétiques.
Les fréquences propres des modes axisymétriques et azimutaux d’une goutte de ferrofluide peuvent
donc être modifiées continûment au moyen d’un champ magnétique extérieur. L’ajout de particules
magnétiques dans une goutte d’eau permet donc d’envisager de pouvoir contrôler ses fréquences de
résonance qui peuvent avoir un intérêt ou au contraire être gênantes dans certaines applications
pratiques.



Annexe A

Calcul des fréquences propres des modes
azimutaux à la périphérie d’une goutte
aplatie

Le calcul des fréquences propres des modes azimutaux d’une goutte aplatie est similaire à celui
d’une colonne de fluide cylindrique infini (jet), réalisé par Rayleigh [36] et Lamb [62]. La démons-
tration présentée ici est proche de celle de Rayleigh mais en diffère légèrement car celui-ci étudiait
l’apparition conjointe de modes azimutaux et de modes longitudinaux le long du du jet. Ces derniers
permettent notamment de décrire l’instabilité de Rayleigh-Plateau.
Ici, on assimile la goutte aplatie à un cylindre de hauteur h et de rayon R (voir Fig.A.1.a). On
note S⊥ la surface perpendiculaire à la gravité, constituée du dessus et du dessous de la goutte,
et S‖ la surface périphérique de la goutte. Au repos, elles sont notées respectivement S⊥,0 = 2πR2

et S‖,0 = 2πhR. Les lobes sont décrits par de petites déformations radiales de la périphérie de la
goutte, d’amplitude an(t)� R autour d’un rayon instantané moyen R̄(t). En coordonnées polaires,
le rayon s’écrit : r(θ, t) = R̄(t) + an(t) cos(nθ) avec n le nombre de lobes (voir Fig. A.1.b).

(a) (b)

Figure A.1 – Vue schématique de la goutte aplatie. (a) Au repos, la goutte est assimilée à un cylindre.
(b) En présence de lobes, la surface périphérique augmente.

On suppose que la hauteur de la goutte h reste constante 1. La conservation du volume est donc
équivalente à la conservation de la surface normale à la gravité S⊥,0 = S⊥ =

∫
r2dθ, soit 2πR2 =

2πR̄(t)2 + πan(t)2. Au premier ordre en an(t)/R, ceci se traduit par :
1. L’hypothèse selon laquelle h reste constant peut sembler contradictoire avec le forçage paramétrique utilisé

dans cette partie, qui consiste à faire varier cette hauteur par modulation de la gravité effective. Rappelons que les
fréquences propres sont calculées indépendamment du mode de forçage : il s’agit des fréquences auxquelles résonnerait
une goutte de hauteur h si sa périphérie était perturbée. Le forçage paramétrique consiste précisément à faire varier
la fréquence de résonance en faisant varier h, provoquant ainsi l’apparition de l’instabilité.
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R̄(t) = R

(
1− an(t)2

4R2

)
(A.1)

On réalise également un développement limité pour la surface périphérique en coordonnées cylin-
driques :

S‖ = h

∫
r

√
1 + 1

r2

(
dr

dθ

)2

dθ

= h

∫
r

(
1 + 1

2r2

(
dr

dθ

)2
)
dθ

= h

∫
r

(
1 + 1

2R2n
2a2
n sin2 nθ

)
dθ

= h

(
2πR̄(t) + 1

2Rπn
2a2
n

)

= 2πhR + πha2
n(n2 − 1)
2R en utilisant l’Eq. (A.1)

La variation de la surface périphérique liée aux lobes est donc :

∆S‖(t) ≡ S‖(t)− S‖,0 = πha2
n(t)(n2 − 1)

2R (A.2)

La variation d’énergie capillaire vaut donc :

∆Ec(t) = γ∆S‖(t) = γπha2
n(t)(n2 − 1)

2R (A.3)

On remarque qu’il s’agit d’un accroissement de l’énergie (∆Ec > 0) car la surface augmente en
s’éloignant de la forme cylindrique. L’énergie gravitationnelle n’intervient pas puisque le mouvement
est horizontal. L’autre énergie en jeu est l’énergie cinétique. Pour la calculer, nous devons déterminer
le champ de vitesse à l’intérieur de la goutte. Dans l’hypothèse d’un écoulement irrotationnel, il existe
un potentiel de vitesse φ(r, θ, t), tel que v = ∇φ, où v est le vecteur vitesse. Comme le fluide est
incompressible, ∇.v = ∇2φ = 0 et φ satisfait l’équation de Laplace :

∂2φ

∂r2 + 1
r

∂φ

∂r
+ 1
r2
∂2φ

∂θ2 = 0 (A.4)

La géométrie de l’écoulement permet de chercher φ sous la forme : φ = bn(r, t) cosnθ, avec bn qui
satisfait donc :

r2∂
2bn
∂r2 + r

∂bn
∂r
− n2bn = 0 (A.5)

L’Eq. (A.5) est une équation d’Euler et ses solutions sont de la forme bn(r, t) = cn(t)r−n + dn(t)rn.
Ici, cn = 0 car la vitesse est finie en 0. La condition limite de la vitesse radiale en r = R s’écrit au
premier ordre :
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vr(r = R) = ∂φ

∂r

∣∣∣∣
r=R

= nRn−1dn(t) cosnθ = ∂r

∂t

∣∣∣∣
r=R

= dR̄(t)
dt

+ dan(t)
dt

cosnθ (A.6)

Au premier ordre, dR̄(t)/dt est nul et on obtient :

φ(r, θ, t) = 1
nan−1

n

dan
dt

rn cosnθ (A.7)

Par ailleurs, l’énergie cinétique s’écrit :

Ek = ρ

2

y

V

(∇φ)2 rdrdθdz (A.8)

D’après le théorème de Green-Ostrogradski,
t

V
∇AdV =

v
S
AdS, avec A une fonction et S la

surface délimitant le volume V . En choisissant A = φ∇φ et en notant que ∇2φ = 0, on a :

Ek = ρ

2

{

S

φ
∂φ

∂r

∣∣∣∣
r=R

Rdθdz = πρhR2

2n

(
dan
dt

)2

(A.9)

On considère que les frottements dans le fluide et avec la plaque sont négligeables. La conservation
de l’énergie s’écrit alors d(Ek + Ec)/dt = 0 et on obtient l’équation régissant l’amplitude des lobes.

d2an
dt2 + ω2

nan(t) = 0,

avec ω2
n = γ

ρR3n(n2 − 1)
(A.10)

L’amplitude des lobes est donc de la forme an(t) = An cosωnt et fn = ωn/(2π) est la fréquence
propre du mode azimutal constitué de n lobes.



118 ANNEXE A. FRÉQUENCES PROPRES DES MODES AZIMUTAUX



Annexe B

Déformation quasi-statique d’une goutte
sphérique sous champ magnétique

En l’absence de gravité, il est possible de prédire la déformation d’une goutte de ferrofluide de rayon
R sous l’effet d’un champ B modéré, puisque sa forme est proche d’un ellipsoïde allongé selon l’axe
du champ [65]. En effet, on a vu dans la section 6.5.3 que dans ce cas, l’aimantation est uniforme
dans le ferrofluide et on peut définir un facteur de démagnétisation D tel que :

Em = − V χB2

2µ0 (1 + χD) . (B.1)

On peut montrer que D s’exprime théoriquement en fonction de l’excentricité e =
√

1−K2 de
l’ellipsoïde, où K = b/a est le rapport entre le demi-petit axe b et le demi-grand axe a [67] :

D = 1− e2

2e3

[
ln
(

1 + e

1− e

)
− 2e

]
(B.2)

L’énergie capillaire d’un ellipsoïde de surface S s’écrit [66] :

Ec = γS = 2πa2Kγ

(
K + arcsin e

e

)
(B.3)

La conservation du volume V = 4πR3/3 = 4πab2/3 et l’écriture de la minimisation de l’énergie
d(Em + Ec)/de = 0 font apparaître un nombre de Bond magnétique qui est le rapport entre les
ordres de grandeur des énergies magnétique (Em ∼ B2R3/µ0) et capillaire (Ec ∼ γR2) :

Bom = RB2

µ0γ
(B.4)

L’équation de la déformation s’écrit alors [66, 82, 83] :

Bom = 2
(

1
χ

+D

)2 3−2e2

e2 − (3−4e2) arcsin e
e3(1−e2)1/2

(1− e2)2/3 [3−e2

e5 ln
(1+e

1−e
)
− 6

e4

] (B.5)

La Fig. B.1 représente l’élongation théorique K−1 = a/b d’une goute de ferrofluide déduite de
l’Eq. (B.5) en fonction du nombre de Bond magnétique Bom (Eq. (B.4)).
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Figure B.1 – Élongation théorique a/b en fonction du nombre de Bond magnétique Bom en échelle
logarithmique pour différentes susceptibilités magnétiques à champ nul χ.

On observe que l’élongation s’amplifie avec Bom. Cela confirme l’effet du champ magnétique ap-
pliqué (Bom ∝ B2) et signifie que la déformation augmente avec la taille de la goutte (Bom ∝ R).
D’autre part, on observe que pour de grandes susceptibilités magnétiques (χ & 20), une instabilité
apparaît. Elle provoque un saut dans la déformation, qui a été étudié par Bacri et al. [66, 84]. La
déformation sans instabilité a également donné lieu à des vérifications expérimentales [85].



Annexe C

Déformation quasi-statique d’une goutte
aplatie sous champ magnétique

Les fréquences propres des modes axisymétriques et azimutaux dépendent du rayon R et de la
hauteur h de la goutte. La déformation de la goutte sous l’effet du champ magnétique pourrait
donc modifier ces fréquences propres. Nous étudions donc ici la façon dont se déforment les gouttes
aplaties en présence d’un champ magnétique.

Calcul du rayon d’équilibre

On considère une goutte aplatie incompressible modélisée par un cylindre de hauteur h et de rayon
R. Un équilibre stable de la goutte correspond à un minimum d’énergie. On cherche donc le cylindre
de rayon R et de hauteur h pour lequel l’énergie est minimale. On exprime les énergies capillaire,
gravitationnelle et magnétique à volume V = πhR2 fixé en fonction du rayon variable R :

Ec(R) = γ(2πR2 + 2πRh) = 2γ
(
πR2 + V

R

)
(C.1)

Eg(R) = ρV g
h

2 = ρV 2g

2πR2 (C.2)

Em(R) ≈ − χV B2

2µ0

(
1 + χ

1+h/R

) = − χV B2

2µ0

(
1 + χ

1+V/(πR3)

) (C.3)

Dans l’Eq. (C.1), le substrat étant superhydrophobe, on considère que la tension de surface entre
le liquide et le substrat est identique à celle entre le liquide et l’air. Dans l’Eq. (C.3), l’expression de
l’énergie magnétique utilise l’approximation D ≈ rs (voir chapitre 8).
L’énergie capillaire est minimale lorsque le rapport d’aspect est de l’ordre de 1, qui minimise la
surface de la goutte. Dans le cas d’une flaque, Ec augmente donc toujours avec R. L’énergie gravi-
tationnelle diminue avec l’altitude du centre de gravité et donc avec R. Enfin, l’énergie magnétique
diminue lorsque la surface latérale du cylindre augmente et que la surface perpendiculaire au champ
diminue, c’est-à-dire quand R diminue. La condition d’équilibre correspond à un minimum d’énergie :
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d(Ec + Eg + Em)
dR

= 0 ⇐⇒ 4πγR− 2γV
R2 −

ρgV 2

πR3 + 3χ2B2V 2

2πµ0R4 (1 + χ+ V/(πR3))2 = 0 (C.4)

On note qu’à champ nul et pour h � R, les deuxième et quatrième termes de l’équation sont
négligeables. On retrouve alors que la hauteur de la goutte est indépendante du rayon et vaut
deux fois la longueur capillaire : h = 2

√
γ/(ρg). L’augmentation du volume conduit alors à un

augmentation du rayon de la goutte sans variation de sa hauteur.

Résultats expérimentaux

Puisque l’énergie magnétique augmente avec R, le rayon diminue en présence d’un champ ma-
gnétique. Sur la Fig. C.1, on représente ainsi la variation du rayon observée expérimentalement en
présence d’un champ magnétique en fonction de celle prédite théoriquement par l’Eq. (C.4). On
remarque que la variation absolue du rayon dépend peu du rayon initial de la goutte. La ligne noire
représente la prédiction théorique. On observe ainsi que la variation réelle du rayon est 2.4 fois celle
prédite par le modèle.
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Figure C.1 – Variation observée expérimentalement du rayon d’une goutte de ferrofluide n◦2 en
présence du champ magnétique, R(B = 0) − R(B), en fonction de la variation théorique pour
différents volumes V et champs 0 ≤ B ≤ 62G. La ligne noire est la prédiction théorique (pente 1)
et la ligne en pointillés est l’ajustement linéaire (pente 2.4).

En effet, le modèle développé suppose que le ferrofluide conserve une forme purement cylindrique
au cours de la déformation. Cependant, comme on l’a vu dans la section 6.5.3, l’aimantation du
ferrofluide est plus forte lorsque le champ est tangent à l’interface, comme c’est le cas à la périphérie
de la goutte. L’effet du champ est donc plus fort sur les bords de la goutte, ce qui provoque l’appa-
rition d’un bourrelet périphérique. La variation de rayon observée expérimentalement en présence
d’un champ magnétique est alors supérieure à celle prédite théoriquement par l’Eq. (C.4).
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Rôle de la déformation de la goutte avec B sur les décalages des fréquences propres

On peut penser que la déformation de la goutte au repos par le champ magnétique joue un rôle
dans les décalages des fréquences propres des modes azimutaux et axisymétriques des chapitres 8 et
9. En effet, les expressions des fréquences propres (voir Eqs (8.3) et (9.12)) et des vecteurs d’ondes
(voir Eq. (9.5)) dépendent de R.
De façon surprenante, pour les modes azimutaux (chapitre 8), la prise en compte de la modification
du rayon de la goutte en présence de champ magnétique mène à des prédictions théoriques très
éloignées des fréquences propres observées expérimentalement. Cela concerne aussi bien l’amplitude
des décalages que les lois d’échelle prédites par l’Eq. (8.3).
Pour les modes axisymétriques (chapitre 9), la prise en compte de la variation de R avec B permet
de réduire l’écart entre les prédictions théoriques et les observations expérimentales dans le décalage
des fréquences propres, mais la correction s’effectue de façon différente pour les différents modes m.
Les points de mesures ne sont alors plus rassemblés sur une même droite comme sur la Fig. 9.11,
invalidant la loi d’évolution prédite par la relation de dispersion d’Eq. (9.13).
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Annexe D

Calcul de la fréquence propre du mode
axisymétrique d’écrasement (m = 1)

Nous calculons ici la fréquence propre du mode d’écrasement d’une goutte de liquide. Ce mode
correspond aux oscillations libres d’une goutte aplatie autour de son équilibre (voir annexe C) en
conservant une forme cylindrique.

h(t)

R(t)

Figure D.1 – Schéma illustrant le mode d’écrasement, pour lequel la goutte oscille en conservant une
forme cylindrique

Un calcul similaire a été réalisé par Noblin [63] dans le cas d’une goutte sessile (angle de contact
arbitraire) en présence de frottement solide mais uniquement pour de grands diamètres (h � R).
Nous considérons ici qu’il n’y a pas de frottements et que l’angle de contact est proche de 180◦.
Cependant, h n’est ici pas nécessairement négligeable devant R. Cette hypothèse n’est en effet pas
respectée pour les plus petits volumes étudiés (V ∼ 1mL).
Supposons un substrat superhydrophobe sur lequel est déposée une goutte aplatie incompressible
de hauteur h et de rayon R à l’équilibre. Nous étudions la fréquence d’oscillation libre liée à son
écrasement. On considère que la goutte est dans un repère en coordonnées cylindriques (r, θ, z).
L’axe Oz est vertical et dirigé vers le haut tel que z = 0 correspond au contact entre la goutte et le
substrat. La goutte a son centre en r = 0. Elle conserve la forme d’un cylindre de rayon R̄(t) et de
hauteur h̄(t). Son volume V = πh̄(t)R̄(t)2 est conservé, d’où :

dV

dt
= 0 ⇐⇒ dh̄

dt
= −2h̄(t)

R̄(t)
dR̄

dt
(D.1)

Nous allons écrire la conservation de l’énergie pour déterminer la fréquence propre. On rappelle les
expressions des énergies capillaire Ec et gravitationnelle Eg (voir Eqs (C.1) et (C.2)) :
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Ec(t) = γ(2πR̄(t)2 + 2πh̄(t)R̄(t)) = 2γ
(
πR̄(t)2 + V

R̄(t)

)
(D.2)

Eg(t) = ρV h̄(t)g
2 = ρV 2g

2πR̄(t)2
(D.3)

L’énergie capillaire contient une contribution de la surface parallèle à la gravité g et une contribution
de la surface perpendiculaire à g. Pour une petite variation du rayon de la goutte autour de l’équilibre
∆R = R̄−R� R, les variations d’énergies capillaire et gravitationnelle s’écrivent :

∆(Ec + Eg) = d(Ec + Eg)
dR̄

∣∣∣∣
R̄=R

∆R + 1
2
d2(Ec + Eg)

dR̄2

∣∣∣∣
R̄=R

(∆R)2 (D.4)

=
(

2πγ + 2γV
R3 + 3ρgV 2

2πR4

)
(∆R)2 (D.5)

car le premier terme de la partie droite de l’Eq. (D.4) est nul à l’équilibre d’après l’Eq. (C.4).
On calcule maintenant l’énergie cinétique. Les modes étant axisymétriques, les vitesses ne dé-
pendent pas de θ. On suppose par ailleurs que le substrat superhydrophobe est tel que la goutte
ne subit aucun contrainte horizontale et que la vitesse radiale vr ne dépend pas de l’altitude z. On
effectue un bilan de conservation de la masse pour un cylindre de hauteur h(t) et de rayon r. En
utilisant l’Eq. (D.1) et la condition d’incompressibilité divv = 0, on trouve alors :

vr(r, t) = r

R̄(t)
dR̄

dt
(D.6)

vz(z, t) = − 2z
R̄(t)

dR̄

dt
(D.7)

L’énergie cinétique de la goutte s’écrit alors :

Ek(t) =
y

ρv2

2 dV = ρ

2

(
d∆R
dt

)2(
V

2 + 4πh̄(t)3

3

)
(D.8)

Le dernier terme de l’Eq. (D.8) n’est pas négligeable pour les plus petites gouttes (V ∼ 1mL). La
conservation de l’énergie s’écrit d(Ek +Ec +Eg)/dt = 0. Les amplitudes de vibrations étant faibles,
les termes différentiels non linéaires sont négligés. On obtient l’équation décrivant les fluctuations
du rayon :

d2∆R
dt2 + ω2

1,écr∆R(t) = 0, (D.9)

avec ω2
1,écr =

(
V

2 + 4πh3

3

)−1(4πγ
ρ

+ 4πγh
ρR

+ 3πgh2
)

(D.10)
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ω1,écr = 2πf1,écr est la pulsation propre du mode d’écrasement d’une goutte cylindrique. Il est à
noter que pour une goutte de grand diamètre (h � R), on a h = 2

√
γ/(ρg) (voir annexe C) et on

retrouve la pulsation propre calculée par Noblin [63], ω2
1,écr = 32πγ/(ρV ).
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Troisième partie

Exploration des interactions entre
turbulence hydrodynamique et surface

libre
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Chapitre 12

Introduction

Cette partie exploratoire est destinée à étudier les interactions entre la turbulence hydrodynamique et
la surface libre. Les résultats sont en grande partie préliminaires et sont des pistes pour une étude plus
approfondie des phénomènes observés. L’étude de chaque sujet est donc souvent qualitative et loin
d’être exhaustive. Elle vise à circonscrire les problématiques d’intérêt soulevées par ces interactions
et déterminer les outils nécessaires à leur analyse. De premiers enseignements émergent toutefois
des mesures et des analyses réalisées.

12.1 Contexte

Un écoulement fluide turbulent est désordonné, non prévisible et met en jeu un grand nombre
d’échelles spatiales et temporelles. La turbulence hydrodynamique est classiquement représentée
par la cascade de Richardson (voir Fig. 12.1) par laquelle de grands tourbillons, initialement injectés
à une échelle de l’ordre de la taille de la perturbation, donnent naissance à de plus petits tourbillons
par interactions. Ces derniers vont à leur tour se décomposer en des tourbillons plus petits et ainsi
de suite. Les plus petites échelles correspondent aux tourbillons pour lesquels la viscosité dissipe
l’énergie.

Energy injection

Viscous dissipation

Figure 12.1 – Illustration de la cascade directe de Richardson. Source de l’image : [86]
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Le mécanisme de transport turbulent est crucial pour les transferts d’énergie, de quantité de mou-
vement, de chaleur ou de concentration. La turbulence a ainsi un rôle important dans les échanges
de chaleur et de matière dans l’atmosphère ou dans les océans, mais aussi entre ces deux réservoirs.
Dans le contexte de la modélisation du climat, les échanges de chaleur et de quantité de matière
entre l’océan et l’atmosphère sont déterminants pour comprendre et prévoir les variations de tem-
pératures ou de concentrations en gaz à effet de serre. Le rôle de la surface de l’eau, interface entre
les océans et l’atmosphère est alors de première importance.
En effet, nous allons voir que la surface libre modifie la turbulence hydrodynamique mais cette
surface va aussi réciproquement se déformer sous l’action de cette même turbulence. Ces déforma-
tions de la surface libre et sa rugosité vont alors être également importantes dans les échanges entre
océan et atmosphère ou pour la réflexion du rayonnement solaire. Nous proposons ici une expérience
destinée à mettre en lumière les mécanismes à l’œuvre dans ces interactions. La turbulence est ici
générée dans une cuve au moyen de jets sous une surface libre. Il n’y a pas d’écoulement moyen et
la taille typique des tourbillons est de l’ordre de 5 cm.

Effet de la présence d’une surface libre sur la turbulence hydrodynamique

Les études sur les interactions entre la turbulence hydrodynamique et la surface libre ont d’abord
concerné la façon dont la présence d’une surface libre modifie la turbulence sous la surface. Comme
le rappelle Savelsberg [87], cela a tout d’abord été étudié théoriquement pour le cas d’un mur se
déplaçant avec le courant moyen d’une turbulence de grille dans un canal par Hunt et Graham [88]
puis pour une surface libre non déformée [89–91]. Les phénomènes ont également été observés numé-
riquement [92–99] et expérimentalement dans des canaux turbulents [87, 100–102] mais aussi sans
écoulement moyen [103, 104]. Le résultat principal observé est un effet important de la surface libre
sur une profondeur environ égale à l’échelle intégrale L de la turbulence, c’est-à-dire la taille des
plus gros tourbillons. Au sein de cette couche, l’énergie cinétique turbulente verticale est redistribuée
horizontalement en raison de la condition aux limites cinématique imposée par la surface qui impose
une vitesse verticale nulle. Les fluctuations verticales de vitesse diminuent alors à l’approche de la
surface tandis que celles de la vitesse horizontale augmentent. Nous discuterons plus en détail ces
résultats autour de nos mesures expérimentales dans le cadre de la caractérisation de la turbulence
hydrodynamique dans le chapitre 14.

Effet de la turbulence hydrodynamique sur des ondes de surface

L’atténuation d’ondes de gravité monochromatiques à la surface d’un écoulement turbulent a été
étudiée théoriquement par Phillips [105] ainsi que Fabrikant et Raevsky [106] dans le cas où la
longueur d’onde λ des ondes est plus petite que l’échelle L de la turbulence. Dans le cas inverse où
λ > L, Teixeira et Belcher [107] se sont intéressés à l’allongement des vortex par les ondes de surface
et ont montré le même type de comportement. Des expériences s’intéressant à ces atténuations
ont par ailleurs été réalisées par Green et al. [108], Badulin [109], Ölmez et Milgram [110] ainsi
que Gutiérrez et Aumaître [111]. Le cas de l’interaction entre turbulence hydrodynamique et ondes
paramétriques via l’instabilité de Faraday a également fait l’objet d’études par Falcón et Fauve [112]
ou Ermakov et al. [113].
Dans ces expériences, les spectres temporels des déformations de la surface libre ont souvent été
étudiés mais les études s’intéressant à l’évolution de la structure spatiale des ondes à la surface d’un
écoulement turbulent sont plus rares. Très récemment, Gutiérrez et Aumaître [111] ont réalisé une
mesure spatiale 1D dans la direction de propagation de l’onde pour un écoulement turbulent 2D.
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Vivanco et Melo [114] ont quant à eux étudié, expérimentalement et dans les deux dimensions, la
diffusion d’ondes planes par un vortex unique ou un dipôle de vortex, s’appuyant sur une étude
théorique de Coste et al. [115, 116]. Des mesures de la surface libre en 2D dans le cas d’ondes à la
surface d’un écoulement turbulent semblent donc intéressantes.

Déformations de la surface libre induites par la turbulence

Au-delà de son action sur les ondes gravito-capillaires se propageant à sa surface, un écoulement
turbulent hydrodynamique est susceptible de provoquer lui-même des déformations de la surface
libre. Brocchini et Peregrine [117] ont établi une phénoménologie des situations qu’il est possible
de rencontrer en fonction de l’échelle spatiale L de la turbulence (taille typique des plus grands
tourbillons) et de l’amplitude de ses fluctuations de vitesse q (voir Fig. 12.2). Les expériences sur le
sujet étant rares, l’étude repose avant tout sur des modèles simples et des arguments d’échelles.

Figure 12.2 – Diagramme des phénomènes de déformation de la surface libre par Brocchini et Peregrine
[117] selon l’échelle L et les fluctuations de vitesse q de la turbulence. La ligne rouge représente la zone
explorée dans cette partie. Source de l’image initiale : [117]

Les déformations sont gouvernées d’une part par une compétition entre énergie cinétique turbulente
(qui provoque les déformations) et énergie gravitationnelle (qui s’y oppose). La racine carrée du
rapport entre ces deux grandeurs est le nombre de Froude turbulent Fr = q/

√
2gL où g est la gravité.

La compétition entre énergie cinétique turbulente et tension de surface (qui s’oppose également
aux déformations) est quant à elle donnée par le nombre de Weber We = q2Lρ/(2γ). Dans notre
expérience, la taille typique de la turbulence est L ≈ 5 cm et les fluctuations de vitesse atteignent
q ≈ 12 cm.s−1, ce qui correspond à Fr = 0.12 et We = 5. C’est donc d’abord la gravité qui
gouvernera les déformations induites par la turbulence. Une ligne rouge sur le diagramme de la
Fig. 12.2 représente les valeurs explorées. Il faut noter que la turbulence implique de nombreuses
échelles inférieures à la taille typique des plus gros tourbillons et que les phénomènes observés ne
seront donc pas uniques. Nous montrons sur la Fig. 12.3 trois photos d’états de la surface libre que
nous avons pu rencontrer avec notre expérience. Nous pouvons observer une scarification de la surface
libre pour de faibles niveaux de turbulence et lorsqu’on augmente le débit des jets, des déformations
à toutes les échelles apparaissent et notamment des rides. Pour de forts niveaux de turbulence, nous
avons observé l’entraînement de bulles sous la surface. Mais dans l’ensemble, c’est un régime de
“vagues” qui est d’abord attendu (voir Fig. 12.2), qui domine notre expérience et que nous allons
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principalement étudier. Cependant, la nature de ces “vagues”, au sens de Brocchini et Peregrine,
est encore peu comprise. Il peut s’agir de la génération d’ondes gravito-capillaires se propageant à
la surface de l’écoulement turbulent mais aussi de l’empreinte des fluctuations de pression sous la
surface.

(a)

(b) (c)

Figure 12.3 – Observations que nous avons réalisées pour différents niveaux de turbulence : (a) Scarifi-
cation de la surface libre à faible turbulence ; (b) Déformations de la surface libre à toutes les échelles et
présence de rides (taille ∼ 1 cm) pour une turbulence modérée ; (c) Entraînement de bulles sous la surface
à forte turbulence.

Les déformations de la surface libre induites par la turbulence ont d’abord été étudiées dans le
contexte de la génération d’ondes à la surface de l’océan par le vent et donc la turbulence dans l’air.
Phillips [118, 119] a montré théoriquement que les fluctuations turbulentes de pression induisent
des déformations de la surface libre et peuvent mener à la formation d’ondes par résonance. Cette
résonance se produit lorsque la vitesse de convection de ces fluctuations de pression est égale à la
vitesse de propagation des ondes. Ce mécanisme ne peut pas être directement appliqué à la turbu-
lence hydrodynamique sous la surface libre car la vitesse d’advection des fluctuations de pression
turbulentes est également la vitesse d’advection des ondes. Teixeira et Belcher [120], en reprenant le
raisonnement de Phillips, ont toutefois mis en évidence théoriquement l’existence d’une résonance
dans le cas de la turbulence hydrodynamique sous la surface, mais cette résonance est conditionnée
par un taux de cisaillement suffisamment important près de la surface. Les auteurs notent que la
turbulence dans l’eau est plus efficace que la turbulence dans l’air dans la génération d’ondes et
pourrait être un mécanisme plus important que ce qu’on pensait jusqu’alors.
Ces dix dernières années, diverses études expérimentales des déformations de la surface libre induites
par une turbulence hydrodynamique sous la surface ont vu le jour [87, 121–124]. Dans le cas d’un
écoulement de faible profondeur sur un fond rugueux, Horoshenkov et al. [124] ont récemment observé
que les vitesses de déplacement des structures à la surface de l’eau sont proches de la vitesse de
l’écoulement et ne correspondent donc pas à des ondes de gravité, malgré la présence de cisaillement.
Cet argument était aussi mis en avant par Smolentsev et Miraghaie [121], pour affirmer la faible
présence d’ondes de surface à partir du suivi de structures à la surface d’un écoulement passant de
faiblement turbulent à fortement turbulent sur un plan incliné. Par ailleurs, pour un écoulement
turbulent 2D, Gutiérrez [123] met difficilement en évidence la présence d’ondes de surface à partir
de spectres de puissance spatiotemporels 1D de la déformation de la surface libre. Les spectres
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spatiotemporels sont utilisés pour faire le lien entre fréquence d’oscillation et longueur d’onde d’une
déformation.
Chiapponi et al. [122] ont analysé les corrélations entre déformations de la surface libre et fluc-
tuations de vitesse sous la surface d’un écoulement turbulent généré par une grille oscillante sans
écoulement moyen. Ils montrent qu’en général, les fluctuations de la surface libre sont en avance par
rapport à celles de la vitesse sous la surface, semblant indiquer la présence d’ondes de surface. Mais
Savelsberg et van de Water [87], au moyen d’un canal rendu turbulent par une grille active, restent
les seuls à notre connaissance à avoir réellement démontré une forte présence d’ondes de surface
gravito-capillaires, dominant les structures turbulentes non propagatives. En effet, leurs spectres
spatiotemporels 1D de déformation de la surface libre montrent principalement des structures qui
suivent la relation de dispersion d’ondes de surface gravito-capillaire. Pourtant, les fluctuations tur-
bulentes de vitesse sont faibles et il n’y a a priori pas de cisaillement important. La possibilité d’une
génération d’ondes à la surface directement par la grille active est évacuée par certains critères d’iso-
tropie. Cette expérience est d’intérêt pour nous puisque l’échelle caractéristique de la turbulence est
comparable (L ≈ 10 cm).
Numériquement, une simulation proche de notre système d’une turbulence hydrodynamique sans
écoulement moyen et en présence d’une surface libre a été réalisée récemment par Guo et Shen [99].
S’ils notent une faible présence d’ondes gravito-capillaires, les déformations de la surface libre sont
avant tout dominé par des structures à basse fréquence. La nature des déformations à la surface des
écoulements turbulents commence donc à peine à être déterminée et comprise. Elle est d’ailleurs
très probablement fortement dépendante des conditions expérimentales.

12.2 Plan de la partie

Dans cette partie, nous allons décrire les expériences réalisées autour des problématiques décrites
précédemment. Le chapitre 13 présente le dispositif expérimental utilisé. Une turbulence sans écou-
lement moyen est générée sous une surface libre au moyen de jets verticaux situés au fond d’une
cuve. Les techniques de mesure sont également présentées dans ce même chapitre : vélocimétrie par
images de particules (PIV) pour le champ de vitesses sous la surface et profilométrie par transfor-
mée de Fourier (FTP) pour la mesure spatiotemporelle 2D des déformations de la surface libre. Les
caractéristiques de la turbulence engendrée, ainsi que la façon dont elle est modifiée à l’approche de
la surface libre sont décrites dans le chapitre 14. Dans le chapitre 15, des ondes de surface planes
monochromatiques sont générées à la surface de l’écoulement turbulent au moyen d’un batteur.
Nous décrivons leur dispersion causée par la turbulence sous la surface. Enfin, les déformations de
la surface libre induites par la turbulence hydrodynamique sont étudiées au chapitre 16. Nous met-
tons en évidence la présence d’ondes de surface gravito-capillaires dominées par des structures non
propagatives.
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Chapitre 13

Dispositif expérimental

13.1 Contexte

La turbulence hydrodynamique en présence d’une surface libre est souvent étudiée expérimenta-
lement au moyen d’un canal avec un écoulement. Une turbulence relativement intense peut par
exemple être obtenue avec une grille active, pourvue d’axes mobiles motorisés, en travers de l’écou-
lement [87]. Pour étudier des ondes à la surface de l’écoulement turbulent, nous souhaitions toutefois
éviter l’advection par un écoulement moyen. Des turbulences sans écoulement moyen peuvent par
exemple être générées au centre de disques contra-rotatifs [125, 126], mais pour l’interaction avec
une surface libre, elles sont généralement obtenues au moyen d’une grille horizontale plongée dans
une cuve et oscillant verticalement [103, 109, 122, 127]. Toutefois, les grilles oscillantes présentent
une mauvaise reproductibilité expérimentale [128], ce qui est critique pour notre étude où nous
souhaitons pouvoir comparer des mesures et exploiter des résultats indépendants. Les niveaux de
turbulence atteints sont par ailleurs assez faibles.
Récemment, Variano et Cowen [104] ont mis au point un dispositif de génération de turbulence
basé sur un réseau carré de 8× 8 jets au fond d’une cuve. Les 64 jets sont produits par des pompes
immergées qui sont allumées et éteintes aléatoirement. L’écoulement turbulent présente d’excellentes
résultats en termes d’homogénéité, d’isotropie et de reproductibilité. Il atteint par ailleurs un nombre
de Reynolds turbulent 7 fois plus grand que ceux obtenus avec des grilles oscillantes. Toutefois,
les 64 pompes qui produisent les jets ont un débit fixe. L’intensité de la turbulence, repérée par
les fluctuations de vitesse ne peut donc être modifiée qu’en changeant le temps d’allumage ou le
nombre de pompes allumées simultanément. Ceci modifie alors également d’autres caractéristiques
de l’écoulement telles que la taille typique des tourbillons (communication privée). Afin de pouvoir
atteindre différents niveaux de turbulence, nous proposons ici un dispositif expérimental constitué
d’une pompe unique à débit variable, l’ouverture des jets étant contrôlé par des électrovannes. Le
gros débit de la pompe permettra par ailleurs d’atteindre des niveaux de turbulence plus élevés.

13.2 Description du montage

Les interactions entre la turbulence hydrodynamique et les déformations de la surface libre sont
ainsi étudiées dans une cuve carrée de 40 cm de côté et 75 cm de profondeur (voir Fig. 13.1.a). La
turbulence est produite par 64 jets verticaux pointant vers le haut, disposés au fond de la cuve et
ouverts de façon aléatoire et contrôlée. Les jets sont tous alimentés par une même pompe centrifuge.
L’orifice de refoulement de la pompe, dirigé vers le haut, est connecté à une cuve de redistribution
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cylindrique (diamètre : 40 cm, hauteur : 12 cm), munis de 64 raccords disposés sur deux rangées à sa
périphérie, points de départ des tuyaux. Ces derniers sont équipés d’électrovannes qui permettent
d’ouvrir ou de fermer chaque jet individuellement (voir section 13.4). L’autre extrémité des tuyaux
est attachée sous la cuve, dont le fond est traversé par des raccords (Fig. 13.1.c). Ils sont disposés
autour d’un trou de 80mm de diamètre. Celui-ci est connecté à l’orifice d’aspiration de la pompe
via un circuit constitué de tuyaux et de coudes en PVC, qui est muni d’un débitmètre. La pompe
fait ainsi circuler l’eau en circuit fermé.

5 cm 

pump  

flow 
meter 

8x8 array of 
upwards jets 

64 pipes and 
solenoid valves distribution 

tank 

75 cm 

40 cm 

(a) (b) 

(c) 

(d) 

25 cm 

Figure 13.1 – (a) Schéma général du dispositif expérimental pour la génération de turbulence. (b) Vue
rapprochée sur le réseau carré de 64 jets régulièrement espacés de 5 cm (flèches vers le haut) en quinconce
avec des trous dédiés à l’aspiration (flèches vers le bas). (c) Vue du fond de la cuve avant l’installation. Les
64 jets sont disposés autour d’un trou central dédié à l’aspiration (flèche vers le bas). (d) Vue d’ensemble
du dispositif expérimental.

Une plaque en PVC est fixée 25 cm au-dessus du fond et sert à la redistribution des jets. Des tuyaux
relient les raccords situés au fond de la cuve à d’autres raccord fixés sous la plaque en PVC. Les jets,
de diamètre intérieur 16.5mm, sont alors répartis selon un réseau carré de 8× 8 à maille carrée et
espacés de 5 cm (Fig. 13.1.b). Des trous pour l’aspiration (diamètre : 25mm) sont par ailleurs percés
au centre de tous les carrés formés par les trous d’injection (disposition en quinconce).
Avec ce dispositif, le niveau de turbulence engendrée peut être contrôlé par le débit de la pompe
centrifuge. Ceci n’est pas le cas du RASJA de Variano [104], le débit des pompes immergées n’étant
pas variable.

13.3 Contrôle du débit - Asservissement

La pompe utilisée est le modèle Grundfos NB 65-125/137 (AFA BAQE), alimentée en triphasé,
d’une puissance de 7.5 kW. Elle peut produire une surpression de 2.4 bars et atteindre un débit de
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38L.s−1. Ce dernier est contrôlé par asservissement au moyen d’un variateur de fréquence (Inoréa
Powtran PI8100 11 kW), qui fixe la puissance de la pompe, et d’un débitmètre Mecon mag-flux A
(diamètre intérieur 80mm) qui mesure le débit. Le variateur de fréquence modifie la puissance de la
pompe en réduisant la fréquence de fonctionnement f de la pompe (50Hz à puissance maximale).
La tension est également réduite proportionnellement à la fréquence (400V à puissance maximale).
Le principe de l’asservissement est illustré sur la Fig. 13.2. La fréquence f imposée par le variateur
à la pompe est déterminée par l’erreur ∆Q, qui est la différence entre le débit voulu et le débit
mesuré par le débitmètre, selon l’équation suivante [129, 130] :

f(t) = Kp

(
∆Q(t) + 1

Ti

∫ t

0
∆Q(τ)dτ + Td

d∆Q
dt

)
(13.1)

où Kp est le gain de la partie proportionnelle, Ti le temps d’intégration et Td le temps de dérivation.
Le premier terme corrige f proportionnellement à l’erreur ∆Q, le second terme ajuste f en fonction
de l’erreur passée et élimine ainsi l’erreur statique, le troisième terme anticipe les variations de débit
à partir des variations instantanées de l’erreur.

PID variateur
débit voulu +

-

Pf

débit obtenu
(   Q = débit voulu - débit obtenu)

Q

Q 

Figure 13.2 – Illustration du principe de fonctionnement de l’asservissement. Le correcteur (PID) modifie
la fréquence f du variateur en fonction de la différence entre le débit voulu et le débit de la pompe (P)
mesuré par le débitmètre (Q).

Les paramètres Kp, Ti et Td ont été choisis afin que l’erreur sur le débit reste inférieure à 10% au
cours des mesures.

13.4 Contrôle des jets

13.4.1 Electrovannes

Dans ce dispositif de forçage turbulent, seule une fraction des 64 jets est ouverte simultanément.
L’indépendance des jets permet d’exercer un forçage spatiotemporel aléatoire au sein du fluide
grâce à un algorithme qui détermine l’alternance d’ouverture entre les jets (voir section 13.4.2). On
optimise ainsi l’intensité de la turbulence produite et on minimise la présence d’écoulements moyens
locaux.
L’ouverture et la fermeture de chaque jet sont ici contrôlées par des électrovannes Irritrol 700B-.75
Ultra Flow. Elles ont été choisies du fait de leur faible coût et car elles disposent d’un mécanisme
à grande ouverture limitant les pertes de charges 1 (e.g. 0.15 bar pour 1 L.s−1), maximisant ainsi

1. En hydraulique, une perte de charge correspond à une perte d’énergie par dissipation, par exemple lors de la
traversée d’un obstacle. A section constante, cela se traduit par une diminution de la pression en aval de l’obstacle.
La perte de charge est alors généralement exprimée sous forme d’une pression. Le calcul de l’ensemble des pertes
de charge d’un circuit, liées aux obstacles, aux variations de section ou aux conduites, permet de dimensionner la
pression de la pompe requise pour atteindre un débit donné.
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le débit des jets à pression donnée (voir Fig. 13.3). Ces électrovannes à membrane, destinées à
l’arrosage de jardins, sont dites à commande assistée car leur ouverture est assistée par la pression
différentielle entre l’amont et l’aval de l’écoulement. Lorsque l’électrovanne est fermée, seule existe
une connexion entre le fluide en amont de l’électrovanne et la cavité située au-dessus du piston (en
noir sur la Fig. 13.3). Ceci établit un équilibre de pression de part et d’autre du piston. Un ressort
maintient alors l’électrovanne fermée. Lorsque l’électrovanne est alimentée en 24V alternatif, un
solénoïde soulève un piston aimanté et établit une connexion entre l’écoulement aval et la cavité
au-dessus du piston, faisant décroître la pression dans cette cavité. Si le différentiel de pression est
suffisant, le piston se soulève et ouvre l’électrovanne.

Figure 13.3 – Différence entre les électrovannes à membranes à commande assistée traditionnelle (à
gauche) et les électrovannes Irritrol UltraFlow utilisées dans cette expérience. Le circuit d’écoulement dans
les premières est composé d’un rétrécissement important et d’un coude à 180◦, entraînant une forte perte
de charge et limitant le débit. Source de l’image : Irritrol

Il est à noter qu’une pièce située à l’intérieur de l’électrovanne ralentit l’établissement des équilibres
de pression en limitant le débit dans les connexions mentionnées précédemment. Ceci vise à ralentir
les ouverture et fermeture de l’électrovanne afin d’éviter ce qu’on appelle des “coups de bélier” dans
les installations d’arrosage. Nous avons ôté cette pièce afin d’atteindre des temps d’ouverture et de
fermeture les plus courts possibles.
Malgré l’utilisation de 64 électrovannes identiques, des débits très différents les uns des autres sont
observés à la sortie de chaque jet. La Fig. 13.4.a représente sous forme d’une grille le débit de chaque
électrovanne après 3 s d’ouverture continue lorsque la fréquence du variateur est fixée à 14Hz. Ainsi,
pour un débit moyen par jet 〈Qj〉 = 0.13L.s−1, on observe un écart-type de 0.042L.s−1 sur l’ensemble
des électrovannes. Ces débits très disparates sont corrélés avec les numéros de série inscrits sur les
électrovannes et sont donc probablement dûs à des effets de série. La raideur des ressorts peut par
exemple varier d’une série à l’autre et modifier l’ampleur de l’ouverture de l’électrovanne pour une
même pression exercée par la pompe. Pour pallier ce problème et éviter la présence d’écoulements
moyens, nous avons réparti les électrovannes de façon homogène comme le montre la Fig. 13.4.a. Les
électrovannes présentant les débits les plus importants sont placées au centre du réseau et sur le
contour du carré orienté à 45◦ et inscrit dans le carré délimitant le fond le bassin (voir Fig. 13.4.b).
Les quatre sous-carrés formant la grille (en haut à gauche, en haut à droite, en bas à gauche, en bas
à droite) affichent par ailleurs des débits moyens similaires (±5%). Il est à noter que des problèmes
d’ouvertures des électrovannes ont subsisté en raison de leur vieillissement. Certaines électrovannes
ont vu leur débit varier au cours du temps et quelques-unes pouvaient parfois rester ouvertes malgré
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l’absence d’alimentation. Enfin, on a pu remarquer que l’inhomogénéité des débits avait tendance à
s’atténuer avec l’intensité de la turbulence.

Débit en L.s−1 de chaque jet de la grille
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Figure 13.4 – (a) Chaque carré représente un jet du réseau de 8 × 8 jets. La couleur indique le débit
obtenu après 3 s lorsque l’électrovanne est la seule ouverte et que la fréquence du variateur est fixée à 14Hz ;
(b) Les lignes rouges représentent la position des jets les plus puissants.

Deux transformateurs toriques de tension alternative 24V et de puissance 400W alimentent en
parallèle les électrovannes pour leur ouverture. Chaque électrovanne est installée en série avec un
relais statique Measurement Computing SSR-4-OAC-05 qui joue le rôle d’un interrupteur fermé ou
ouvert lorsqu’une tension de respectivement 0 ou 5V lui est appliquée. Pour cela, les relais sont
installés sur deux racks Measurement Computing SSR-RACK48/DST et sont commandés par deux
micro-contrôleurs Arduino Mega 2560 (voir Fig. 13.5). Chaque micro-contrôleur dispose de 54 sorties
numériques capables de délivrer 0 ou 5V.
A partir de paramètres communiqués par port série via Matlab, un Arduino maître calcule les temps
d’ouvertures des électrovannes et détermine les alternances entre jets selon l’algorithme décrit dans
la section 13.4.2. Il commande par ailleurs 32 relais via ses sorties numériques. Les 32 autres relais
sont pilotés par un Arduino esclave qui reçoit les instructions données par l’Arduino maître via port
série (RX/TX).

13.4.2 Algorithme

Les temps d’ouverture des électrovannes et l’alternance entre les jets est déterminée par un algo-
rithme qui permet de générer un forçage spatiotemporel aléatoire.

Sunbathing algortihm (Variano)

L’algorithme utilisé par Variano [104], dénommé “sunbathing algorithm”, est celui pour lequel il
obtient la meilleure combinaison d’un faible écoulement moyen, un haut nombre de Reynolds et une
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Figure 13.5 – Dispositif de contrôle des électrovannes. Deux racks (verts) accueillent 64 relais statiques
(noirs, par blocs de 4), pilotés par deux micro-contrôleurs Arduino (bleus).

bonne homogénéité spatiale. Il est illustré sur la Fig. 13.6. A chaque fois qu’on allume un jet, on
tire au hasard la durée d’ouverture don à partir d’une densité de probabilité de la loi normale, fon,
centrée sur le temps moyen µon = 3 s et d’écart-type σon = 1 s. A la fin de cette durée, le jet reste
éteint pendant une durée doff tirée au hasard à partir d’une densité de probabilité foff . Une fois
la durée doff écoulée, le jet est à nouveau allumé pendant une nouvelle durée don choisie au hasard
et ainsi de suite. Les ouvertures et les fermetures des différents jets ont lieu en parallèle. La durée
moyenne d’extinction d’un jet µoff est déterminée par µon et la fraction moyenne φ ≡ N on/64 de
jets ouverts simultanément, avec N on le nombre moyen de jets allumés simultanément. En effet, le
ratio µon/µoff est égal au rapport entre le nombre de jets ouverts et le nombre de jets fermés 2 :
µon/µoff = φ/(1 − φ). Variano a déterminé que l’intensité de la turbulence était maximale pour
l’ouverture de 8 jets simultanés en moyenne, soit φ = 0.125. C’est donc le paramètre qu’il a choisi
pour ses expériences.

Algorithme à nombre de jets constant

Avec le “sunbathing algorithm”, les jets sont contrôlés indépendamment les uns des autres et le
nombre de jets ouverts en même temps n’est donc pas constant dans le temps : il oscille autour du
nombre de jets moyen N on = 64φ. Ceci n’est pas problématique dans le dispositif expérimental de
Variano, qui utilise des pompes immergées indépendantes. Le débit de chaque jet n’est pas affecté
par le nombre de jets simultanés. En revanche, dans notre cas, une pompe unique alimente l’ensemble
des jets. Un changement du nombre de jets ouverts simultanément modifie alors le débit de chaque
jet. La Fig. 13.7 représente l’amplitude des fluctuations turbulentes de vitesse en fonction du débit
individuel des jets pour différents nombre de jets. On observe que l’intensité de la turbulence dépend
en grande partie du débit individuel des jets. Il est donc important de maintenir un nombre constant
de jets ouverts simultanément afin de ne pas modifier l’intensité de la turbulence au cours d’une
mesure.
Nous avons donc réalisé un algorithme différent dans lequel le nombre de jets simultanés reste fixe
(voir Fig. 13.8). Initialement, Non jets sont tirés au sort. Chacun est ouvert pour une durée tirée au
sort à partir d’une densité de probabilité uniforme entre 0 et µon. A chaque fois qu’un jet atteint

2. Cette formule corrige une erreur dans [104] indiquant que µon/µoff = φ.
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Figure 13.6 – Illustration de l’algorithme utilisé par Variano [104]. A chaque fois qu’un jet s’ouvre ou
se ferme, on tire au sort la durée pendant laquelle il restera dans ce même état à partir des densités de
probabilité respectives fon et foff (bas de la figure). Source de l’image : [104].
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Figure 13.7 – Fluctuations de vitesses horizontales σu en fonction du débit moyen par jet ouvert 〈Qj〉 =
Qtotal/Non pour différents nombres de jets simultanésNon (4 cm sous la surface ; hauteur d’eau : h = 50 cm) :
� 4 jets ; N 8 jets ;  16 jets ; � 32 jets ; H 64 jets.

la fin de la durée choisie, il est remplacé par un jet tiré au sort parmi ceux qui sont fermés et pour
lequel on tire au sort une durée d’ouverture don à partir de la densité de probabilité fon. Ainsi le
nombre de jets allumés reste le même au cours de la mesure.
La plupart des mesures est réalisée pour un choix de Non = 16 électrovannes ouvertes en même
temps (soit φ = 0.25) avec un temps d’ouverture moyen µon = 3 s (σon = 1 s). Nous avons ainsi
choisi un nombre de jets simultanés importants pour compenser la disparité des débits. Ainsi, par
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Figure 13.8 – Illustration de l’algorithme utilisé dans cette étude. (a) lorsque le jet 1 se ferme, un jet est
choisi au hasard parmi les jets fermés (ici le jet 13) et reste ouvert pendant une durée tirée au hasard à
partir de la densité de probabilité fon ; (b) lorsque cette durée est écoulée, un nouveau jet précédemment
fermé (48) est choisi au hasard et est ouvert.

effet statistique, la répartition entre jets puissants et faibles reste plus stable au cours d’une me-
sure. De plus, les jets sont alors spatialement plus proches les uns des autres, ce qui favorise leurs
interactions. Toutefois, des fractions φ plus élevées favorisent la production d’écoulements moyens
(e.g. installation de recirculations) en limitant l’alternance entre des états très différents. Le temps
moyen d’ouverture µon a été choisi le plus court possible afin de limiter les variations à grande échelle
temporelle. La limite inférieure est fixée par le temps nécessaire pour obtenir un débit suffisant lors
de l’ouverture. Enfin, aucun effet significatif de σon n’a été détecté.

13.5 Techniques de mesures

13.5.1 Vélocimétrie par Images de Particules (PIV)

Le champ de vitesses sous la surface libre est déterminé par vélocimétrie par images de particules
(PIV), une technique de mesure déjà utilisée dans la partie I sur la génération d’ondes de surface par
un fond mobile et dont le principe a été décrit dans la section 2.3.1. Toutefois, nous utilisons ici le
plugin PIVLab pour Matlab, dont le principe est similaire au programme développé pour la partie I,
mais qui est plus simple d’utilisation. Les vitesses sont mesurées dans le plan vertical sous la surface
libre sur une profondeur −9 < z < 0 cm, le long d’une coordonnée horizontale −15 < x < +15 cm,
et centrée selon l’autre coordonnée horizontale y. Les vecteurs vitesses sont calculés sur des fenêtres
de 4× 4 cm2 et sont espacés de 2mm dans les deux directions.
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13.5.2 Profilométrie par Transformée de Fourier (FTP)

Afin de réaliser des mesures spatiotemporelles des déformations de la surface libre en deux dimen-
sions, nous avons recours à la profilométrie par transformée de Fourier [131, 132] (Fourier Transform
Profilometry - FTP). Cette technique de mesures a été utilisée au laboratoire pour des mesures de
turbulence d’ondes de surface [133, 134]. Le principe est de projeter une grille à la surface de l’eau
au moyen d’un vidéoprojecteur (Epson TW3000) et de mesurer les déformations de la surface libre
à partir des déformations de la grille visualisées par une caméra (Phantom V10) (voir Fig. 13.9).

Camera Videoprojector

y
x

Figure 13.9 – Schéma du dispositif expérimental pour les mesures par FTP extrait de [134].

Pour cela, on forme dans l’eau ultra-pure une dispersion de particules de dioxyde de titane (Kro-
nos TiO2 Anatase 1001), qui ont la propriété de diffuser la lumière, attribuant ainsi une couleur
blanche à l’eau. Les précédentes mesures au laboratoire utilisaient de la peinture blanche, qui avait
l’inconvénient d’introduire des surfactants et donc de modifier les caractéristiques de la surface de
l’eau. L’utilisation de TiO2 permet de conserver les propriétés de l’eau [135].
Le vidéoprojecteur et la caméra sont disposés verticalement à l’aplomb de la surface libre, leurs
centres optiques sont à une distance L = 74 cm de la surface de l’eau et sont espacés de D = 19 cm
l’un de l’autre selon l’axe perpendiculaire aux franges (voir Fig. 13.9). Le videoprojecteur dispose
d’un mécanisme de déplacement du bloc optique (lens shift) permettant de placer la figure projetée
dans le champ de la caméra.
Le motif projeté à la surface de l’eau est constitué de franges rectilignes selon l’axe Oy dont
l’intensité varie sinusoïdalement selon l’axe Ox qui leur est perpendiculaire (voir Fig. 13.10). Lorsque
la surface libre se déforme, les franges sur les images de la caméra se déforment également et un
algorithme détermine par démodulation le déphasage ∆φ(x, y, t) en chaque point par rapport à
l’image de référence des franges projetées sur la surface au repos. En notant kp = 2π/p (avec p
l’interfrange) le nombre d’onde du motif projeté, un raisonnement géométrique permet de montrer
que la déformation de la surface libre correspondante est [131] :

η(x, y, t) = L∆φ(x, y, t)
∆φ(x, y, t)− kpD

(13.2)

De plus, nous tenons compte du fait que, par effet géométrique, ce qui est mesuré aux coordonnées
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(x,y) dans le plan de l’image déformée correspond aux coordonnées (x+ δx,y + δy) dans le plan de
l’image de référence avec [132] :

δy = y

L
η(x, y, t) (13.3)

δx = D − x
L

η(x, y, t) (13.4)

x

y

Figure 13.10 – Exemple d’image obtenue pour une mesure de profilométrie par transformée de Fourier
lors de la déformation de la surface libre par la turbulence hydrodynamique.

La concentration en TiO2 a été choisie à un niveau modéré, entre 6 et 12 g.L−1, pour obtenir un
bon contraste des franges tout en évitant que des dépôts de particules importants perturbent le
mécanisme d’ouverture des électrovannes. La sédimentation des particules est évitée par le mélange
en continu du liquide par la turbulence.
Lors des mesures, la lampe du vidéoprojecteur se reflète à la surface de l’eau, faisant ainsi apparaître
une ou plusieurs tâches très lumineuses sur les images filmées par la caméra. Les franges ne sont
alors localement plus visibles, ce qui empêche de déterminer la déformation de la surface libre. Pour
y remédier, des polariseurs rectilignes croisés sont fixés à la sortie du vidéoprojecteur et à l’entrée de
la caméra afin d’éliminer en grande partie ces reflets. La lumière se reflétant à la surface est polarisée
rectilignement selon l’axe du polariseur à la sortie du vidéoprojecteur, alors que la lumière diffusée
par le TiO2 n’est pas polarisée. La première est donc éliminée par le polariseur à l’entrée de la
caméra, dont l’axe est croisé avec le polariseur du vidéoprojecteur. Les reflets qui subsistent malgré
ces précautions sont éliminés grâce à un algorithme, initialement développé par Nicolas Mordant,
qui reconstruit les franges par interpolation.
Le temps de mesure maximal est déterminé par la capacité de stockage de la caméra en fonction
de la résolution des images et de la fréquence d’acquisition. La principale limite que nous avons
rencontrée avec cette méthode de mesure est liée aux fortes pentes et aux fortes courbures qui
peuvent affecter la surface libre. Des zones d’ombre prononcée ou des creux peuvent alors faire
disparaître des franges, provoquant ainsi des erreurs lors de la reconstruction. Il s’agit de la cause
principale du bruit observé sur les mesures, en particulier au chapitre 16. Enfin, il faut préciser que
le TiO2 rend le liquide opaque et empêche de mesurer simultanément la déformation de la surface
libre par FTP et le champ de vitesses par PIV.
Les mesures par FTP, qui donnent accès à une mesure spatiotemporelle du champ de déformation de
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la surface libre, permettent de calculer des spectres de puissance spatiotemporels de la déformation
de la surface libre :

Sη(kx, ky, ω) = 1
TLxLy

∣∣∣∣∣ 1√
2π

∫
η̂(kx, ky, t)eiωtdt

∣∣∣∣∣
2

(13.5)

où T est la durée de la mesure, Lx×Ly la taille de l’image et η̂(kx, ky, t) est la transformée de Fourier
spatiale en deux dimensions calculée pour chaque image :

η̂(kx, ky, t) = 1
2π

∫
η(x, y)e−i(kxx+kyy)dxdy (13.6)

13.5.3 Vélocimétrie laser Doppler (LDV)

Le dispositif de vélocimétrie laser Doppler (Laser Doppler Velocimetry - LDV) fournit la vitesse de
l’écoulement en un point selon une composante. Par rapport à la PIV, il tire avantage de sa facilité
d’utilisation ainsi que de sa légèreté, par la faible taille des données et l’absence de traitement
d’images. L’appareil utilisé est le modèle Dantec Dynamics FlowExporer 1D. Une grande partie
des mesures a été réalisée avec un appareil généreusement prêté par le laboratoire Sphynx du CEA
Saclay avant l’achat d’un modèle identique par le laboratoire MSC.
Le principe de la mesure est illustré sur la Fig. 13.11 et est décrit de façon plus exhaustive dans
la référence [136]. Un faisceau laser de longueur d’onde λ = 632.8 nm est scindé en deux faisceaux
qui convergent au point de mesure, formant un angle ϕ = 13.4◦. L’un des deux faisceaux voit sa
fréquence décalée de fd ' 40Mhz en traversant une cellule de Bragg. Au point de mesure, les deux
faisceaux cohérents interfèrent et produisent des franges allongées selon l’axe Ox , qui défilent à la
fréquence fd en raison du décalage en fréquence. Le liquide est ensemencé de fines particules dont
la densité est proche de celle de l’eau (ici en polyamide de densité 1.03 et de diamètre 20µm) telle
qu’on considère qu’elles suivent l’écoulement. Lorsqu’elles traversent la zone composée de franges
d’interférence (de volume 900×90×90µm3, la première dimension étant alignée avec l’axe du laser),
les particules émettent un scintillement de fréquence fs, qui dépend de leur vitesse de déplacement.
Pour des franges fixes, fs = |vy|/i, où i est l’interfrange et |vy| est la norme de la composante
de vitesse du fluide normale aux franges. Le défilement des interfranges à la fréquence fd permet
alors d’accéder au signe de vy car la vitesse des particules ne fait alors que décaler la fréquence de
scintillement fs. Si les franges défilent dans le sens des y croissants et que fd > vy/i, on a en effet
fs = fd − vy/i. La LDV donne donc accès à une composante de la vitesse en un point.
Il est à noter que le taux d’acquisition de cette mesure n’est pas régulier car soumis au passage des
particules, chacune d’entre elles produisant un point de mesure. Lorsqu’on s’intéresse aux statistiques
de vitesse de l’écoulement, un biais est la surreprésentation des hautes vitesses. En effet, lorsque
l’écoulement local a une vitesse importante, un plus grand nombre de particules traverse le volume de
mesure, ce qui génère un plus grand nombre de points de mesure en un temps donné. Pour palier ce
biais, nous avons reconstruit un signal de fréquence d’échantillonnage fixe par interpolation linéaire
des points de mesure. De cette manière, les épisodes de faibles et de fortes vitesses contiennent la
même densité temporelle de points de mesure.
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Figure 13.11 – Principe de fonctionnement de la LDV. Des franges défilantes (au centre) sont formées
en volume par l’interférence de deux faisceaux laser de fréquences différentes. Des particules (cercles)
réfléchissent la lumière lorsqu’elles traversent le champ d’interférence et renseignent sur leurs vitesses par
la fréquence de leurs scintillements. Source de l’image : [136]



Chapitre 14

Turbulence hydrodynamique : effet de la
surface libre et caractérisation

Ce chapitre poursuit deux objectifs. D’une part, nous caractérisons la turbulence hydrodynamique,
pour pouvoir ensuite étudier son rôle dans la déformation de la surface libre et son interaction avec
les ondes de surface (voir chapitres suivants). Pour cela, différentes grandeurs typiques sont mesurées
pour différentes intensités de forçage. D’autre part, la surface libre elle-même n’est pas neutre dans
la dynamique des écoulements et modifie la structure de la turbulence à son voisinage. Ces mesures
nous permettent de mettre en évidence ce phénomène et de l’observer quantitativement.
Sauf mention contraire, les statistiques sont calculées à partir de mesures du champ de vitesse au
sein du fluide toutes les secondes pendant 30 minutes pour une hauteur d’eau h = 66 cm en présence
de 16 jets simultanés. Chaque mesure est réalisée par PIV à partir de l’acquisition de deux images
successives espacées de 1 2ms. Les figures présentant les résultats d’une seule mesure correspondent
à un débit moyen par jet 〈Qj〉 = 0.37 L.s−1, soit des fluctuations de vitesses de l’ordre de 8 cm.s−1

et un nombre de Reynolds turbulent ReT = 4100 (voir section 14.2.4).

14.1 Turbulence hydrodynamique sous la surface libre

14.1.1 Fluctuations de vitesse

Une image typique des particules éclairées par la nappe laser est représentée sur la Fig. 14.1 et la
Fig. 14.2 montre le champ de vitesses obtenu à partir d’une paire d’images successives.
On note u et w les vitesses instantanées locales respectivement horizontales (selon la coordonnée
x) et verticales (selon la coordonnée z) du plan de mesure. Leurs moyennes locales temporelles sont
respectivement U(x, y, z) = u(x, y, z, t) et W (x, y, z) = w(x, y, z, t). La composante v (selon y) de
la vitesse est perpendiculaire au plan de mesure et on considère par symétrie que les grandeurs
statistiques qui lui sont associées sont proches de celles de u. Les fluctuations de vitesses sont
caractérisées par leurs écarts-types σu et σw de la forme σu =

√
u2 − U2. On peut également définir

une grandeur représentative des trois composantes de vitesse définies par Σv =
√

(2σ2
u + σ2

w)/3 [104].
Les grandeurs σu, σw et Σv sont représentées dans le plan de mesure sur les Figs 14.3, 14.4 et 14.5
respectivement. La surface libre est en z = 0. La zone d’observation sous la surface libre (jusqu’à

1. Sauf les plus faibles débits pour lesquels cette durée est allongée

149
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Figure 14.1 – Exemple d’image PIV obtenue servant à la détermination du champ de vitesses. Les
points blancs correspondent aux particules qui réfléchissent la lumière de la nappe laser. La ligne blanche
horizontale correspond à la surface libre visualisée par ces particules.
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Figure 14.2 – Exemple de champ de vitesse obtenu à partir des images PIV. La surface libre est en z = 0.

une profondeur z = −9 cm) est centrée en x = 0 et en y = 0 et a une largeur de 30 cm soit 75% de
la largeur de la cuve.
On remarque que les fluctuations de vitesse horizontale sont maximales sous la surface libre et au
centre de la cuve tandis que les fluctuations de vitesse verticale diminuent près de la surface libre en
restant homogène horizontalement. Les fluctuations horizontales et verticales présentent alors des
comportements très différents lorsqu’on s’approche de la surface libre, ce que nous allons étudier
plus précisément ci-dessous.

Profil vertical

On retrouve ces caractéristiques sur les profils verticaux tracés sur la Fig. 14.6. Ils montrent que σu
augmente à l’approche de la surface libre, à l’exception d’une couche limite d’environ 1 cm sous la
surface libre, tandis que σw diminue. Alors que l’isotropie est bonne pour une profondeur z < −6 cm,
l’écoulement devient alors très anisotrope en se rapprochant de la surface libre (z = 0).
Cette évolution correspond qualitativement aux prédictions théoriques de Hunt et Graham dans
le cadre de la théorie de la distorsion rapide [88]. Elle est liée aux conditions aux limites imposées
par la surface libre qui joue le rôle de paroi. Il s’agit alors d’une redistribution de l’énergie des
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Figure 14.3 – Ecart-type des fluctuations de vitesse horizontales σu dans le plan vertical.

Figure 14.4 – Ecart-type des fluctuations de vitesse verticale σw dans le plan vertical.

fluctuations de vitesse verticales vers les fluctuations horizontales. En effet, la surface libre limite les
mouvements verticaux du fluide et l’énergie cinétique correspondante est alors convertie en énergie
cinétique horizontale. La profondeur de la zone affectée dépend donc de la taille typique des grands
tourbillons L. Cette dernière grandeur est définie par la longueur intégrale longitudinale loin de la
paroi qui vaut L = LL ≈ 5 cm dans notre expérience (voir section 14.2.2).
Hunt et Graham [88] ont prédit que les fluctuations de vitesses verticales à l’approche d’une paroi
solide allaient comme σw ∝ (−z)1/3 dans la couche définie par −L . z, en-dehors de la couche
visqueuse près de la paroi. Dans le cas d’une surface libre, l’épaisseur de la couche limite visqueuse
déterminée expérimentalement est δν ≈ 2L/

√
2ReT [98, 103], avec ReT le nombre de Reynolds

turbulent (ici, ReT ∈ [500; 6500] et donc δν ∈ [0.10; 0.29] cm – voir section 14.2.4). Le modèle
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Figure 14.5 – Ecart-type des fluctuations de vitesse moyennées sur les trois composantes Σv =√
(2σ2

u + σ2
w)/3 dans le plan vertical.
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Figure 14.6 – Profil spatial vertical des vitesses. Moyenne horizontale sur −5 < x < +5 cm. Le modèle
théorique correspond à l’Eq. (14.1) avec L = 5 cm, β = 1.8, ReT = 4100 et ε = 41 cm2.s−3.

prenant en compte cette couche visqueuse prédit alors l’équation [98] :

σw =
√
βε1/3

(
L(|z| − δν)
L− δν

)1/3

(14.1)

où β = 1.8 est une constante théorique sans dimension et ε est le taux de dissipation (ε ∈
[0.2; 102] cm2.s−3 – voir section 14.2.3).
Dans le cas de simulations numériques, Calmet et Magnaudet [98] ont trouvé un bon accord pour
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−0.7L . z . δν en prenant β ≈ 2.0 et Variano et Cowen [104] ont mesuré expérimentalement
β ≈ 1.5 et ont trouvé que le modèle était valide jusqu’à une profondeur z = −L (la couche limite
visqueuse n’était pas résolue). Nous traçons ce modèle en pointillés sur la Fig. 14.6 et trouvons un
bon accord jusqu’à une profondeur z = −L en utilisant la valeur théorique β = 1.8. Nous avons
retrouvé ce bon accord entre prédiction théorique et expériences pour différents débits en choisissant
1.4 . β . 1.8 (non montré). Il est à noter que nous observons que la décroissance de σw ralentit
pour z > −0.5 cm. Même si ce ralentissement semble peu significatif, on le retrouve pour l’ensemble
des forçages suffisamment puissants. Il est probablement dû aux déformations de la surface libre
provoquée par la turbulence (voir chapitre 16), ce qui diminue le caractère bloquant de cette paroi.
En effet cet effet n’est visible ni pour les plus faibles débits de notre expérience, ni dans les autres
études, pour lesquelles les déformations de la surface libre sont faibles (ReT = 487 pour [137] et
ReT = 3250 pour [104] 2). En revanche, il est observé dans les simulations numériques de Guo
et Shen [99] qui étudient la déformation de la surface libre par la turbulence. L’épaisseur de la
couche liquide présentant cet effet augmente par ailleurs avec l’intensité de la turbulence dans notre
expérience (non montré).
Comme on l’observe sur la Fig. 14.6, σu croît à l’approche de la surface libre, ce qui résulte du
transfert d’énergie depuis les fluctuations verticales décrit précédemment. Toutefois, cette grandeur
connaît une décroissance pour z > −1 cm. Dans le cas d’une paroi solide, la décroissance de σu
dans la couche visqueuse atteint zéro en raison de la condition de non glissement imposée à la
surface. Mais pour une surface libre, on s’attend à avoir du/dz|z=0 = 0 à la surface en raison de
l’absence de forces tangentielles et donc une faible variation de σu [103]. Toutefois, une surface
contaminée par des surfactants peut avoir un comportement se rapprochant de celui d’une paroi
solide [103] puisque les surfactants induisent des contraintes tangentielles. Ce comportement a été
observé numériquement [138] et expérimentalement [104]. Il peut être rapproché des observations
faites par Benusiglio pour des impacts d’anneaux tourbillonaires à l’interface eau-air [139]. En effet,
dans cette étude, le comportement à la surface est proche de celui d’une paroi solide dans le cas
de l’eau, alors que ce n’est plus le cas si l’eau est remplacée par de l’éthanol, moins sensible aux
surfactants. Une telle pollution de la surface libre est très difficile à éviter dans les expériences
utilisant de l’eau [140–144].

Profil horizontal

L’approche de la surface libre correspond par ailleurs à une augmentation de l’inhomogénéité ho-
rizontale de σu. Alors que celle-ci est modérée pour une profondeur z < −6 cm (voir par exemple
Fig. 14.7), les fluctuations de vitesses horizontales deviennent beaucoup plus fortes au centre de la
cuve que sur les bords juste en-dessous de la surface libre (voir Fig. 14.8). En revanche, on observe
sur les Figs 14.4, 14.7 et 14.8 que σw reste homogène horizontalement pour toutes les profondeurs
étudiées.
L’inhomogénéité horizontale de σu est liée aux parois latérales qui imposent à leur tour une condition
cinématique provoquant le même effet pour σu que la surface libre pour σw dans le paragraphe
précédent. σu décroît donc à l’approche des parois latérales. Lorsque z → 0, la conversion de l’énergie
cinétique horizontale en énergie cinétique verticale liée à la paroi latérale est limitée par la présence
de la surface libre. Ceci provoque la décroissance de σu et la forte inhomogénéité horizontale observée
autour de z = −1 cm sur la Fig. 14.8.

2. La faible amplitude des déformations de la surface libre pour [104] m’a été confirmée par E.A. Variano lors
d’une conversation privée.
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Figure 14.7 – Profil spatial horizontal des vitesses en profondeur (moyenne verticale sur −7.5 < z <
−6.5 cm). y = 0
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Figure 14.8 – Profil spatial horizontal des vitesses proche de la surface (moyenne verticale sur −2 < z <
0 cm). y = 0

.

Vitesses moyennes

Sur les Figs 14.7 et 14.8, on note que les vitesses moyennes U et W restent faibles devant σu et σw,
validant le régime de turbulence hydrodynamique sans écoulement moyen recherché. La Fig. 14.9
montre la direction des vecteurs correspondants sur l’ensemble de l’espace.
Ce motif est représentatif de ceux observés pour une grande partie des débits utilisés. Le centre
de la cuve est le siège d’un mouvement d’ensemble vertical dirigé vers le haut qui se transforme en
mouvement horizontal dirigé vers l’extérieur. Ceci correspond probablement à une légère recircula-
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Figure 14.9 – Vitesses moyennes Uex +Wez sous formes de vecteurs dans le plan vertical. Les ordres de
grandeur des valeurs des vitesses moyennes peuvent être lus sur les Figs 14.7 et 14.8.

tion provoquée par l’inhomogénéité dans les débits des jets et la présence de jets de plus forts débits
au centre de la cuve (voir section 13.4.1). Il est à noter que si les écoulements moyens mesurés ici
sont faibles, ceux relevés dans les chapitres suivants sont parfois plus élevés. Ceci est lié à des élec-
trovannes dont le débit a pu changer dans le temps ou qui restent parfois ouvertes malgré l’absence
d’alimentation (voir section 13.4.1).

14.1.2 Spectres d’énergie

La Fig. 14.10 montre les spectres d’énergie spatiaux des fluctuations turbulentes de vitesse à une
profondeur z = −6.4 cm selon le nombre d’onde horizontal kx pour les deux composantes de vitesse
u et w, respectivement Su(kx) (longitudinal) et Sw(kx) (transverse).
La position relative des deux spectres est conforme à celle prédite théoriquement [145] : dans
les échelles inertielles, Su,x < Sw,x alors que qu’on tend vers une relation inverse, Su,x > Sw,x,
pour les plus bas nombres d’onde. On a de plus tracé en pointillés un modèle 3 proportionnel à
k
−5/3
x , conformément à la loi de puissance prédite théoriquement par Kolmogorov [145]. Les spectres

expérimentaux présentent une loi de puissance proche, même s’ils sont un peu plus pentus (∝ k−1.85
x ),

comme pour l’étude de Variano [104].
Sur la Fig. 14.11, on trace les mêmes spectres mais à un profondeur z = −1 cm. Le même modèle
que sur la Fig. 14.10 est également représenté afin de voir l’effet de la surface libre sur la forme du
spectre spatial. En effet, la comparaison des Figs 14.10 et 14.11 montre qu’à l’approche de la surface
libre, la densité d’énergie contenue dans les échelles inertielles varie faiblement tandis que celle à
grande échelle (bas kx) varie fortement.

3. Il s’agit du modèle utilisé dans la section 14.2.3 pour déterminer le taux de dissipation ε. La valeur εS utilisée
pour tracer les droites des Figs 14.10 et 14.11 est la même et est celle déterminée expérimentalement dans cette
section.
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Figure 14.10 – Spectres d’énergie spatiaux des fluctuations turbulentes de vitesse selon x. y = 0 et
z = −6.4 cm. Moyennés temporellement.
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Figure 14.11 – Spectres d’énergie spatiaux des fluctuations turbulentes de vitesse selon x. y = 0 et
z = −1 cm. Moyennés temporellement. La droite tracée en pointillés est la même que sur la Fig. 14.10.

Cette isotropie aux échelles inertielles a été prédite théoriquement par Hunt et Graham [88] puisque
seuls sont affectés les tourbillons plus grands que la profondeur. Mais une anisotropie a été observée
expérimentalement dans un dispositif à grille oscillante par Brumley et Jirka [103]. Celle-ci était
liée à une diminution de la densité d’énergie spectrale transverse de la vitesse verticale à toutes
les échelles. Pour les plus petits nombres d’onde, on retrouve qualitativement les résultats prédits
théoriquement : la densité d’énergie spectrale transverse de la vitesse verticale diminue tandis que
celle, longitudinale, de la vitesse horizontale augmente. C’est donc dans les grandes échelles que l’on
retrouve l’anisotropie observée à l’approche de la surface libre sur la Fig. 14.6 : les grands tourbillons
subissent les premiers la contrainte imposée par la surface libre du fait de leurs dimensions.
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Enfin, la Fig. 14.12 représente les spectres d’énergie temporels de u et w à une profondeur z = −4 cm
obtenus à partir de mesures LDV. On observe une loi de puissance en f−5/3 dans le régime inertiel
pour les deux vitesses. Cette loi de puissance est prédite par le modèle de Tennekes [146] et provient
directement de celle, identique, prédite dans le domaine spatial par Kolmogorov (k−5/3

x ). En effet,
elle s’explique par l’advection des petits tourbillons (échelle inertielle) par les grands tourbillons. Les
fluctuations temporelles aux plus hautes fréquences sont alors similaires aux fluctuations de vitesses
spatiales. Tennekes prédit ainsi que la densité spectrale d’énergie est de la forme [146] :Su(f) =
Sw(f) = B0(

√
3Σvε)2/3ω−5/3, avec la constante B0 de l’ordre de 1 (ω = 2πf). Toutefois, il n’y a pas

de consensus sur les valeurs de B0 obtenues expérimentalement, très variables d’une étude à l’autre
[104].
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Figure 14.12 – Spectres d’énergie temporels en x = y = 0 et z = −4 cm. Les deux mesures ont été
réalisées de façon distinctes pour u et w par LDV. Durée : 610 s. h = 50 cm. 8 électrovannes ouvertes.
〈Qj〉 = 0.37L.s−1. Σv = 11.6 cm.s−1.

14.1.3 Vorticité

Le calcul du champ de vitesses sous la surface libre permet d’accéder au champ de vorticité Ω ≡
∇× q, où q est le vecteur vitesse et ∇× est l’opérateur rotationnel. La Fig. 14.13, représentant la
vorticité instantanée, montre qu’elle est inhomogène, du fait de la présence de petits tourbillons, et
qu’elle n’est pas dominée par des structures à grandes échelles.
L’écart-type de la vorticité, σΩ, présenté sur la Fig. 14.14, est quand à lui homogène, à l’exception
d’une couche limite proche de la surface libre (z > −1 cm), où la vorticité augmente. Ceci est pro-
bablement lié à la décroissance rapide de σu sur cette même zone vue précédemment (voir Fig. 14.6)
en raison de la contamination de la surface libre.
Sur la Fig. 14.15, les valeurs moyennes de la vorticité Ω ont des signes qui correspondent en effet à
ce qu’on attend du champ de vitesse moyen (voir Fig.14.9). La gauche de la Fig. 14.15 affiche ainsi
des valeurs positives pour Ω, qui correspondent à un sens de rotation horaire, observé dans la couche
définie par z > −1 cm sur la Fig.14.9. La partie droite affiche au contraire des valeurs négatives.
Les valeurs de σΩ, plus importantes sur la droite de la Fig. 14.14, sont probablement des artefacts
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Figure 14.13 – Exemple de vorticité instantanée Ω.

Figure 14.14 – Ecart-type des fluctuations de vorticité σΩ.

de mesures et n’ont donc pas de signification physique. En effet, la largeur de la nappe laser y est
plus épaisse, elle éclaire des particules en-dehors du plan de focalisation de la caméra qui sont alors
de taille importante sur les images. Les faux vecteurs sont alors plus nombreux, ce qui nécessite de
plus nombreuses corrections pouvant induire des gradients de vitesses artificiellement plus élevés.
On note par ailleurs sur les Figs 14.14 et 14.15 que la vorticité moyenne est faible devant ses
fluctuations, soulignant l’absence de structures permanentes à grande échelle. Enfin, il faut noter
que ces analyses ont été réalisées dans le plan vertical et ne préjugent donc pas des caractéristiques
de la vorticité alignée avec Oz.
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Figure 14.15 – Vorticité moyenne Ω.

14.2 Grandeurs turbulentes caractéristiques

Nous évaluons ici les grandeurs caractéristiques de la turbulence générée par notre dispositif. Celles-
ci sont définies à distance de la surface libre, c’est-à-dire à des profondeurs z < −6 cm. Le tableau 14.1
résume les grandeurs mesurées dans cette section. Les définitions et les méthodes de calcul de ces
grandeurs sont données dans la suite du texte.

Grandeur Valeurs
Fluctuations de vitesse horizontale σu [1.2; 11.2] cm2.s−1

Fluctuations de vitesse verticale σw [1.2; 10.4] cm2.s−1

Longueur intégrale longitudinale LL ≈ 5 cm
Longueur intégrale transverse LT ≈ 3 cm
Longueur de Kolmogorov ηK [0.1; 0.5]mm
Nombre de Reynolds turbulent ReT [600; 5500]
Nombre de Reynolds de Taylor Reλ [120; 460]
Taux de dissipation ε [0.2; 102] cm2.s−3

Table 14.1 – Résumé des grandeurs caractéristiques de la turbulence engendrée par les jets.

14.2.1 Ecart-types

L’intensité de la turbulence peut être caractérisée par l’amplitude des fluctuations de vitesse, quan-
tifiée par σu et σw. La région homogène et isotrope définie par −5 < x < +5 cm et −9 < z < −7 cm
(voir section 14.1.1), permet de calculer leur valeur loin de la surface libre. Les valeurs moyennes de
σu et σw sur cette région sont ainsi tracées en fonction du débit moyen par jet 〈Qj〉 sur la Fig. 14.16.
On observe une bonne isotropie pour l’ensemble des débits puisque σu ≈ σw. Ces valeurs présentent
par ailleurs une évolution linéaire avec 〈Qj〉, d’équation σu ≈ σv = a〈Qj〉 avec a = 210m−2. Les
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Figure 14.16 – Moyenne de σu et σw sur la région homogène et isotrope définie par −5 < x < +5 cm
et −9 < z < −7 cm en fonction du débit moyen par jet 〈Qj〉. La ligne noire correspond à un ajustement
linéaire d’équation σ = a〈Qj〉 avec a = 210m−2.

plus grands débits présentent une exception puisqu’on observe une décroissance de σu et surtout σw
pour les deux valeurs maximales. L’intensité de la turbulence sera caractérisée dans toute la partie
par la grandeur moyenne Σv =

√
(2σ2

u + σ2
w)/3 calculée à partir de l’équation linéaire.

14.2.2 Echelles intégrales

La longueur intégrale caractérise la taille des plus gros tourbillons de la turbulence et peut être
calculée par l’intégrale de la fonction d’autocorrélation des vitesses dans l’espace [145]. Une longueur
intégrale pertinente dans notre problème est ici celle faisant intervenir la vitesse horizontale u étudiée
le long de l’axe longitudinal Ox. On se place en profondeur en y = 0 et z = −7 cm. La fonction
d’autocorrélation correspondante, définie par [145], moyennée dans le temps est alors :

Ruu(rx) =
[
〈u(x, t)u(x+ rx, t)〉x

〈u(x, t)2〉x

]
(14.2)

où rx est aligné avec Ox. La longueur intégrale longitudinale est alors LL =
∫∞

0 Ruu(rx)drx. La
fonction d’autocorrélation transverse pour la vitesse verticale Rww(rx) est définie de la même ma-
nière en remplaçant u par w dans l’expression de l’Eq. (14.2). L’intégrale associée est la longueur
intégrale transverse : LT =

∫∞
0 Rww(rx)drx. Les fonctions d’autocorrélation Ruu(rx) et Rww(rx) sont

représentées sur la Fig. 14.17.
Les échelles intégrales ainsi obtenues prennent des valeurs autour de LL ≈ 5 cm et LT ≈ 3 cm,
sans qu’on puisse voir une évolution avec le débit des jets. L ≡ LL caractérise la taille typique des
plus grands tourbillons dans le reste de la partie. Le rapport LL/LT ≈ 1.7 est proche de la valeur 2
prédite théoriquement dans le cas d’une turbulence homogène et isotrope à toutes les échelles [145].
Les valeurs mesurées sont à prendre avec précaution car elles doivent normalement être calculées
sur des régions grandes devant les longueurs intégrales afin d’observer des plateaux de valeur nulle
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fonction de l’incrément spatial rx. y = 0 et z = −7 cm.

pour de grands rx sur la Fig. 14.17, ce qui n’est pas le cas ici 4. Toutefois, elles sont cohérentes avec
ce qui est observé dans la section 14.1.1 puisque L correspond bien à la profondeur typique sur
laquelle les effets de la surface libre sur la turbulence sont visibles. Cette taille, qui est également la
distance entre deux jets au fond de la cuve, correspond par ailleurs à l’échelle d’injection.
Enfin, on remarque qu’à l’approche de la surface libre, LL augmente (LL ≈ 7 cm pour z = −1 cm),
ce qui est prédit théoriquement [88] et LT diminue (LT ≈ 2 cm pour z = −1 cm). Ceci est en accord
avec les résultats des spectres d’énergie spatiaux sur lesquels on a observé qu’à l’approche de la
surface libre, les grandes échelles des vitesses horizontales gagnent en énergie tandis que celles des
vitesses verticales perdent en énergie (voir section 14.1.2).

14.2.3 Taux de dissipation

Le taux de dissipation ε est associé à l’énergie qui est injectée dans le spectre aux grandes échelles,
qui traverse les échelles inertielles et qui est finalement dissipée aux petites échelles. Il est défini par
ε ≡ 2ν 〈SijSij〉, où Sij ≡ (∂ui/∂xj + ∂uj/∂xi) /2 est le gradient de vitesse et ν = 1.10−6m2.s−1 est la
viscosité cinématique de l’eau. La résolution des mesures PIV n’est pas suffisante pour calculer ε à
partir de cette définition. Mais comme discuté ci-dessous, il peut être évalué de différentes manières,
dont les résultats pour tous les débits sont rassemblés sur la Fig. 14.18.
Le taux de dissipation peut être estimé à partir des fluctuations de vitesse par l’ordre de grandeur
εΣv = AΣ3

v/LL, en choisissant A = 0.5 comme suggéré par [104, 147]. Les valeurs ainsi obtenues
sont représentées par une ligne noire sur la Fig. 14.18, constituant la borne supérieure des différentes
estimations.
Les mesures PIV permettent par ailleurs de calculer la fonction de structure d’ordre 2 selon x et

4. La longueur intégrale est plus difficile à estimer dans notre dispositif que dans un dispositif à écoulement moyen.
Dans ce dernier cas, il est possible d’utiliser l’hypothèse de turbulence gelée de Taylor [145], qui permet de translater
dans l’espace des mesures réalisées temporellement. Il est alors possible d’allonger les échelles spatiales observées en
augmentant simplement le temps de mesure.
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Figure 14.18 – Taux de dissipation ε en fonction des fluctuations turbulentes de vitesse typiques Σv pour
les différentes estimations : εΣv correspond à un ordre de grandeur, εD est établi à partir des fonctions de
structure, et εmin et εmax à partir des spectres spatiaux (voir texte).

moyennée temporellement, définie par [145] :

DLL(rx, t) ≡
〈
[u(x, t)− u(x+ rx, t)]2

〉
x

(14.3)

où rx est l’incrément spatial selon l’axe Ox. Dans les échelles inertielles, il est prédit que DLL =
C2(εrx)2/3, avec C2 = 2 [145]. Nous avons calculé les taux de dissipation associés à différentes
valeurs de rx. Ceux-ci sont tracés pour différents débits sur la Fig. 14.19 et présentent une bonne
homogénéité sur l’ensemble des échelles inertielles. La valeur retenue εD est issue de la moyenne sur
l’intervalle 2 < rx < 6 cm et tracée sur la Fig. 14.18, constituant la borne inférieure des différentes
estimations.
Le taux de dissipation est par ailleurs directement relié aux spectres d’énergie spatiaux. Ainsi,
dans les échelles inertielles, il a été montré que Su(kx) = C ′ε2/3k

−5/3
x , où C ′ = 0.49 [145]. Le taux ε

peut donc être déterminé en ajustant ce modèle au spectre spatial. Nous traçons sur la Fig. 14.20
le spectre d’énergie spatial horizontal longitudinal ainsi que les ajustements issus du modèle pour
deux valeurs εS,min et εS,max.
Ces valeurs encadrent l’intervalle des valeurs possible pour le taux de dissipation estimé de cette
manière εS. Elles apparaissent sur la Fig. 14.18 avec des ordres de grandeur similaires aux valeurs
obtenues avec les méthodes précédentes.
Nous choisissons de retenir comme taux de dissipation la moyenne des valeurs calculées avec les
différentes méthodes. Nous obtenons ainsi ε ∈ [0.2; 102] cm2.s−3.
La connaissance du taux de dissipation ε permet d’accéder aux échelles de longueur et de temps de
Kolmogorov, respectivement ηK = (ν3/ε)1/4 ∈ [0.1; 0.5]mm et τη = (ν/ε)1/2 ∈ [10; 200]ms. Celles-ci
sont les échelles de dissipation des tourbillons. Il faut noter que les valeurs les plus petites de ces
deux paramètres correspondent aux niveaux de turbulence les plus élevés.
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14.2.4 Nombres de Reynolds

Les grandeurs mesurées dans cette section permettent finalement d’avoir accès aux nombres de
Reynolds, utilisés pour comparer les expériences entre elles. Le nombre de Reynolds à l’échelle de
Taylor Reλ = Σ2

v

√
15/(νε) prend des valeurs entre 120 et 460. Nous obtenons par ailleurs un nombre

de Reynolds turbulent défini par ReT = ΣvL/ν entre 600 et 5500. Ces valeurs sont ainsi supérieures
à celle obtenue par Variano et Cowen [104] avec le même type de dispositif (ReT = 3220), qui lui-
même parvenait à une turbulence 7 fois plus forte que celles atteintes au maximum avec des grilles
oscillantes [137].
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14.3 Conclusion

Par des mesures PIV dans un plan vertical sous la surface libre, nous avons montré dans ce cha-
pitre que notre dispositif expérimental permet d’atteindre des régimes de forte turbulence hydro-
dynamique (ReT = 5500), pour lesquels l’amplitude des fluctuations turbulentes de vitesse croît
linéairement avec le débit des jets (jusqu’à un écart-type Σv ≈ 11 cm.s−1), tout en conservant une
taille caractéristique des tourbillons constante L ≈ 5 cm. Nous avons caractérisé la turbulence gé-
nérée en mesurant différentes grandeurs typiques. L’homogénéité et l’isotropie des fluctuations de
vitesses sont bonnes à distance de la surface libre. Le forçage de la turbulence hydrodynamique
par des jets de débits réglables constitue alors un bon moyen d’obtenir une turbulence d’intensité
contrôlable tout en conservant ses propriétés spatiales.
L’homogénéité spatiale diminue à l’approche de la surface libre en raison de la présence des parois
latérales de la cuve. L’isotropie entre fluctuations turbulentes de vitesses verticales et horizontales
est quant à elle réduite par la présence de la surface libre, ce qui est conforme aux prédictions théo-
riques et aux études expérimentales précédentes. Nous avons montré une redistribution de l’énergie
cinétique des fluctuations de vitesse verticales vers les fluctuations horizontales à l’approche de la
surface libre et liée aux limitations des mouvements verticaux du fluide imposée par cette interface.
Des comportements particuliers liés aux déformations de la surface libre et à sa contamination ont
par ailleurs été mis en évidence.



Chapitre 15

Effet de la turbulence hydrodynamique
sur des ondes de surface
monochromatiques

Nous étudions dans ce chapitre le comportement d’ondes de surface monochromatiques engendrées
mécaniquement à la surface d’un fluide présentant un écoulement turbulent. La turbulence hydro-
dynamique est générée par le dispositif expérimental décrit dans le chapitre 13 et caractérisé dans
le chapitre 14. Comme nous l’avons vu au chapitre 12 d’introduction, les mesures spatiales dans
une telle situation sont rares. Gutiérrez et Aumaître [111] ont réalisé des mesures 1D dans la di-
rection de propagation des ondes à la surface d’un écoulement turbulent 2D. Nous mesurons ici les
déformations de la surface libre dans les deux dimensions grâce à un dispositif de profilométrie par
transformée de Fourier (voir section 13.5.2). Nous nous concentrons donc sur les caractéristiques
spatiales et temporelles de ces ondes, dans les directions à la fois longitudinale et transverse à la
propagation.
Il s’agit de comprendre comment les ondes sont affectées par la turbulence sous la surface mais
aussi d’appréhender la lecture des spectres spatiaux, temporels et spatiotemporels dans un contexte
de turbulence et donc d’écoulement sous la surface. En ce sens, les enseignements tirés de cette
étude seront utiles dans le cadre des déformations de la surface libre générées par la turbulence (voir
chapitre 16).

15.1 Dispositif expérimental

Les ondes de surface planes monochromatiques étudiées sont générées au moyen d’un batteur
rectiligne de forme triangulaire, subissant un mouvement vertical sinusoïdal (voir Fig. 15.1). Il est
situé à proximité d’une paroi de la cuve dont il occupe presque toute la largeur. Des mesures sont
réalisées pour deux fréquences d’excitation, fe = 5 et 8Hz, associées aux longueurs d’ondes λ0 = 6.6
et 3.1 cm, respectivement supérieure et inférieure à l’échelle intégrale de la turbulence L ≈ 5 cm.
Les écart-types moyens respectifs des vagues obtenues sont ση = 0.65 et 0.26mm dans la zone
de mesure, soit des raideurs κ ≡ k0ση de 0.06 et 0.05, avec k0 = 2π/λ0 le nombre d’onde. Les
amplitudes sont ainsi suffisantes pour obtenir une bonne résolution tout en conservant des raideurs
suffisamment faibles pour que les effets non-linéaires soient faibles. Le champ de déformation de la
surface libre est mesuré dans les deux dimensions par profilométrie par transformée de Fourier (FTP
– voir section 13.5.2) sur une surface de 15× 16 cm2 et pendant une durée de 220 s à une fréquence

165
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Figure 15.1 – Schéma du dispositif expérimental pour la génération d’ondes monochromatiques. Un
batteur rectiligne allongé selon Ox et en forme de triangle est placé près d’une paroi et subit des oscillations
verticales sinusoïdales. (a) Vue de dessus ; (b) Vue de côté

d’acquisition proche de 100Hz.
L’intensité de la turbulence est d’un niveau modéré (écart-type des fluctuations de vitesse : Σv ∈

[0; 5.25] cm.s−1) afin de limiter les déformations de la surface libre induites par la turbulence (voir
chapitre 16). Dans la suite du chapitre, les figures constituées de quatre vignettes représentent
toujours les mêmes niveaux de turbulence. Les valeurs de Σv utilisées dans ce chapitre sont calculées
à partir des résultats de la section 14.2.1, moyennées sur le domaine défini par −9 < z < −7 cm et
−5 < x < 5 cm.

15.2 Observations

Des images instantanées représentatives des déformations de la surface libre pour des niveaux
croissants de turbulence sont représentées sur les Figs 15.2 et 15.3 pour fe = 5 et 8Hz respectivement.
Le batteur est situé au-dessus de l’image. En l’absence de turbulence (Fig. a), les ondes sont presque
planes, allongées selon Ox et se propageant selon Oy. Comme la dissipation visqueuse augmente avec
la fréquence des ondes, elle est visible pour fe = 8Hz par la décroissance de l’amplitude au cours
de la propagation (Fig. 15.3.a). Dans les deux cas, lorsque la turbulence est présente, on observe
une modification de la structure spatiale de l’onde. Il apparaît une déviation de la direction de
propagation, sûrement liée à l’advection par les courants turbulents à grandes échelles, ainsi qu’une
déstabilisation du front d’onde caractérisée par son morcellement.
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Figure 15.2 – Image instantanée des déformations de la surface libre η dans l’espace pour fe = 5Hz :
(a) Σv = 0 ; (b) Σv = 1.31 cm.s−1 ; (c) Σv = 2.62 cm.s−1 ; (d) Σv = 5.25 cm.s−1. Le batteur est en haut
(y = −17.8 cm).
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Figure 15.3 – Image instantanée des déformations de la surface libre η dans l’espace pour fe = 8Hz :
(a) Σv = 0 ; (b) Σv = 1.31 cm.s−1 ; (c) Σv = 2.62 cm.s−1 ; (d) Σv = 5.25 cm.s−1. Le batteur est en haut
(y = −17.8 cm)



15.2. OBSERVATIONS 169

Nous traçons sur les Figs 15.4 et 15.5 l’écart-type des hauteurs de vagues ση en chaque point de
la surface libre pour fe = 5 et 8Hz respectivement. En l’absence de turbulence hydrodynamique
(Fig. a), nous observons des minima et des maxima le long de l’axe de propagation des ondes Oy,
en particulier pour fe = 5Hz. Il s’agit respectivement de nœuds et de ventres liés à la présence
d’ondes stationnaires longitudinales. Ces dernières sont causées par les réflexions de l’onde sur la
paroi opposée au batteur. Elles sont moins marquées pour fe = 8Hz (Fig. 15.5.a) en raison de la
dissipation visqueuse. On note par ailleurs la présence d’ondes stationnaires transverses selon Ox
(perpendiculaires à la direction de propagation) qui sont des ondes croisées (cross-waves) crées par
instabilité paramétrique au niveau du batteur [148, 149]. Leur fréquence d’oscillation est alors fe/2,
et elles sont donc associées à une longueur d’onde plus grande.
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Figure 15.4 – Ecart-type des déformations de la surface libre ση dans l’espace pour fe = 5Hz : (a) Σv = 0 ;
(b) Σv = 1.31 cm.s−1 ; (c) Σv = 2.62 cm.s−1 ; (d) Σv = 5.25 cm.s−1. Le batteur est en haut (y = −17.8 cm).

En présence de turbulence hydrodynamique (croissante pour les Figs b, c et d), le contraste entre
minima et maxima diminue jusqu’à disparaitre (Fig. d). Ceci est cohérent avec ce que nous avons
observé sur les Figs 15.2 et 15.3 puisque l’advection par les courants dans toutes les directions ainsi
que la déstabilisation du front d’onde réduisent les résonances nécessaires aux ondes stationnaires.
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Figure 15.5 – Ecart-type des déformations de la surface libre ση dans l’espace pour fe = 8Hz : (a) Σv = 0 ;
(b) Σv = 1.31 cm.s−1 ; (c) Σv = 2.62 cm.s−1 ; (d) Σv = 5.25 cm.s−1. Le batteur est en haut (y = −17.8 cm).
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Afin d’étudier l’effet de la turbulence hydrodynamique sur l’énergie des ondes de surface, on trace
sur la Fig. 15.6 la moyenne de l’écart-type sur l’ensemble de l’image en fonction des fluctuations
de vitesse sous la surface. Pour fe = 5Hz, l’écart-type semble diminuer avec la turbulence mais
les variations sont ici trop faibles en regard du nombre de données pour conclure. Pour fe = 8Hz,
on observe une augmentation de ση sûrement liée aux déformations de la surface libre générée par
la turbulence. Cependant, on notera que les fluctuations observées ici restent inférieures à celles
obtenues pour les mêmes débits en l’absence de batteur (jusqu’à ση ≈ 1mm pour les mêmes débits
– voir Fig. 16.2 du chapitre 16). S’il est connu que la présence de vagues modifie la turbulence sous
la surface [150] et donc potentiellement les déformations induites, nous souhaitons rester prudent
sur ce résultat surprenant. En effet, les deux séries de mesures ont été réalisées séparément, et
les conditions expérimentales ont changé. Une série d’expériences spécifique à cette problématique
apparaît donc nécessaire.
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Figure 15.6 – Moyenne de l’écart-type des hauteurs de vagues ση sur l’ensemble de l’image en fonction
des fluctuations de vitesses dans l’eau Σv.

15.3 Spectres spatiotemporels longitudinaux

L’effet de la turbulence sur les vagues est difficile à mettre en évidence au seul moyen de l’écart-
type des fluctuations de la surface puisque les déformations induites par la turbulence se mêlent
aux ondes déjà présentes à la surface. Les caractéristiques spectrales du champ de vagues sont ainsi
susceptibles de livrer plus d’informations sur le phénomène de dispersion induit par la turbulence.
Afin d’étudier ces propriétés dans la direction de propagation Oy, on impose kx = 0 et on trace sur
la Fig. 15.7 le spectre spatiotemporel longitudinal Sη(kx = 0, ky, ω), calculé à partir de l’Eq. (13.5),
pour fe = 8Hz et différents niveaux de turbulence.
En l’absence de turbulence (Fig. 15.7.a), l’énergie est très concentrée sous forme de “patchs” au
niveau de la fréquence fondamentale fe = 8Hz, ainsi que de ses harmoniques (2fe, 3fe...) en raison
des non linéarités. Les longueurs d’onde associées à ces fréquences sont fixées par la relation de
dispersion des ondes gravito-capillaires linéaires en profondeur infinie [62] :
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Figure 15.7 – Spectres de puissance spatiotemporels longitudinaux des déformations de la surface libre
log[Sη(kx = 0, ky, ω)] pour fe = 8Hz. Les pointillés blancs correspondent aux relations de dispersion
classique des ondes gravito-capillaires (voir Eq. (15.1)) ; les lignes blanches continues prennent en compte
l’effet Doppler à l’observation (voir Eq. (15.2)) en présence d’un écoulement moyen de vitesse V . (a) Σv = 0
et V = 0 ; (b) Σv = 1.31 cm.s−1 et V = 0 ; (c) Σv = 3.94 cm.s−1 et V = 3 cm.s−1 ; (d) Σv = 5.25 cm.s−1 et
V = 4 cm.s−1. Le débit de (c) est ici différent de celui des autres figures constituées de 4 vignettes, car il
est un bon exemple d’advection par l’écoulement moyen à la surface libre.

ω =

√
gk + γk3

ρ
(15.1)

où ici, k = |ky|. La relation de dispersion (15.1) est représentée par une ligne banche sur la Fig. 15.7.a
dans les deux directions et prédit bien les longueurs d’ondes observées. Le point visible en −ky(fe)
correspond à des ondes se propageant dans le sens inverse de la direction de propagation initiale. Il
est donc lié à la présence d’ondes stationnaires. On observe par ailleurs que les “patchs” d’énergie
ont une largeur importante selon ky. Cette largeur initiale peut s’expliquer principalement par le
faible nombre de longueurs d’onde dans la fenêtre de mesure (voir Figs 15.2 et 15.3), même si les
non linéarités et la dissipation visqueuse induisent par ailleurs une largeur non nulle physique.
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En présence de turbulence, on observe sur les Figs 15.7.b-d un étalement de l’énergie à la fois
spatialement et temporellement 1. Par ailleurs, l’énergie des ondes reste localisée autour de la relation
de dispersion. Pour les Figs 15.7.c et d, la relation de dispersion doit toutefois être adaptée à
la présence d’écoulements moyens en raison d’un effet Doppler à l’observation. En effet, pour un
observateur immobile (comme notre caméra), la relation de dispersion donnant ω pour des ondes se
propageant sur un milieu mobile de vitesse algébrique v dans la direction de propagation Oy s’écrit
alors :

ω =

√
gk + γk3

ρ
+ vky (15.2)

La fréquence d’oscillation perçue par l’observateur est alors différente de la fréquence d’oscillation
de l’onde dans le référentiel du milieu de propagation, qui est quant à elle fixée par l’Eq. (15.1).
La dissymétrie verticale des spectres spatiotemporels de la Fig. 15.7 permet alors de déterminer la
vitesse de l’écoulement moyen V selon Oy. En effet, celui-ci décale les fréquences d’observation dans
des sens opposées pour les ky positifs et négatifs (pour V > 0, ω augmente si ky > 0 mais diminue si
ky < 0). Nous montrons sur les Figs 15.7.c et d les relations de dispersion non corrigées (pointillés
blancs) ainsi que celles corrigées par l’effet Doppler à l’observation (lignes blanches).
En principe, l’effet Doppler à l’observation, décrit par l’Eq. (15.2), induit par ailleurs un étalement
de l’énergie autour de la ligne blanche représentant la relation de dispersion. En effet, les fluctuations
turbulentes de vitesse induisent une distribution des fréquences observées pour une même longueur
d’onde. Toutefois, cet élargissement est peu visible en raison de la largeur déjà importante selon ky
des “patchs” d’énergie, même sans turbulence. Enfin, on doit noter l’apparition d’énergie à basse
fréquence en présence de turbulence, visible pour f → 0 sur les Figs 15.7.b-d. Cette énergie est celle
des déformations générées par la turbulence comme nous le verrons dans le chapitre 16.
L’effet Doppler à l’observation affecte les fréquences des ondes. Les longueurs d’onde observables
sur chaque image instantanée de la surface libre ne sont quant à elles pas modifiées par cet effet.
Nous allons donc nous intéresser aux spectres spatiaux, indépendants des fréquences temporelles,
afin d’étudier de façon plus fine l’étalement de l’énergie du système à travers les échelles en présence
de turbulence.

15.4 Spectres spatiaux longitudinaux

Les Figs 15.8.a et b montrent les spectres spatiaux de hauteur des vagues selon la direction de
propagation de l’onde Sη(kx = 0, ky) ≡

∫
ω>0 Sη(kx = 0, ky, ω)dω pour les deux fréquences étudiées.

Il s’agit donc de l’intégration sur les fréquences du spectre spatiotemporel comme celui représenté
sur la Fig 15.7. En l’absence de turbulence (ligne rouge), puisque l’onde est monochromatique, on
observe bien des pics dont la position des maxima, kmax, est située au niveau des nombres d’ondes
prévus par la relation de dispersion, k0 = 15.1 (Fig. 15.8.a) et 31.9m−1 (Fig. 15.8.b). Comme on l’a
vu dans la section 15.3, l’importante largeur des pics, visible aussi sur la Fig 15.7, peut s’expliquer
principalement par le faible nombre de longueurs d’onde dans la fenêtre de mesure (voir Figs 15.2 et
15.3). Il faut toutefois noter que les non linéarités et la dissipation visqueuse induisent également une
largeur non nulle physique. En présence de turbulence, on observe quand même un élargissement

1. Il faut noter que les Figs 15.7.b et c font apparaître de l’énergie localisée sur la relation de dispersion mais
autour de fréquences différentes de la fréquence fondamentale de l’onde monochromatique et de ses harmoniques. Il
s’agit très probablement de résonances liée à la vibration de la cuve causée par la pompe. Ces fréquences augmentent
d’ailleurs avec le débit et donc la fréquence de rotation du moteur de la pompe.
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des pics ainsi qu’un décalage vers les plus bas nombres d’onde. Comme nous allons le montrer, ces
effets peuvent s’expliquer en partie par un effet Doppler lors de la génération des ondes.
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Figure 15.8 – (a) et (b) Spectres de puissance spatiaux longitudinaux des déformations de la surface libre
Sη(kx = 0, ky) de la surface libre pour différents niveaux de turbulence hydrodynamique. (a) fe = 5Hz ;
(b) fe = 8Hz. (c) et (d) Distributions des nombres d’onde prévues par un effet Doppler à la génération.
Les valeurs indiquées dans la légende correspondent à Σv. (c) fe = 5Hz ; (d) fe = 8Hz.

En effet, lorsque le batteur est en mouvement, l’écoulement modifie la longueur d’onde λ de l’onde
générée. La vitesse de phase de l’onde monochromatique générée par un batteur oscillant à la
pulsation ωe = 2πfe dans un milieu immobile s’écrit cw(k0) = ωe/k0 avec k0 fixé par la relation
de dispersion. On considère que la période du batteur 1/fe est petite devant l’échelle de temps de
la turbulence, ce qui est le cas dans notre expérience. On se place dans le cas où l’écoulement est
constant et uniforme 2 dans la direction Oy à la vitesse algébrique v. Entre deux instants séparés
de la période 1/fe, le fluide s’est déplacé de la distance v/fe et l’onde s’est propagée à la vitesse
ω(ky)/ky dans le référentiel de l’écoulement, soit un déplacement ω(ky)/(kyfe), où ω est déterminé
par la relation de dispersion (15.1). La longueur d’onde ainsi créée est alors :

2. L’hypothèse d’uniformité suppose que les courants ont des échelles spatiales grandes devant les longueurs d’onde
étudiées. Cette hypothèse est limitée dans le sens où la taille typique des tourbillons L ≈ 5 cm est comprise entre les
deux longueurs d’onde étudiées de 3.1 et 6.6 cm. On notera toutefois que l’échelle intégrale de la turbulence augmente
à l’approche de la surface libre (L ≈ 7 cm à une profondeur de 1 cm).
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λy = v

fe
+ ω(ky)

kyfe
⇐⇒ ky = ωe

v + ω(ky)/ky
(15.3)

Nous obtenons ainsi une relation entre le nombre d’onde ky de l’onde et la vitesse locale d’écoule-
ment du fluide au moment de la génération. En raison de la turbulence, la vitesse v de l’écoulement
horizontal sous la surface présente des fluctuations qui suivent une distribution normale ρv(v) de
largeur σv = σu (déterminée dans la section 14.2.1). La distribution des nombres d’ondes générés
est alors 3 :

ρky(ky) = ρv(v(ky))
∣∣∣∣ dvdky

∣∣∣∣ (15.4)

où v et dv/dky sont calculés avec l’Eq. (15.3). Il vient donc :

ρky(ky) = 1√
2πσv

(
ωe − ω(ky)

k2
y

+
g + 3γk2

y/ρ

2kyω(ky)

)
exp

(
− [ωe − ω(ky)]2

2k2
yσ

2
v

)
(15.5)

Afin de comparer ces distributions avec les spectres spatiaux obtenus expérimentalement, nous re-
présentons ρky calculée à partir de l’Eq. (15.5) sur les Figs 15.8.c et d, correspondant aux fréquences
d’excitation fe = 5 et 8Hz. Les niveaux de turbulence simulés sont les mêmes que ceux des figures
Figs 15.8.a et b respectivement. En l’absence de turbulence (ligne rouge), la largeur du pic simulé
est nulle puisque seule est générée la longueur d’onde associée à la fréquence d’excitation. La compa-
raison avec les spectres spatiaux est difficile en raison de la largeur initiale des pics expérimentaux.
Toutefois, quand la turbulence est présente, on observe qualitativement le même type d’étalement
et de décalage des pics vers les plus bas nombres d’ondes. L’effet Doppler lié aux fluctuations de
vitesses locales à la génération permet donc d’expliquer en partie les observations expérimentales.
Il existe toutefois des différences mais qu’il est difficile d’interpréter. Par exemple, pour fe = 8Hz,
les décalages vers les bas nombres d’ondes sont plus importants sur les pics expérimentaux que ceux
simulés pour certains niveaux de turbulence (Figs 15.8.b et d). Cela peut s’expliquer par la présence
d’écoulements moyens locaux au niveau du batteur lors de la génération, peut-être liés à ceux que
nous avons repéré dans la zone de mesure en section 15.3. Il peut également s’agir d’un effet de la
turbulence pendant la propagation. Une piste d’analyse est par exemple un effet de l’advection dans
la direction transverse, montré par Gutiérrez et Aumaître [111]. Toutefois, cette explication n’est
pas applicable ici puisque les spectres spatiaux sont tracés avec la condition kx = 0.

15.5 Redistribution transverse de l’énergie des vagues

Une façon de sonder l’advection des ondes de surface par la turbulence une fois qu’elles sont générées
est de s’intéresser à la dimension transverse. En effet, les fluctuations turbulentes de vitesse sous la
surface sont omnidirectionnelles et ne se limitent donc pas à la direction de propagation de l’onde
monochromatique. Nous étudions ici les spectres spatiaux dans les deux directions spatiales à une
fréquence temporelle fixée. Dans un premier temps, cette fréquence temporelle est la fréquence
d’excitation du batteur fe. Les Figs 15.9 et 15.10 représentent ainsi les spectres Sη(kx, ky, f = fe)
pour fe = 5 et 8Hz respectivement.

3. Ce calcul de l’effet Doppler à la génération a été inspiré d’un modèle d’effet Doppler lors de la propagation
proposé par P. Gutiérrez et S. Aumaître dans le cadre de leurs recherches (communication privée).
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Figure 15.9 – Spectres de puissance spatiaux 2D des déformations de la surface libre log[Sη(kx, ky, f = fe)]
pour fe = 5Hz : (a) Σv = 0 ; (b) Σv = 1.31 cm.s−1 ; (c) Σv = 2.62 cm.s−1 ; (d) Σv = 5.25 cm.s−1. Le rayon
des cercles noirs est le nombre d’ondes k0.

En l’absence de turbulence (Fig. a), on remarque que l’énergie est principalement concentrée aux
points satisfaisants kx = 0 et ky = ±k0, correspondant aux ondes planes monochromatiques dans
les directions y et −y. Le point ky = −k0 est moins marqué pour fe = 8Hz (Fig. 15.10.a) puisqu’on
a vu sur la Fig. 15.5.a que les réflexions sur la paroi opposée au batteur étaient moins importantes
que pour fe = 5Hz, l’atténuation étant plus forte. En présence de turbulence (Figs 15.10.b-d),
on observe un étalement dans les deux directions. Ceci est lié à l’effet Doppler à l’observation
mentionné dans la section 15.3 et l’Eq. (15.2) : on a vu que les fréquences observées pour un nombre
d’onde donné fluctuent avec les vitesses turbulentes et ont donc une distribution élargie par la
turbulence. Réciproquement, les nombres d’onde observés à une fréquence donnée (ici, fe) ont donc
une distribution élargie par la turbulence. Toutefois, les spectres spatiaux des Figs 15.10.b-d restent
fortement dominés par les ondes se propageant selon la direction initiale.
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Figure 15.10 – Spectres de puissance spatiaux 2D des déformations de la surface libre log[Sη(kx, ky, f =
fe)] pour fe = 8Hz : (a) Σv = 0 ; (b) Σv = 1.31 cm.s−1 ; (c) Σv = 2.62 cm.s−1 ; (d) Σv = 5.25 cm.s−1. Le
rayon des cercles noirs est le nombre d’ondes k0.
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Sur les Figs 15.11 et 15.12, on trace les spectres spatiaux en des fréquences différentes quoique
proches des fréquences d’excitation fe = 5 et 8Hz : Sη(kx, ky, f = fS = 5.4Hz) et Sη(kx, ky, f =
fS = 8.7Hz). En l’absence de turbulence (Fig. a), les deux points bleus indiquent la présence de traces
du forçage en raison de la largeur non nulle des spectres de puissance. En présence de turbulence, le
spectre spatial gagne en énergie. L’effet Doppler à la génération permet d’expliquer le renforcement
des nombres d’ondes dans la direction Oy et l’effet Doppler à l’observation explique l’étalement
de l’énergie sur le spectre. Toutefois, on observe très nettement la formation d’un cercle dont le
rayon est le nombre d’ondes ks associé à la fréquence d’observation fS du spectre via la relation de
dispersion (15.1) (Figs b et c). Ceci montre l’existence d’ondes dans toutes les directions en présence
de turbulence.
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Figure 15.11 – Spectres de puissance spatiaux 2D des déformations de la surface libre log[Sη(kx, ky, f =
5.4Hz)] en f = fS = 5.4Hz pour fe = 5Hz : (a) Σv = 0 ; (b) Σv = 1.31 cm.s−1 ; (c) Σv = 2.62 cm.s−1 ;
(d) Σv = 5.25 cm.s−1. Le rayon des cercles noirs est le nombre d’ondes kS , fixé par fS via la relation de
dispersion (15.1).

Ceci est conforme à l’advection dans toutes les directions et la déstabilisation du front d’ondes
mises en évidence sur les aperçus de la surface libre des Figs 15.2 et 15.3. Les tourbillons d’axe
perpendiculaire à la surface libre permettent probablement de modifier la direction des ondes géné-
rées initialement [114–116]. Notons toutefois que ces ondes omnidirectionnelles pourraient également
être des ondes de surface générées par la turbulence elle-même. Cependant, nous montrerons dans
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Figure 15.12 – Spectres de puissance spatiaux 2D des déformations de la surface libre log[Sη(kx, ky, f =
8.7Hz)] en f = fS = 8.7Hz pour fe = 8Hz : (a) Σv = 0 ; (b) Σv = 1.31 cm.s−1 ; (c) Σv = 2.62 cm.s−1 ;
(d) Σv = 5.25 cm.s−1. Le rayon des cercles noirs est le nombre d’ondes kS , fixé par fS via la relation de
dispersion (15.1).

le chapitre 16 que, pour les faibles niveaux de turbulence, les déformations des la surface libre in-
duites par la turbulence semblent dominées par des structures non propagatives, ce qui n’est pas
compatible avec les cercles observés sur les Figs 15.11 et 15.12. En effet, ces cercles sont déterminés
par la relation de dispersion des ondes gravito-capillaires qui n’est pas respectée par les structures
non propagatives.

15.6 Spectres temporels

Pour finir, nous nous intéressons maintenant aux spectres de puissance temporels Sη(f) intégrés
sur l’ensemble des nombres d’onde pour les deux séries de mesures, représentés sur la Fig. 15.13.
En l’absence de turbulence, on observe bien sûr des pics centrés sur les fréquences d’excitation, qui
s’élargissent fortement lorsque la turbulence est générée sous la surface.
Il s’agit là de la conséquence des deux effets Doppler mentionnés dans les sections précédentes.
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Figure 15.13 – Spectres de puissance temporels des déformations de la surface libre Sη(f) pour différents
niveaux de turbulence hydrodynamique. (a) fe = 5Hz ; (b) fe = 8Hz. Les valeurs indiquées dans la légende
correspondent à Σv.

L’effet Doppler à la génération (voir section 15.4) élargit la gamme des longueurs d’ondes présentes
dans le système et donc la gamme de fréquences d’oscillation associées (via la relation de dispersion)
dans le référentiel de propagation. D’autre part, un effet Doppler secondaire est lié à l’observation
depuis un référentiel en mouvement par rapport au référentiel de propagation (voir section 15.3).
Comme l’onde se propage sur un milieu subissant des fluctuations de vitesses, la fréquence perçue
par l’observateur est différente de la fréquence d’oscillation dans le référentiel de propagation. Ces
deux effets Doppler expliquent donc au moins en partie l’élargissement observé sur les spectres de la
Fig. 15.13. L’advection et la déstabilisation du front d’onde jouent probablement un rôle mais qu’il
est difficile de distinguer ici.

15.7 Conclusion

Dans ce chapitre, nous avons étudié le comportement d’ondes planes monochromatiques générées
par un batteur rectiligne à la surface d’un fluide présentant un écoulement turbulent sous la surface
libre. Nous avons décrit leurs propriétés au moyen de leurs caractéristiques spectrales spatiotempo-
relles 2D. En présence de turbulence, nous avons mis en évidence et décrit un effet Doppler à la
génération qui produit une large gamme de longueur d’ondes en raison des fluctuations de vitesse
locale au niveau du batteur. Ce phénomène masque les effets dispersifs propres à la turbulence
dans la direction de propagation. Nous avons aussi mis en évidence la présence d’ondes de surface
gravito-capillaires dans toutes les directions en présence de turbulence. Cette redistribution angu-
laire d’énergie pourrait provenir de la déstabilisation du front d’ondes rectilignes et/ou de l’advection
des ondes longitudinales par les courants turbulents, deux phénomènes observés directement à la
surface libre. Des analyses complémentaires sont nécessaires pour quantifier leur influence sur l’iso-
tropie des ondes. Par ailleurs, nous pourrions envisager la réalisation d’expériences dans lesquelles
le batteur est isolé de la turbulence. Ceci permettrait d’éliminer l’effet Doppler à la génération et
d’observer les effets de la turbulence dans la direction longitudinale. Enfin, dans l’optique d’une
meilleure compréhension des mécanismes physiques, une mesure simultanée du champ de vitesses
sous la surface et des déformations de la surface libre semble prometteuse. Dans le prolongement
de cette étude, une perspective serait d’étudier les interactions entre la turbulence hydrodynamique
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et des ondes gravito-capillaires engendrées de façon isotrope dans une certaine bande de fréquence.
De premiers résultats sont présentés dans l’annexe E. On retrouve une advection des ondes gravito-
capillaire qui élargit la relation de dispersion par un effet Doppler à l’observation. Mais on observe
aussi une superposition des ondes engendrées par le batteur et des déformations de la surface libre
induites par la turbulence hydrodynamique elle-même. Nous allons donc étudier dans le prochain
chapitre les déformations de la surface libre observées en l’absence de batteur afin de ne sonder que
les déformations engendrées par la turbulence.
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Chapitre 16

Déformations de la surface libre induites
par la turbulence hydrodynamique

Nous avons vu dans le chapitre 12 d’introduction que la nature des déformations de la surface libre
générées par un écoulement turbulent sous la surface étaient loin d’être comprises et dépendaient des
conditions expérimentales. Notre dispositif nous permet d’étudier ici ces déformations grâce à des
mesures spatiotemporelles 2D de la surface libre. Ces mesures sont réalisées pour différents niveaux
de turbulence qui permettent d’atteindre de fortes déformations de la surface.

16.1 Protocole expérimental

Les déformations de la surface libre présentées dans ce chapitre sont observées en l’absence de
batteurs au moyen de la profilométrie par transformée de Fourier (voir section 13.5.2). Le champ de
déformation de la surface libre est ainsi mesuré dans les deux dimensions au centre de la cuve sur
une surface de 14 × 14 cm2 et pendant une durée de 52 s à une fréquence d’acquisition de 300Hz.
Une image instantanée représentative des déformations de la surface libre observées est représentée
sur la Fig. 16.1.
Les valeurs des fluctuations turbulentes de vitesse Σv utilisées dans ce chapitre sont calculées à
partir de celles mesurées dans la section 14.2.1, moyennées sur le domaine défini par −9 < z <
−7 cm et −5 < x < 5 cm. La gamme étudiée est Σv ∈ [0.66; 11.8] cm.s−1. Le nombre de Froude,
Fr = Σv/

√
2gL (avec L ≈ 5 cm l’échelle intégrale de la turbulence déterminée dans la section 14.2.2),

permet de quantifier le rapport entre énergie cinétique turbulente (provoquant les déformations) et
énergie gravitationnelle (s’opposant aux déformations de la surface libre). La gamme des valeurs
dans cette expérience est Fr = Σv/

√
2gL ∈ [0.007; 0.12], soit entre 0.4 et 7 fois celles atteintes par

Savelsberg et van de Water 1 [87].
Les mesures de ce chapitre sont de moindre qualité que dans le chapitre 15 car le dispositif n’avait
pas encore été optimisé (quantité de TiO2, contraste des franges, durée de la mesure). Du bruit pou-
vait apparaître dans certaines images en raison de problèmes de contraste lors de fortes déformations.
Toutefois, nous avons pu vérifier que les caractéristiques spatiales décrites dans ce chapitre étaient
similaires lorsque nous ne conservions que les images non bruitées. Nous retrouvons par ailleurs les
mêmes caractéristiques temporelles lors de la réalisation d’une mesure locale des déformations de la
surface libre au moyen d’une sonde capacitive. Le bruit sur les images affecte particulièrement les

1. La formule utilisée par Savelsberg et van de Water correspond à Fr2. Pour la comparaison, nous avons donc
recalculé les valeurs.
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Figure 16.1 – Exemple d’image instantanée des déformations de la surface libre η dans l’espace en
l’absence de batteurs. Σv = 5.25 cm.s−1.

deux débits maximaux, pour lesquels les gradients spatiaux et les courbures des déformations de la
surface libre sont très importants. Les limites de notre système de mesure sont atteintes pour ces
deux cas.

16.2 Amplitude des déformations

Une façon de quantifier les déformations de la surface libre est de mesurer l’écart-type des déforma-
tions de la surface libre ση. Elles sont représentées sur la Fig. 16.2.a en fonction des fluctuations de
vitesse turbulentes Σv mesurées au préalable sous la surface (voir section 16.1). La relation entre ση
et Σv est à peu près linéaire. Il ne semble donc pas exister de seuil dans l’apparition ou la croissance
des déformations de la surface. Ceci suggère que le mécanisme de déformation de la surface libre est
le même pour l’ensemble des niveaux de turbulence engendrée sous la surface.
On trace par ailleurs la pente moyenne κ ≡ kmaxση sur la Fig. 16.2.b, où kmax = 46 rad.m−1 est le
nombre d’ondes correspondant au maximum du spectre spatial de la hauteur des déformations de la
surface (voir section 16.4). Comme kmax ne dépend pas de l’amplitude du forçage, κ évolue comme
ση. Cette raideur atteint une valeur maximale de 0.1, qui correspond à des régimes de déformation
importants.

16.3 Spectres spatiotemporels

Afin d’obtenir des informations sur la nature des déformations de la surface libre, on s’intéresse
aux spectres spatiotemporels des déformations de la surface libre Sη(kx, ky, f), calculés à partir de
l’Eq. (13.5). Ces spectres peuvent être intégrés sur tous les angles dans le cas d’une isotropie des
déformations de la surface libre : Sη(k, f) =

∫
k=
√
k2

x+k2
y
Sη(kx, ky, f)dkxdky = 2πkSη(kx, ky, f) avec

k =
√
k2
x + k2

y. Un tel spectre est représenté sur la Fig. 16.3. La zone de forte énergie proche de
l’origine du spectre correspond à l’advection des déformations de la surface libre par les courants
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Figure 16.2 – Caractéristiques de la surface libre en fonction des fluctuations turbulentes de vitesse Σv

sous la surface : (a) Ecart-type des déformations de la surface libre ση ; (b) Pente moyenne κ ≡ kmaxση.

turbulents, comme discuté par la suite. Les électrovannes présentant des problèmes d’ouverture
(voir section 13.4.1), les résultats montrent la présence d’écoulements moyens en particulier pour les
faibles débits. Les spectres spatiotemporels intégrés sur tous les angles présentent alors des résultats
difficilement interprétables en raison de ces asymétries. Nous présenterons donc ici uniquement des
spectres spatiotemporels définis selon la direction Ox : Sη(kx, ky = 0, f). Nous n’avons pas observé
de différences notables entre les directions horizontales Ox et Oy.
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Figure 16.3 – Spectre de puissance spatiotemporel des déformations de la surface libre log[Sη(1/λ, f)].
La ligne représente la relation de dispersion des ondes gravito-capillaires. Σv = 6.6 cm.s−1.

Faible turbulence

La Fig. 16.4 représente ainsi des spectres spatiotemporels Sη(kx, ky = 0, f) pour les deux débits les
plus faibles étudiés. Dans les deux cas, on observe un spectre asymétrique présentant trois zones de
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concentration de l’énergie, similaires à celles obtenues par Savelsberg et van de Water [87] dans le
cas d’une turbulence à écoulement moyen. Nous devons prendre en compte ici l’advection par un
écoulement moyen pour comprendre ces spectres.
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Figure 16.4 – Spectre spatiotemporel de la déformation de la surface libre log[Sη(kx, ky = 0, f)] selon
kx pour deux faibles niveaux de turbulence en présence d’écoulement moyen sous la surface U suivant
l’axe Ox : (a) Σv = 0.66 cm.s−1 et U = 9.1 cm.s−1 ; (b) Σv = 1.31 cm.s−1 et U = 13.5 cm.s−1. Les lignes
blanches continues correspondent aux relations de dispersion advectées par le courant moyen ajusté U (voir
Eq. (16.1)). Les pointillés blancs sont sur une droite d’équation ω = kxU .

Comme nous l’avons vu dans la section 15.3, la pulsation d’une onde gravito-capillaire advectée par
un courant de vitesse constante U selon l’axe Ox est modifiée par l’effet Doppler à l’observation. La
relation de dispersion pour un observateur dans le référentiel du laboratoire doit prendre en compte
cet effet et s’écrit :

ω =

√
gk + γk3

ρ
+ kxU (16.1)

où k = |kx|. Les lignes blanches tracées sur la Fig. 16.4 correspondent à l’Eq. (16.1), pour laquelle le
courant moyen U a été ajusté comme dans la section 15.3. On trouve qu’une partie de l’énergie des
déformations de la surface libre est concentrée autour de ces lignes. Nous mettons donc en évidence
ici l’existence d’ondes gravito-capillaires générées par un écoulement turbulent. L’énergie est plus
étalée sur la Fig. 16.4.b en raison d’une turbulence plus importante sous la surface. Comme nous
l’avons vu dans la section 15.3, cet étalement s’explique par le même effet Doppler à l’observation
que précédemment : les fluctuations de vitesses du milieu de propagation de l’onde induisent une
gamme de fréquences associées à une longueur d’onde donnée. Cet élargissement est donc différent
de l’élargissement non linéaire de la relation de dispersion habituellement rencontrée en turbulence
d’ondes [151]. Cette génération d’ondes pourrait être le fait des remontées d’eau comme suggéré
par Savelsberg [152]. Il est à noter que le courant moyen est ici important et la formation d’ondes
pourrait avoir lieu près des parois, où les variations spatiales de vitesses horizontales sont alors
susceptibles d’être importantes.
Enfin, une autre partie de l’énergie des spectres de la Fig. 16.4 semble se concentrer autour de
la droite d’équation ω = kxU (en pointillés blancs). Il s’agit là de structures de basse fréquence
temporelle advectées par l’écoulement moyen. Comme l’a relevé Savelsberg [152], qui observait le
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même type de structures se déplaçant avec l’écoulement, celles-ci sont probablement directement
liées à la turbulence sous la surface. Il pourrait aussi s’agir de remontées d’eau ou de scarifications
mentionnées par Brocchini et Peregrine [117] et que nous avons pu observer directement. Dans notre
cas, cela peut aussi correspondre à l’impact des jets, parfois visible à la surface libre.
Il faut noter que contrairement à Savelsberg et van de Water [87], l’énergie associée aux ondes
gravito-capillaire (autour des lignes blanches sur les spectres spatiotemporels de la Fig. 16.4) est
dominée par celle des structures à basse fréquence se déplaçant avec l’écoulement moyen (autour des
lignes en pointillés). Les spectres spatiotemporels que nous avons obtenus sont plutôt à rapprocher
de ceux obtenus en simulation numérique par Guo et Shen [99] pour un dispositif proche de celui
utilisé ici (sans écoulement moyen). En effet, si la présence d’ondes de surface gravito-capillaires y est
perceptible, elles sont également largement dominées par des structures oscillant à basse fréquence.

Turbulence modérée ou forte

Nous observons maintenant les cas de plus forte turbulence avec les spectres spatiotemporels de la
Fig. 16.5 pour deux intensités de turbulence croissantes. Il est ici difficile de déterminer la présence
d’un écoulement moyen en raison de la relative symétrie verticale des spectres. L’effet Doppler lors
de l’observation tend par ailleurs à étaler horizontalement l’énergie présente sur le spectre spatio-
temporel (voir section 15.3). Il devient dès lors difficile de distinguer l’énergie associée à d’éventuelles
ondes de surface (concentrée autour de la relation de dispersion en l’absence d’advection) et l’énergie
liée à des structures basses fréquences (concentrée autour de l’axe vertical f = 0 en l’absence d’ad-
vection). L’importante concentration d’énergie selon l’axe horizontal défini par kx = 0 correspond
au bruit de mesure sur les images.
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Figure 16.5 – Spectre spatiotemporel de la déformation de la surface libre log[Sη(kx, ky = 0, f)] selon
Ox pour (a) un niveau de turbulence modéré Σv = 5.2 cm.s−1 et (b) un niveau de turbulence fort Σv =
9.2 cm.s−1. Les lignes blanches continues correspondent aux relations de dispersion.

16.4 Spectres spatiaux

Une autre manière de sonder la nature des déformations de la surface libre est de calculer les spectres
spatiaux, intégrés sur l’ensemble des fréquences Sη(k) ≡

∫
Sη(k, ω)dω. Ceux-ci, qui rendent compte
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de la distribution des longueurs d’onde dans le système, sont représentés pour l’ensemble des forçages
étudiés sur la même Fig. 16.6. Ils présentent des formes très proches. Le bruit à haute fréquence
augmente avec le forçage, puisque le nombre d’images bruitées augmente. Le maximum des spectres
correspond à un nombre d’ondes kmax ≈ 46m−1, soit une longueur d’onde λmax ≈ 13.5 cm, un peu
plus grande que l’échelle intégrale de la turbulence L ≈ 5 cm (voir section 14.2.2), qui correspond à la
taille typique des plus grands tourbillons. Chaque spectre présente par ailleurs une loi de puissance
pour les échelles intermédiaires (λ ∈ [2; 10] cm). Dans cet intervalle de nombres d’ondes, on a ainsi
Sη(k) ∝ kα, avec α ≈ −2.7 pour l’ensemble des niveaux de turbulence. Une diminution de la pente
peut toutefois être observées pour les deux forçages les plus élevés, probablement en raison du bruit
sur les images. Il est à noter que dans tous les cas, seules sont bien résolues les ondes de gravité
(1/λ . 60m−1).
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Figure 16.6 – Spectres de puissance spatiaux Sη(k) pour différents forçages d’intensité croissante vers le
haut. Les valeurs indiquées dans la légende correspondent à Σv.

Les spectres des études précédentes ne présentent pas toujours de loi de puissance bien définie et
lorsque c’est le cas, les exposants peuvent varier d’une étude à l’autre. Par exemple, Savelsberg et
van de Water [87], dont la surface libre est dominée par des ondes gravito-capillaires, trouvent un
spectre équivalent à une loi de puissance en 2 k−7. Une telle pente peut être rapprochée de celles
qu’on peut obtenir avec un mélange d’ondes de faibles amplitudes comme celui que nous avons
étudié dans l’annexe E.
En revanche, Gutiérrez [123], pour des déformations à la surface d’un écoulement turbulent 2D (où
la présence d’ondes n’est pas mise en évidence), obtient des lois de puissance comparables à celles
trouvées ici, entre k−2 et k−3.5 selon l’intensité et le type de forçage. Dans le régime gravitaire, les
spectres spatiaux obtenus dans les simulations numériques de Guo et Shen [99] sont compatibles
avec les lois de puissance que nous trouvons ici, même si leurs lois de puissance sont mal définies.
Une loi de puissance en k−2.5 est prédite théoriquement pour le régime de turbulence d’ondes de
gravité (turbulence faible) [153–155]. Pour des ondes générées par résonance à partir des fluctuations
turbulentes du vent à la surface de l’eau, Phillips prédit également des lois de puissances entre

2. Comme nous l’avons vu dans la section 16.3, les spectres spatiaux intégrés sur tous les angles s’écrivent Sη(k) =
2πkSη(kx, ky) où k =

√
k2
x + k2

y. La comparaison des pentes des spectres spatiaux des différentes études nécessitent
donc de prendre en compte cette différence.
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k−2.5 [156] et k−3 [157], ce qui est compatible avec ce qui est observé et modélisé empiriquement
dans les océans [158–160]. Nos données sont donc en accord avec ce type de régime d’ondes.
Toutefois, pour les faibles forçages, nous avons mis en évidence sur les spectres spatiotemporels de
la Fig. 16.4 la présence de structures oscillant à basse fréquence, advectées par l’écoulement et qui
dominent les ondes de surface. Les spectres spatiaux associés à ces régimes de forçage sont donc
susceptibles de refléter ces structures et les lois de puissance observées ne peuvent pas simplement
s’expliquer par la présence d’ondes de gravité. Comme le mentionnent Brocchini et Peregrine [117]
ainsi que Teixeira et Belcher [120], en l’absence de mécanisme de génération d’ondes résonantes, une
partie des déformations de la surface libre peut être une simple réponse passive aux fluctuations
turbulentes de pression sous la surface libre. Nous explorons ici cette piste qualitativement. Les
fluctuations de la surface libre η peuvent être estimées à partir de la relation hydrostatique qui les
relie à l’amplitude des fluctuations de pression dans le liquide p [120] : η ≈ p/(ρg). On peut donc
s’attendre en première approximation à ce que la structure spatiale du champ de déformations de la
surface libre ainsi produit soit similaire à celle du champ de pression sous la surface. Il a été prédit
théoriquement et montré expérimentalement que le spectre spatial du champ de pression était de la
forme Sp(k) ∝ k−7/3 pour des Reynolds suffisamment grand [161]. Cet exposant α = −7/3 = −2.33
est proche de celui de la loi de puissance en k−2.7 de nos spectres spatiaux. Une interprétation selon
laquelle les déformations de la surface libre seraient une empreinte des fluctuations de pression sous
la surface est donc une piste possible d’explication des spectres spatiaux obtenus.

16.5 Spectres temporels

Pour compléter cette analyse spectrale, on trace sur la Fig. 16.7 les spectres temporels des défor-
mations de la surface libre : Sη(ω) ≡

∫
Sη(k, ω)dk. Pour les débits intermédiaires (excluant les deux

débits les plus faibles et les deux débits les plus forts), les échelles inertielles peuvent là encore être
décrites par une loi de puissance : Sη(f) ∝ fβ, avec β ≈ −2.5 pour l’ensemble des forçages. Il est à
noter que des spectres temporels similaires ont été retrouvés par une mesure locale avec une sonde
capacitive.
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Figure 16.7 – Spectres de puissance temporels des déformations de la surface libre Sη(f) pour différents
forçages d’intensité croissante (vers le haut). Les valeurs indiquées dans la légende correspondent à Σv.



190 CHAPITRE 16. DÉFORMATIONS DE LA SURFACE PAR LA TURBULENCE

Les spectres de puissance spatiaux et temporels sont reliés par la relation Sη(f)df = Sη(k)dk. Si
Sη(k) ∝ kα et Sη(f) ∝ fβ, on a donc :

fβ ∝ k(f)αdk
df

(16.2)

où, pour des ondes, k(f) est défini par la relation de dispersion. Dans le cas d’ondes de gravité sans
écoulement, la relation de dispersion s’écrit ω =

√
gk, et on obtient donc :

β = 2α + 1 (16.3)

Par exemple, pour un spectre spatial en k−2.5, on s’attend donc à ce que les spectres temporels pré-
sentent une loi de puissance en f−4, comme prédit par Phillips [156] ou en turbulence d’ondes [153–
155]. On a vu dans le cas de la turbulence hydrodynamique dans la section 14.1.2 que les spectres
temporels des vitesses présentaient des lois de puissance identiques à celles des spectres spatiaux
dans le régime inertiel. Ce comportement est prédit par le modèle de Tennekes [146] et s’explique
par l’advection des petits tourbillons (échelle inertielle) par les grands tourbillons. Le même rai-
sonnement peut ici être appliqué pour expliquer le spectre temporel obtenu. Pour des structures
oscillant à basse fréquence et advectées par l’écoulement, on peut ainsi écrire ω ≈ kV , où V est
la vitesse de l’écoulement, soit dω/dk ≈ V . Ceci entraîne alors que β ≈ α. De telles structures
oscillant à basse fréquence et advectées par l’écoulement ont été mises en évidence pour les faibles
forçages sur les spectres spatiotemporels de la Fig. 16.4. Si elles sont présentes pour des forçages plus
importants, elles permettent donc d’expliquer que les exposants que nous trouvons pour les lois de
puissance des spectres temporels et spatiaux sont proches. Il faut noter que ces structures à basse
fréquence peuvent tout à fait être l’empreinte des structures turbulentes de pression sous la surface
que nous avons mentionnées précédemment. En effet, nous avons vu que le modèle de Tennekes
était valide dans le cas des spectres des fluctuations turbulentes de vitesse au sein du liquide (voir
section 14.1.2). Cela montre que l’advection domine pour les structures turbulentes et qu’on a donc
ω ≈ kV . La concordance entre spectres spatiaux et temporels est donc compatible avec l’hypothèse
d’une réponse passive de la surface libre aux fluctuations de pression sous la surface.
Mais nous ne pouvons pas exclure la possibilité que les déformations de la surface libre soient do-
minées par des ondes pour les niveaux de turbulence plus importants. En effet, les spectres spatio-
temporels n’ont pas permis de conclure à ce sujet. Dans le cas d’ondes de surface gravito-capillaires,
la relation de dispersion en présence d’un écoulement de vitesse V s’écrit (voir section 15.3) :

ω =

√
gk + γk3

ρ
± kV =⇒ dω

dk
= g + 3γk2/ρ

2
√
gk + γk3/ρ

± V (16.4)

Le premier terme de l’équation de droite est la vitesse de groupe cg des ondes gravito-capillaires. On
s’attend à ce que les spectres spatiaux et temporels présentent les mêmes lois de puissance si la vitesse
de l’écoulement V est grande devant cg > 17 cm.s−1. Mais les fluctuations de vitesses de l’écoulement
turbulent sous la surface libre σu = σv atteignent tout juste cette vitesse de groupe minimale pour
les plus forts débits. Pourtant, la similarité des lois de puissance spatiales et temporelles s’observe
sur nos spectres pour la majorité des niveaux de forçage, notamment lorsque Σv = 3.9 cm.s−1 (qui
correspond à des fluctuations juste sous la surface libre σv ≈ σu ≈ 6 cm.s−1 – voir section 14.1.1).
L’advection d’ondes de surface par les courants turbulents ne semble donc pas pouvoir expliquer des
lois de puissance similaires pour les spectres temporels et spatiaux.
Au moins pour une grande partie des débits étudiés, la correspondance entre les exposants des
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lois de puissance des spectres spatiaux et temporels semble donc être le fait de structures oscillant
à plus basse fréquence que les ondes de surface. Cela semble indiquer que les déformations de la
surface libre sont dominées par des structures de basses fréquences pour l’ensemble des débits. Nous
ne pouvons pas exclure l’hypothèse de la présence d’écoulements moyens susceptibles d’advecter
ces ondes à une vitesse suffisante. Par ailleurs, il faut noter que l’énergie est très largement étalée
horizontalement sur les spectres spatiotemporels de la Fig. 16.5. Ceci suggère l’existence de grandes
vitesses sous la surface libre ou d’une présence non négligeable d’ondes de surface.

16.6 Conclusion

Nous avons étudié dans ce chapitre la nature des déformations de la surface libre induites par la
turbulence hydrodynamique pour différents niveaux de turbulence, atteignant des régimes de défor-
mations importants. Nous observons une évolution linéaire de l’amplitude des déformations de la
surface libre avec l’amplitude des fluctuations turbulentes de vitesse sous la surface. Les spectres de
puissance spatiaux et temporels de déformation sont de plus similaires pour les différents forçages.
Ces observations suggèrent que le type de déformation de la surface libre est le même pour l’en-
semble de nos mesures. Pour de faibles niveaux de turbulence, nous montrons à partir de spectres
spatiotemporels que les déformations de la surface libre sont dominées par des structures non pro-
pagatives qui oscillent à basse fréquence temporelle et qui sont advectées par l’écoulement. Nous
avons également mis en évidence l’existence d’ondes de surface gravito-capillaires mais qui restent
de faibles amplitudes devant ces structures non propagatives. Pour des forçages plus importants, les
spectres spatiotemporels ne permettent pas de tirer d’informations claires. Cependant, la concor-
dance entre les exposants des lois de puissance des spectres temporels et spatiaux suggère à nouveau
que des structures à basse fréquence advectées par l’écoulement dominent les déformations de la
surface libre, y compris pour des niveaux modérés de turbulence. Les résultats obtenus semblent par
ailleurs compatibles avec l’hypothèse que ces structures sont une réponse passive de la surface libre
aux fluctuations turbulentes de pression sous la surface.
Nos spectres de puissance spatiotemporels peuvent par ailleurs être rapprochés de ceux obtenus
par Guo et Shen [99] dans une simulation numérique d’un dispositif proche du nôtre (sans écou-
lement moyen), siège de faibles niveaux de turbulence. En effet, ils observent également une faible
présence d’ondes de surface gravito-capillaires, largement dominées par des structures oscillant à
basse fréquence.
Malgré des raideurs atteintes importantes (κ ≈ 0.1), les régimes de déformation de la surface libre
étudiés dans notre expérience semblent donc de même nature pour tous les niveaux de turbulence. Les
conditions pour un mécanisme de génération d’ondes résonantes prédit par Teixeira et Belcher [120]
ne semblent donc pas remplies. Ceci n’est pas surprenant puisque les fluctuations turbulentes de
vitesse horizontale restent inférieures à la vitesse de phase minimale des ondes gravito-capillaires
cw,min = 23 cm.s−1 et notre dispositif ne met pas en jeu de cisaillement important près de la surface
libre. Dans ce cas non résonant, les déformations de la surface sont susceptibles d’être une réponse
passive aux fluctuations turbulentes de pression sous la surface selon Brocchini et Peregrine [117] et
Teixeira et Belcher [120], ce qui est donc cohérent avec nos observations.
Notre dispositif est capable de créer des niveaux de turbulence bien plus importants puisque la
puissance de la pompe est loin de son maximum. Comme cela a été mentionné dans le chapitre 12
d’introduction, nous avons pu par exemple observer directement la formation de bulles sous la
surface. Toutefois, les fortes déformations atteignent les limites de notre système de mesure dans sa
disposition actuelle (profilométrie par transformée de Fourier). Pour les dépasser, il serait nécessaire
d’éloigner le vidéoprojecteur de la surface libre. Comme nous sommes actuellement limité par la
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hauteur de plafond, un système de miroir devra être envisagé.
Pour les régimes étudiés ici, des mesures complémentaires sont nécessaires. Tout d’abord, des
mesures identiques mais de meilleure qualité (durée plus longue, vérification des écoulements moyens,
meilleur contraste) pourront permettre des analyses statistiques plus poussées. Elle permettront
également d’étudier les plus petites échelles, comme les ondes capillaires qui semblent se former
à proximité de remontées d’eau et qu’on aperçoit en visualisation directe, ou des scarifications de
la surface qui apparaissent à faible niveau de turbulence (voir chapitre 12). D’autre part, nous
pourrions étudier des corrélations avec les vitesses turbulentes par une mesure simultanée du champ
de vitesses sous la surface et des déformations de la surface libre.



Chapitre 17

Conclusion et perspectives

Durant cette thèse, nous avons mis au point une expérience afin d’étudier les interactions entre
turbulence hydrodynamique et surface libre dans une cuve. Pour cela, nous avons conçu un dispositif
expérimental de génération de turbulence basé sur un réseau carré de 8× 8 jets au fond d’une cuve,
alimentés par une pompe de gros débit variable. L’ouverture et la fermeture des jets sont contrôlées
par 64 électrovannes qui sont allumées et éteintes de façon aléatoire et contrôlée, maintenant 16 jets
toujours actifs en même temps.
Nous avons pu caractériser le champ de vitesse sous la surface libre par des mesures PIV. L’écoule-
ment turbulent obtenu est reproductible et présente une bonne homogénéité et une bonne isotropie
à distance de la surface libre. Le dispositif permet d’atteindre des régimes de forte turbulence hydro-
dynamique (jusqu’à un Reynolds turbulent ReT = 5500), pour lesquels l’amplitude des fluctuations
turbulentes de vitesse croît linéairement avec le débit des jets (jusqu’à un écart-type Σv ≈ 11 cm.s−1),
tout en conservant une taille caractéristique des tourbillons constante L ≈ 5 cm. Le dispositif permet
donc une turbulence reproductible dont l’intensité est contrôlable tout en conservant ses propriétés
spatiales. Si quelques difficultés techniques subsistent, notamment liées à la fiabilité des électro-
vannes, ce type de dispositif présente donc des caractéristiques très intéressantes pour notre étude.
Nous avons montré qu’à l’approche de la surface libre, la turbulence hydrodynamique présente une
redistribution de l’énergie cinétique des fluctuations verticales de vitesse vers les fluctuations hori-
zontales. Ceci est lié aux limitations des mouvements verticaux du fluide imposée par cette interface
et conforme aux prédictions théorique et aux études expérimentales et numériques précédentes.
Nous avons ensuite étudié l’effet de la turbulence hydrodynamique sur des ondes de surface planes
monochromatiques générées par un batteur. Nous avons décrit leur comportement au moyen de leurs
caractéristiques spectrales spatiotemporelles 2D. Il a ainsi été mis en évidence que les fluctuations
turbulentes de vitesse au niveau du batteur conduisent à une distribution de longueurs d’onde au
sein du système dont la largeur croît avec l’intensité de la turbulence. Nous avons également observé
des ondes de surface gravito-capillaires dans toutes les directions en présence de turbulence, qui sont
probablement issues de l’advection des ondes planes monochromatiques et de la déstabilisation du
front d’ondes par les courants turbulents. Des analyses complémentaires sont toutefois nécessaires.
Enfin, ce sont les déformations de la surface libre directement générées par la turbulence qui ont
attiré notre attention car leur nature est peu comprise. Une mesure spatiotemporelle 2D de ces
déformations a été réalisée. A faible turbulence, nous avons mis en évidence que la surface libre
est dominée par des structures non propagatives qui oscillent à basse fréquence temporelle et qui
sont advectées par l’écoulement, même si nous avons relevé également l’existence d’ondes de surface
gravito-capillaires. Quand on augmente ensuite le débit des jets, les amplitudes de déformation de la
surface libre évoluent linéairement avec l’intensité de la turbulence et les différents régimes semblent
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induire des déformations de même nature pour toutes les intensités de forçage. Ceci suggère que les
ondes de surfaces ne sont jamais dominantes à la surface libre. Il est probable que les déformations de
la surface soient alors l’empreinte des fluctuations turbulentes de pression sous la surface libre. Mais
de nouvelles mesures sont nécessaires pour confirmer ces résultats préliminaires et mieux sonder
les petites échelles et donc les régimes capillaires. Les scarifications de la surface et les rides que
nous avons observées en visualisation directe (voir chapitre 12) pourraient ainsi être analysées. Des
intensités de turbulence plus importantes devront par ailleurs être étudiées mais cela demande une
adaptation de notre système de mesure de la surface qui atteint ses limites pour les régimes de plus
fortes déformations étudiés de cette partie.
Dans le processus de génération de la turbulence, la puissance de la pompe n’a pas été testée à
son maximum afin de préserver le dispositif des risques d’une trop forte pression dans cette phase
d’exploration, mais aussi parce que l’amplitude des déformations de la surface libre atteignait les
limites de notre système de mesures. Comme nous l’avons décrit dans le chapitre 12 d’introduction,
nous avons par exemple pu observer la formation de bulles sous la surface en visualisation directe
pour les régimes de turbulence les plus intenses présentés ici. Les perspectives de recherche avec ce
dispositif sont donc étendues. D’autre part, il sera peut-être possible par la suite de modifier la taille
caractéristique des tourbillons en modifiant le nombre de jets allumés simultanément, le diamètre
de sortie des jets ou les temps d’ouverture des électrovannes. Enfin, les problématiques explorées ici
pourraient tirer parti d’une mesure simultanée de la surface libre et du champ de vitesse.



Annexe E

Effet de la turbulence hydrodynamique
sur un mélange d’ondes
gravito-capillaires
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Figure E.1 – Schéma du dispositif expérimental pour la génération d’un mélange d’ondes. Un cône est
placé dans un coin de la cuve et subit des oscillations verticales. (a) Vue de dessus ; (b) Vue de côté

Au chapitre 15, nous avons étudié le comportement d’ondes de surface planes monochromatiques
générées à la surface d’un fluide présentant un écoulement turbulent. Dans le prolongement de cette
étude, une perspective d’étude concerne les interactions entre une turbulence hydrodynamique et un
mélange d’ondes gravito-capillaires engendré par un cône plongé dans l’eau (voir Fig. E.1). Dans de
premières expériences, ce dernier subit des oscillations verticales selon un bruit blanc filtré entre 2 et
6Hz. L’écart-type des fluctuations de la surface libre en l’absence de turbulence est ση = 1.1mm, soit
une pente moyenne κ ≡ kmaxση = 0.07, où kmax ≈ 60 rad.m−1 est le nombre d’ondes correspondant
au maximum du spectre spatial de la hauteur des déformations de la surface (voir Fig. E.3). Les
caractéristiques spatiotemporelles de la surface libre sont alors étudiées en l’absence de turbulence,
puis pour trois niveaux de turbulence avec des fluctuations turbulentes de vitesse d’écart-type jusqu’à
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Σv = 5.3 cm.s−1.
En l’absence de turbulence, le spectre spatiotemporel des déformations de la surface libre (voir
Fig. E.2.a) montre la répartition attendue de l’énergie le long de la relation de dispersion des ondes
gravito-capillaires (ligne blanche continue). Les croix blanches représentent les maxima détectés
sur le spectre. On observe qu’elles viennent également se placer sur une seconde courbe (pointillés
blancs) qui est celle représentant la relation de dispersion des ondes liées. Les ondes liées sont des
harmoniques (de pulsation 2ω et de nombre d’ondes 2k) d’une porteuse qui se propagent à la vitesse
de phase de cette porteuse (ω, k) [133]. En présence de turbulence, on observe un élargissement
de la relation de dispersion qualitativement conforme à un effet Doppler à l’observation mentionné
dans la section 15.3.
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Figure E.2 – (a) Spectres de puissance spatiotemporels des déformations de la surface libre log[Sη(1/λ, f)]
en l’absence de turbulence hydrodynamique. (b) Spectre de puissance spatiotemporel en présence de turbu-
lence hydrodynamique. Σv = 5.3 cm.s−1. Dans les deux cas, la ligne blanche continue représente la relation
dispersion des ondes gravito-capillaires et les pointillés celle des ondes liées. Les croix blanches représentent
les maxima du spectre pour chaque fréquence.

Enfin, on trace sur les Figs E.3.a et b les spectres de puissance respectivement temporels et spatiaux
des déformations de la surface libre en l’absence de turbulence (lignes rouges). Les exposants des lois
de puissance observées dans le régime d’ondes de gravité (f−7 et k−6) sont éloignés des prédictions
de la turbulence d’ondes (f−4 et k−5/2 [153–155]) en raison d’une amplitude d’excitation faible.
Dans les expériences de turbulence d’ondes que nous avons menées à Nantes, les spectres étaient
également plus raides pour les faibles forçages, la loi de puissance en f−4 étant atteinte pour une
pente moyenne de l’ordre de 0.17 (voir Figs 3 et 7 dans [1]), contre 0.07 ici. Les spectres temporels et
spatiaux sont également tracés en présence de turbulence hydrodynamique d’intensité croissante. Le
spectre temporel semble indiquer que la turbulence hydrodynamique a un effet à très basse fréquence
ainsi qu’à haute fréquence mais pas sur les fréquences intermédiaires. Le spectre de puissance spatial
croît en revanche pour tous les nombres d’onde des échelles inertielles, même si la croissance relative
est plus importante pour les plus petits nombres d’onde. Dans le chapitre 16, nous montrons que
les déformations induites par la turbulence sont des structures à basse fréquence qui couvrent de
nombreuses échelles spatiales. Elles peuvent donc expliquer la croissance du spectre spatial à toutes
les échelles ainsi que la croissance des très basses fréquences du spectre temporel. La croissance
d’énergie à haute fréquence sur le spectre temporel peut quant à elle s’expliquer par l’advection de
l’ensemble des échelles spatiales par les courants turbulents à la surface libre. Les comportements
observés méritent bien sûr une analyse plus approfondie.
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Figure E.3 – Spectres de puissance (a) temporels et (b) spatiaux des déformations de la surface libre pour
différents niveaux de turbulence hydrodynamique. Les valeurs indiquées dans la légende correspondent aux
fluctuations turbulentes de vitesse sous la surface libre Σv.
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Trois dispositifs expérimentaux différents ont été étudiés au cours de cette thèse. Ils montrent
comment les interactions entre un écoulement hydrodynamique et des ondes de surface sont pilotées
par la comparaison entre le temps caractéristique de l’écoulement et la période des ondes de surface,
cette dernière dépendant des échelles spatiales et des énergies mises en jeu.
Dans la première partie, nous avons étudié la génération d’ondes de gravité à la surface d’un fluide
par la déformation d’un fond mobile, liée au cas géophysique des tsunamis. Dans une expérience
de laboratoire, nous avons mesuré simultanément la déformation de la surface libre et le champ
de vitesses sous la surface. Nous mettons en évidence les différents régimes de déformation dits
“rapide”, “lent” et “intermédiaire” qui dépendent du rapport entre le temps caractéristique du
mouvement du fond (et donc de l’écoulement) et la période d’oscillation de l’onde générée, fixée
par la taille de la zone déformée et la profondeur d’eau. Nous montrons qu’une déformation du
fond rapide induit un mouvement d’ensemble de la colonne d’eau au-dessus de la zone déformée,
équivalent à une gravité nulle. Ainsi, lorsque le temps caractéristique de l’écoulement est faible,
le caractère ondulatoire de la déformation de la surface libre n’intervient pas et les mouvements
de l’écoulement et de la surface sont alors synchronisés. A la fin de la déformation du fond, le
fluide devient immobile avant le début de la propagation de l’onde. Ainsi une séparation des temps
caractéristiques de l’écoulement et de l’onde de surface introduit une séparation entre le processus
de génération à temps courts et celui de propagation de l’onde de surface à temps longs. Dans le
cas lent, la surface libre est faiblement déformée et la gravité peut être considérée comme infinie.
La surface libre quasi-immobile impose alors au champ de vitesse une structure spatiale équivalente
à celle qu’on obtient pour un jet face à une paroi solide. Les vitesses verticales de la déformation
du fond sont redistribuées horizontalement à l’approche de la surface libre. Nous avons proposé une
nouvelle approche théorique pour ces deux cas asymptotiques lent et rapide. Enfin, dans le régime
intermédiaire, pour lequel les temps caractéristiques de l’écoulement et de l’onde de surface sont
proches, on observe la coexistence de l’écoulement généré par le fond et celui lié à la propagation
de l’onde.
Dans le cas d’un forçage périodique, un accord entre la fréquence des fluctuations de l’écoulement
et celle de l’onde de surface peut produire des résonances. C’est le cas du phénomène étudié dans
la deuxième partie. Nous nous sommes intéressés aux déformations d’une goutte liquide de ferro-
fluide, déposée sur un substrat superhydrophobe soumis à une vibration verticale en l’absence ou en
présence d’un champ magnétique constant. Le ferrofluide est sensible au champ magnétique et son
énergie magnétique dépend de la forme de la goutte. Le volume de la goutte est choisi suffisamment
grand pour qu’elle soit aplatie par la gravité et adopte une forme quasi-cylindrique. La vibration
verticale impose la fréquence des fluctuations de l’écoulement à l’intérieur de la goutte. Nous avons
alors vu que la goutte présente des résonances de deux types, chacune apparaissant pour certaines
fréquences. D’une part, des modes axisymétriques sont observés pour des mouvements du substrat
de faibles amplitudes. Nous montrons qu’il s’agit de résonances linéaires liées à des ondes circulaires
stationnaires gravito-capillaires présentes sur la surface supérieure de la goutte et qui provoquent
des fluctuations du rayon. Pour de plus fortes amplitudes de vibration du substrat, des modes azi-
mutaux apparaissent sous forme de lobes à la périphérie de la goutte. Il s’agit d’ondes stationnaires
capillaires radiales issues d’une instabilité paramétrique et oscillant à la fréquence moitié de la fré-
quence de forçage. Dans les deux cas, les conditions aux limites et donc la géométrie de la goutte
fixent les longueurs d’ondes discrètes des modes propres, définissant des fréquences propres. Pour les
modes axisymétriques linéaires, les résonances ont lieu lorsque la fréquence d’excitation de la goutte
est égale à une fréquence propre. Pour les modes azimutaux, c’est lorsque la fréquence d’excitation
est égale au double de la fréquence propre (résonance paramétrique). Ainsi, nous observons des
résonances lorsqu’il y a une concordance entre la fréquence des fluctuations de l’écoulement et une
fréquence propre des ondes stationnaires. Avec un ferrofluide, nous montrons qu’il est possible de
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modifier les fréquences propres de la goutte grâce au champ magnétique. En effet, si les ondes de
surface gravito-capillaires sont le résultat d’un échange entre énergie cinétique énergie potentielle
gravitationnelle et énergie capillaire , il est ici nécessaire d’inclure l’énergie magnétique. Dans le cas
des modes azimutaux à la périphérie de la goutte, nous montrons par un modèle simple que l’effet
du champ magnétique est équivalent à celui d’une tension de surface négative. Ce modèle est en très
bon accord avec les fréquences propres mesurées expérimentalement.
Enfin, dans la troisième partie, nous avons observé les interactions entre la surface libre et une
turbulence hydrodynamique générée par des jets sous la surface, qui met cette fois en jeu de nom-
breuses échelles spatiales et temporelles. Nous avons dans un premier temps étudié la modification
de la turbulence hydrodynamique par la présence de la surface libre. Comme cela a été vu dans des
études antérieures, nous observons à l’approche de la surface libre que les fluctuations turbulentes
de vitesses verticales diminuent quand celles horizontales augmentent. Nous pouvons ici mettre ce
résultat en relation avec ceux de la génération d’ondes de surface par un fond mobile étudié en
première partie. En effet, cette redistribution de l’énergie cinétique verticale en énergie cinétique
horizontale à l’approche de la surface libre est également trouvée dans le cas de déformations du
fond lentes par rapport aux ondes de surface. Dans le cas de la turbulence, la fréquence des fluc-
tuations turbulentes de vitesse semble donc faible devant la fréquence des oscillations ondulatoires
de la surface. Nous retrouvons ce résultat par l’étude des déformations de la surface libre induites
par la turbulence hydrodynamique. En effet, nous avons mis en évidence que les déformations de
la surface libre sont dominées par la présence de structures oscillant à une fréquence faible devant
celle des ondes de même échelle spatiale. Ces structures semblent être l’empreinte des fluctuations
turbulentes de pression sous la surface libre.
Ces trois expériences apportent donc des éclairages complémentaires sur les interactions entre écou-
lements hydrodynamiques et surface libre. Elles mettent en avant le rôle joué par les caractéristiques
temporelles des fluctuations de vitesse et de déformation de la surface libre. Les échelles spatiales
ne peuvent bien sûr pas être négligées, d’abord car elles sont directement reliées aux échelles tem-
porelles. C’est en particulier le cas pour les ondes surface via la relation de dispersion, mais aussi
pour la turbulence dont les fluctuations temporelles résultent avant tout de l’advection des struc-
tures spatiales de l’écoulement. Nous avons également vu, dans la première partie sur la génération
d’ondes de surface par un fond mobile, que le rapport entre profondeur d’eau et taille de la zone
déformée avait son importance dans le rôle de filtre passe-bas que joue la colonne d’eau. Pour la
goutte, les longueurs d’onde et donc les fréquences de résonance sont fixées par les conditions aux
limites imposées par la géométrie de la goutte. Enfin, ce sont les échelles spatiales de la turbulence
hydrodynamique qu’on retrouve à la surface libre lorsqu’on s’intéresse aux déformations induites par
la turbulence. Un travail en cours sur les interactions entre un mélange d’ondes gravito-capillaires et
la turbulence hydrodynamique a été abordé et reste à compléter car les échanges d’énergie entre les
deux systèmes méritent une analyse approfondie. Ce projet permettrait peut-être de passer conti-
nûment d’un régime d’ondes, caractérisé par une relation de dispersion, à un régime d’advection des
déformations de la surface libre.
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Interactions entre ondes de surface
et écoulements hydrodynamiques

Résumé

L’énergie cinétique d’un liquide est mise en jeu à la fois dans les ondes à sa surface libre et dans les
écoulements hydrodynamiques pouvant exister sous la surface. Ceci peut mener à des interactions spécifiques
entre ondes et écoulements que nous étudions à travers trois expériences.

Dans une première expérience, nous étudions les ondes de type tsunami, engendrées à la surface d’un liquide
par la déformation du fond. Nous examinons comment les déformations de la surface libre et le champ de
vitesse dans le liquide sont influencés par les caractéristiques spatiales et temporelles de la déformation
du fond, habituellement négligées dans les simulations de tsunamis. Nous mettons en évidence différents
régimes et développons une nouvelle approche théorique.

Nous nous intéressons, dans une deuxième expérience, aux lobes oscillants apparaissant à la périphérie
d’une goutte de liquide soumise à une vibration verticale et sensible au champ magnétique (ferrofluide).
Nous montrons que les fréquences de résonance de ces ondes sont ajustables par un champ magnétique
extérieur. Par un modèle capable de prédire l’évolution de ces fréquences propres, nous démontrons que le
champ permet de contrôler la tension de surface effective de la goutte.

Enfin, la troisième expérience sonde les interactions entre une surface libre et une turbulence hydrodyna-
mique. Nous étudions comment la turbulence hydrodynamique est modifiée par la présence d’une surface
libre, mais aussi comment la surface révèle les empreintes de l’écoulement turbulent. Enfin, nous observons
comment des ondes générées à la surface du liquide au moyen d’un batteur sont affectées par la présence
de turbulence hydrodynamique.

Interactions between free-surface waves
and hydrodynamic flows

Abstract

The kinetic energy of a liquid is involved both in the waves on the free surface and in hydrodynamic flows
which may take place beneath the free surface. This can lead to specific interactions between waves and
flows that we investigate through three experiments.

In a first experiment, we study tsunami-like waves generated on the surface of a liquid by the deformation
of a bottom. We investigate how the free-surface deformations and the velocity field under the surface
are affected by the spatial and temporal characteristics of the bottom deformation, usually overlooked in
tsunami simulations. We highlight different regimes and develop a new theoretical approach.

A second experiment is focused on the oscillating lobes displayed at the periphery of a drop of liquid
subjected to a vertical vibration and sensitive to a magnetic field (ferrofluid). We show that the resonant
frequencies of these standing waves can be adjusted by an external magnetic field. By means of a model able
to predict the evolution of these natural frequencies, we demonstrate that the magnetic field can control
the effective surface tension of the drop.

Finally, the third experiment probes the interactions between a free surface and a hydrodynamic turbulence
generated by jets under the surface. We study how hydrodynamic turbulence is modified by the presence of
a free surface and, conversely, how the deformation of the free surface reveals the footprints of the turbulent
flow under the surface. Finally, we see how waves generated by a wavemaker on the free surface are affected
by the presence of hydrodynamic turbulence.


