On scaling laws in granular flows down a rough plane
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The scaling properties of granular flows down an inclined plane are investigated in a model
previously proposed to describe surface flows on a sandpile. Introducing a depth dependant friction,
we are able to reproduce the results obtained experimentally by [O. Pouliquen, Phys. Fluids 11,
542 and 1956 (1999)] on both the fronts velocities and their shapes.
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FIG. 1. (a) Experiment: side view of a dry granular flow down an inclined plane covered by velvet cloth. Right: a sharp
front propagates at a constant velocity (from left to right on the figure), with a steady shape. Successive images difference,
reveal that the grains flow only on part of the total height (black), the rest (light gray) being static. Left: when the injection
is suddenly stopped, a stopping front propagates downward (from left to right on the figure), at a larger velocity for the case
presented here. A uniform static layer of thickness Z},, finally remains on the plane. The vertical scale is 10 times the
horizontal one. (b) Model: the model is integrated numerically for the same conditions. As in the experiment, starting and

stopping fronts propagate downward at a constant velocity.

In two recent articles [1,2], Pouliquen has remarkably
shown in an experiment that granular avalanches down
a rough inclined plane exhibit a robust scaling law, valid
for various systems of beads and various plane roughness.
This scaling shows that the only characteristic length-
scale is the thickness 77, (¢) remaining when the flow
stops [3,4], (see fig. 1). Despite its simplicity, this scaling
has not yet received any theoretical explaination.

On the other hand, several models have been recently
proposed to describe granular flows at the surface of a
sandpile [5,6]. The DAD model is derived from macro-
scopic conservation laws integrated along the vertical di-
rection (Saint-Venant equations) [7] and is based on the
rigorous derivation of the effective force acting on one
rolling grain [8]. The aim of this letter is to compare
the rheology obtained with our model, a prior:i not con-
structed for the case of an avalanche on a fixed bottom,
to Pouliquen scaling law.

We will give here a quick overview of our model, the de-
tailled derivation and the effect of each term being post-
noted to a forthcoming article. The evolution of the free
surface ¢ (fig. 2) is given by the conservation of matter:

D=0 (1)

The evo-
lution of the momentum ¢ = %HQI: (fig. 2) is given by
the dynamical equation, the forces being pressure, grav-
ity and the effective friction gz (H) acting on the bottom
of the flowing layer (fig. 3) :

Dyg=—gH (6H +cosOVZ + JLz COS 65) (2)

where D, denotes the material derivative [9].

where 0 is defined by tanf = |V Z]|.
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FIG. 2. In the model, the velocity profile inside the flowing
granular layer is assumed to be linear, its vertical gradient
being [' = I's (8 is the direction of motion). The local state
of the sand pile is described by the flowing depth H, the free
surface profile ¢ and by the position of the static/flowing in-
terface Z = ( — H. H*, Z* et (* are the same quantities but
measured from the plane, perpendicularly to it.

The momentum ¢ increases either when the flowing
height H (the mass) increases or when the velocity gra-
dient T (and thus the mean velocity) increases: D:§ =
%H2th + fHDtH. Correspondingly, the right hand
side of eq. (2) is splitted into two contributions [9]. The
evolution of the velocity gradient inside the flowing layer
results from the balance between gravity driving and dis-
sipation by collisions pr(T):

H . - - 3
EDJ‘ =—g (VH + cos OV Z + pr cos Ht) (3)

The evolution of the interface between the static and
flowing layers is governed by the competition between



the collisions which tend to mobilise the static part and
the trapping of grains in the holes between the under-
neath ones [8]:

I'DyH = gcosf(pur — pz) (4)
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FIG. 3. a) the flowing layer is globally submitted to an
effective friction uz(H) which characterises the force needed
to mobilise particles from the static part of the sandpile. b)
the velocity gradient ' at an angle ¢ 1s determined by the
balance between gravity and dissipation by collisions pr(T').

pz(H) is constructed to capture the hysteretical char-
acter of the transition between the static and flowing
states [4,8], and the decrease of effective friction with
velocity. To take into account the fact that the rough
bottom spreads its influence inside the grain layer up to
several grains diameters [3,4], the friction coefficients piq
and pg are assumed to depend exponentially on the po-
sition Z* of the static/flowing interface with respect to
the solid bottom (fig. 4 a).

ur(T) directly derives from the analysis of the motion
of one grain [10,8]: when gravity is balanced by dissipa-
tion the grain reaches a constant velocity I' which de-
pends simply on the plane angle . This equilibrium
gives ur(T) = tan ¢ (fig. 3 b).

To adjust our model parameters to the Pouliquen’s
experiments, we first computed numerically the height
Ztop() remaining on the plane when the flow stops
(fig. 4), as shown in fig. 1 b (left). The surface profile
let behind it by the stopping front is not strictly parallel
to the plane but tends towards a constant height 73,
as 1/z*. The thickness Z},,,(¢) is the same whatever
the initial condition is, but the 1/z* decrease is more
pronounced when inertia is initially large i.e. at large
flowing height H (fig. 1).

In first approximation 7%, (@) gives the dynamical
friction coefficient p4(7*) [1,2,4]: when the flowing height
is decreased, Z7;,, is the first layer with enough fric-
tion to stop. It can be observed however that 77, (¢)
is slightly larger than the dynamical friction coefficient
ua(7*) (fig. 4). This is due to the hysteresis, which in-
duce an increase of friction at small flowing height (fig. 3
a).

We also measured, as done by Pouliquen, the angle
@stop below which a flow of given height ¢* stops. As
in Pouliquen’s experiment, the stopping height 77, (¢)
and @s¢0p(C*) nearly collapse (fig. 4).
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FIG. 4. After an avalanche, a static layer of height Z%;,, ()
remains on the plane (black dots). It is nearly equal, but
slightly above the minimum angle ¢gi0p below which any
flow stops (white circles). The friction coeflicients ps(Z*)
and pq(Z*) were adjusted to recover the measurement of

Pouliquen (system 1).

We can now compare the front shapes obtained for dif-
ferent flow rates ¢ at the same angle ¢. When rescaled
by the total height far from the front {7, the front pro-
files nearly collapse on the same curve (fig. 5). Just at
the front however, in the model the slope slightly in-
creases with ¢q. Globally we observed that the slope at the
front decreases with increasing plane angle ¢, when com-
puted with respect to the plane (quantities noted with
a star). On the other hand, the slope with respect to
gravity (fig. 2) remains almost constant, as observed by
Pouliquen [2]. Far from the front (at co), the free surface
profile and the interface between static and flowing lay-
ers become parallel to the plane. The balance between
mobilisation and trapping determines the position Z, of
the static/flowing interface tan ¢ = puz(H). The internal
equilibrium between gravity and dissipation by the colli-
sions fixes the velocity gradient T' (tan ¢ = pur(T)). The
model thus basically predicts that the grains flow only on
a part of the total height (fig. 1 b) with a static thickness
7% . This situation was not imagined by the previous
authors who considered a layer flowing down to the solid
rough bottom. An experiment with lateral glass plates
(fig. 1 a) show that it is indeed the case.

This static height is determined by the equilibrium be-
tween the gravity effects and the friction. This friction
increases close to the rough bottom. As the gravity effect
increases with the plane angle, this static height thus de-
creases (and eventually vanishes above the slope 14(0))
(fig. 4). On the other hand, except for the small hys-
teresis, this friction is almost independant of the flowing



height (fig. 3). So the static height is determined by the
plane angle, but only slightly by the flowing height above
it. This system is thus similar to the system imagined
previously, with a flow down to a fixed bottom, expect
that this rough bottom is now at a height Z* depending
on the plane angle.
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FIG. 5. Front profiles (*(z*) rescaled by the total height

far from the front (% for ¢ = 24°. For the five flow rates

q shown (1/4, 1, 4, 16 and 64 in units of g%d%)7 the fronts
profiles nearly collapse on the same curve.

The front velocity u* 1s fully determined by the global
conservation of matter, {* u* = ¢ = ['H?/2 and thus
does not depend on the front shape. As suggested by
Pouliquen results, u* can be rescaled by the gravity g
and the avalanche height (%, to form a Froude number:

\9Ck 2 cos? /g1 ;O%
which plotted for different angles ¢ as a function and
(/! Z5t0p (fig. 6). It turns out that the curves obtained
for different angles nearly collapse on a single curve, as
obtained experimentaly (it however exhibits a small cur-
vature). The mean slope of the curve is around 0.12
wheras it was 0.136 in the experiment, meaning that the

model allows to recover the experimental results both
qualitatively and quantitatively.

FIG. 6. Dimensionless front velocity u/+/g{’ as a function
of (/Cstop for different inclination angles (every 1° between
22° and 28°).

The DAD model, derived for thick piles, can thus be
adaptated to simulate flows on a rough bottom by in-
troducing a depth dependent friction. For instance we
recover the scaling of the front shape and velocity mea-
sured in experiments. However, this model (and an ex-
periment) reveal that the flow does not occur down to
the bottom plane, and that there exists a layer of static
grains. This suggests that the effective rheology derived
assuming that the flow occurs on the whole height should
be modified by taking this static layer into account.
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