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Abstract

We present recent experiments on drops sliding along an inclined plane in
situation of partial wetting. Above a critical capillary number the contact line
edging the drops becomes singular at the drop rear: a "corner" developes,
where the contact line exhibits an angulous shape. Views taken from above
and from the side show that this occurs when a non-zero critical dynamic
angle is reached at the drop rear, the interface assuming a conical shape. This
conical shape is recovered by seeking a 3D similarity solution of the flow
near the corner tip in the lubrication approximation. This model reproduces
accurately the correlations between two characteristic angles of the cone.

1. Introduction

When a tape or a plate is pulled out of a bath at constant speed, in situation of
partial wetting,  a triangular film edged by a sawtooth contact line is observed
insteed of the expected Landau film driven by the tape motion (Burley 1975,
Blake 1979). A similar phenomenon has been recently identified on drops
sliding along an inclined plane (Podgorski 2001). When the capillary number
Ca = ηU γ  (U  drop velocity, η viscosity, γ surface tension) exceeds a
critical value, the initially rounded perimeter of the drop exhibits a singularity
at the drop rear (see Figure 2-c). A "corner" developes where two contact
lines are crossing each other separated of an angle 2φ. This "corner opening
angle" is linked to Ca  by a scaling of the kind sinφ ∝1/ Ca  that is
qualitatively explained as follows. When Ca is progressively increased, the



dynamic contact angle reduces at the drop rear until reaching zero, value for
which a Landau film should be deposited on the solid. Instead of this, the
contact line becomes tilted in order to keep the effective capillary number
Casinφ  defined in a direction normal to contact line locked to the critical
value, the system lying just at the transition. Recent preliminar observations
(Limat 2002) and an approximate model of the flow in the corner (Stone
2001) are inconsistent with the idea of a vanishing contact line at the drop
rear. We therefore present here more accurate visualizations of such drops
(Daerr 2003) and more rigorous calculations of the flow including 3D effects
(Limat 2003).

2. Experiments

Trains of millimetric silicon oil drops (volume 6 mm3) are poured at the top
of an inclined glass plate coated with fluoropolymers (3M FC725
compound). Varying the plate inclination allows us to change at will the drop
velocity. We used three diferent oils of respective viscosities η=10, 100 and
1000 cP, mass density of order 0.95 g/cm3, and surface tension of order 20
mN/m.  By using a mirror and an appropriate optical method we were able to
visualize the drop from both the top and the side as dark shapes on a clear
background. Examples are displayed on Figure 1. At low velocities (case a),
the drops are rounded and the side view allows us to measure quite accurately
the dynamic advancing and receding contact angles θa and θr . At higher drop
velocity, a corner developes (cases b and c). As one can judge from the side
view, the structure of the interface becomes conical at the drop rear, the cone
being parametrized by the angles φ  (corner opening angle) and Ω (slope of
the interface viewed from the side). At even higher velocities, a cusp is
observed instead of the corner (case d), and a pearling transition with droplet
depositions at the cusp tip (case e).

We have plotted on Figure 2 the evolution versus Ca of the angles θa, θ r

(measured only on rounded drops), φ , Ω  for the 10 cP silicon oil. The θa and
θr measurements are well described by a Cox-Voïnov law:

θa / r
3 =θS

3 ± 9ln(b /a)Ca (1)

with θS=44° for the receding contact angle and θS=51° for the advancing
contact angle. Both cases have nearly the same logarithmic parameter value
9Log(b/a)=130, a remarkable fact that we found for the three used oils.
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Figure 1: Drops sliding (from top to bottom except in case e) on an inclined
glass plate for increasing velocities:  (a) rounded drops, (b) limit of corner
formation, (c) cornered drops, (d) cusped drop, (e) pearling drop.  In case (a)
and (c) the picture taken from above (on the left) is presented with a picture
taken from the side (on the right), itself doubled by a reflection on the glass.
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Figure 2: Evolution versus Ca of θa (ο), θr (), φ (Ú) and Ω (), deduced
from the pictures for a 10 cP silicon oil. (+): Ω predictions from Equation (6).

This is a strong indication suggesting that the hydrodynamic model is well
adapted to describe our system.

In the corner regime, the surprise here, that confirms in fact our previous
observations (Limat 2002) is that the corner appears for a non-zero critical
value of the dynamic contact angle at the drop rear, of order here θc=20°. Let
us note however that the critical capillary number of the corner formation
remains close to the value at which θr touches down. In this sense, the initial
qualitative argument is not so far from the truth. Still in the corner regime, φ 
is well described by a 1/Ca law, which suggests that instead of remaining
locked on θr(Ca sinφ)=0, the system is locked on θr  (Ca sinφ)=θc, which
implies from equation (1) that:

φ
Ω

θa



Ω

Uu(y,z)

z
U

x

y

φ
h(x,y)

x

z

α

Figure 3: Model suggested in the drop framework (ascending plate).

sinφ ≈
θs
3 −θc

3

9Log b a( )
1
Ca

  (2)

with again  θS=46°=0.80 rd , θc=17°=0.30 rd and 9Log(b/a)=130.

Finally, let us also mention that , still in the corner regime, Ω is in continuity
with the trace of  θr(Ca) in the oval regime. Though rather intuitive, this
result is not obvious since in this conical structure the contact angle (defined
normaly to contact line) does not coincide with Ω. Imaginating the detail of
the involved geometry still remains a puzzling problem.

3. 3D Model of the corner.

The qualitative ideas used above are reasonable but, up to now, there is no
theoretical proof of the fact that Casinφ is the relevant capillary number, i.e.
that all the contact line properties are governed in some sense by the velocity
component normal to contact line. Also, a rigorous model of the flow near
the corner is still lacking, despite the simplified approach provided in our
previous papers (Stone 2001, Limat 2002). We provide here a brief account
of a more rigorous approach published very recently (Limat 2003). Let us
mention that another model has been proposed by another group but based
upon different physical assumptions (Benamar 2001).

In a framework moving with the liquid surface, i.e. in which the free surface
is static, the plate is moving along the Ox axis of Figure 3 with a velocity –U.
This induces a liquid flux towards x<0 that is balanced by a flux in the
opposite direction induced by the pressure singularity at the corner tip. The



situation is in turn complicated by the existence of a component of velocity
directed along Oy. In the lubrication approximation (low angle limit with
negligible inertia), the balance of liquid reads:

3Ca
∂h
∂x

= ∇. h3∇(Δh)[ ]       (3)

where h(x,y) denotes the local thickness of liquid and ∇ = (∂ x,∂ y) . Very

near the tip of the corner, one can seek for similarity solutions of the kind

h(x,y) = Ca1 / 3H (ς = y / x) . This leads to an ordinary differential
equation

€ 

(1+ ς 2)2(H 3Hςςς )ς + 3ς (1+ ς 2)(H 3Hςς )ς
+2ς(1+ ς 2)H 3Hςςς + (1+ 3ς 2)H 3Hςς = 3(H −ςHς )

(4)

that must be completed with a zero flux condition across the cross-section of
the cone, the flux integrated on a cross section reading:

€ 

Jx = 2 jx
0

ζx

∫ dy =
2
3
γ
η
Ca4 / 3x 2 K ζ '( )

0

ζ

∫ H 3 ζ '( )dζ '

with: (5)

 K ζ( ) =
d
dς

ζ(1 +ζ 2 ) d
2H
dζ 2
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The numerical simulation of the solutions of this problem are reproduced on
Figure 4 and compared to a previous approach neglecting the Oy velocity of
the flow ("planar flow approximate"), and to an even simpler parabolic
approximate of the cross-section discussed in the same reference (Stone
2001). As one can judge from this figure, the 3D nature of the flow does not
change too much the situation with respect to the planar model, at least near
the center of the cone cross section. On the same Figure we have reproduced
the predictions of this approach for the relationship linking the two angles
φ and Ω   across the quantity H(0)=H0=Ca-1/3tanΩ  . Remarkably, both the 3D
and planar flow models are quite well described by the result of the parabolic
approximate that gives:

tan 3Ω ≈
3
2
H0
3 =

3
2
Catan 2φ (6)
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Figure 4: Calculated profiles of the cone cross section, the free surface being
given by h=Ca1/3xH(ζ=y/x). Insert : Relationship linking the opening corner
angle φ to H0=Ca-1/3. Continuous lines : full 3D solution. Dashed lines: planar
flow approximation . Dash-dotted lines: parabolic approximation for the
cross sectional shape. (): experimental values deduced from (Limat 2002)
obtained with silicon oil drops sliding on fluoropolymers, γ =20 mN m-1, η
=20 cP. Open symbols: measurements from (Daerr 2003) discussed in section
2: (Á)  η=10 cP, (Û) 100 cP, and (·) 1000 cP, with again γ =20 mN m-1.

Experimental data extracted from our measurements for the three oils used
are compared to this law that seems to work remarkably well. Just as for the
mobility law of Equation 1, it seems that despite its well known limitations,
the classical hydrodynamic model works very well in our situation.

Finally we have checked how behaves our solutions very near each contact
line. We found that the singularity of thickness reads:

h ≈ (9Casinφ)1/ 3ξ(−Logξ )1/ 3 (7)



where ξ = xsinφ − y cosφ  designates the coordinate normal to the contact
line. This expression is consistent with the idea that – at least qualitatively –
the contact line behaves following the Cox-Voïnov model, after replacing the
capillary number with the effective value Casinφ . All these findings are
consistent with the qualitative ideas discussed in the experimental part, that,
perhaps for the first time receive the begining of a justification starting from
hydrodynamics.
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