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Coexistence of Two Singularities in Dewetting Flows: Regularizing the Corner Tip
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Entrainment in wetting and dewetting flows often occurs through the formation of a corner with a very
sharp tip. This corner singularity comes on top of the divergence of viscous stress near the contact line,
which is only regularized at molecular scales. We investigate the fine structure of corners appearing at the

rear of sliding drops. Experiments reveal a sudden decrease of tip radius, down to 20 um, before
entrainment occurs. We propose a lubrication model for this phenomenon, which compares well to
experiments. Despite the disparity of length scales, it turns out that the tip size is set by the classical
viscous singularity, for which we deduce a nanometric length from our macroscopic measurements.
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Fluid interfaces can be deformed into singular structures
exhibiting length scales much smaller than that of the
global flow. The most common example is a water drop
detaching from a faucet, developing a singularity at pinch-
off [1,2]. Similar topological changes occur when the flow
near the interface is driven so strongly that one of the fluid
phases can invade the other. This so-called entrainment
often occurs through a sharp cusp or tip [3-7], as is, e.g.,
observed for air bubbles entrained by a jet or solid plunging
into a liquid pool [8-12]. However, below the critical
driving strength the interface remains at steady state and
a stationary, singular structure is formed. In addition to its
fundamental interest, this control over small length scales
is crucial in applications such as spray formation and inkjet
printing [13,14], while entrainment is rate limiting in coat-
ing [15].

A peculiar situation arises in wetting flows, when the
liquid is bounded by a corner-shaped contact line [8—
10,16-18], cf. Fig. 1(b). Above a critical speed the sharp
corner tip breaks up to entrain bubbles or droplets depend-
ing on whether the contact line is advancing or receding.
This corner singularity emerges on top of the famous
moving contact line singularity: even a perfectly straight
contact line develops diverging viscous stress when main-
taining a no-slip boundary condition down to molecular
scale [19,20]. Despite progress on the flow away from the
tip [21,22], it has remained unclear how these two singu-
larities can coexist, whether they are related, and what
determines the sharpness of the corner tip [17].

In this Letter we investigate the fine structure of corner
tips appearing at the rear of drops sliding down an inclined
plane (Fig. 1). The steady-state corners are characterized
by the tip radius R, which close to the entrainment thresh-
old is found to decrease dramatically with drop speed U.
Using a lubrication model we derive the approximate
relation
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that accurately describes the experimental observations.
Here 6, is the equilibrium (receding) contact angle and
the speed dependence appears through the capillary num-
ber Ca = Un/7y, where 1 and y denote viscosity and
surface tension. We identify the length / as the molecular
scale associated with the microscopic physics of wetting
[23-31]. We obtain a length of the order of 10 nm by fitting
the experimental data. From a hydrodynamic point of view,

FIG. 1. (a) Sketch of the experimental setup. Partially wetting
silicone oil drops slide down an inclined plane with constant
velocity. (b) The interface shape of the drop is monitored from
above for different sliding velocities. At large speeds a sharp
corner forms at the rear of the drop. (c) The tip radius R can be
determined from a zoom of the corner tip. (d) Same as in
(c) showing that the contact line is well approximated by a
hyperbolic shape (dashed, using R = 50 pm).
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this is the scale at which the classical viscous singularity is
regularized.

Dewetting corners thus have the remarkable feature that
the tip size is governed by an inner length scale /, much
smaller than the tip radius itself. This scenario is very
different from free surface singularities without a contact
line, even though these can exhibit a similar exponentially
decreasing tip size. For example, the cusp solution by
Jeong and Moffatt [3] scales as Ry, ~ Le 2 but in this
case L is an outer length scale characterizing the macro-
scopic flow.

Experiments.—A schematic view of the experimental
setup is given in Fig. 1(a). Silicon oil drops are deposited
on an inclined glass plate (n = 18.6 cP, y = 0.0205 N/m,
p = 940 kg/m?). The drops detach from a pipette con-
nected to a syringe pump, resulting in a constant drop
volume (typically 810 mm?). The drops slide down at a
constant speed U that is controlled by the angle at which
the plate is inclined. The glass plate is coated with fluoro-
polymers (FC725), providing partial wetting conditions for
silicon oil [16] with static advancing and receding angles
of 55° and 45°, respectively. As we consider the receding
contact line at the rear of the drop we take 6, = 45°. The
corners are visualized with great magnification that is
achieved by using a 25 mm Pentax lens in reversed direc-
tion combined with several macro extension tubes. The
optical resolution of the images like Fig. 1(c) on which the
actual tip curvature measurements are done is 2 um/pixel
on a 1 megapixel image.

Figure 2 shows experimental results on the contact line
curvature 1/R as a function of drop speed Ca. Tip radii are
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FIG. 2. Experimental measurements of the tip curvature 1/R
as a function of Ca. Data are normalized by the contact line
radius at zero speed, Ry = 1.63 mm. At low Ca the curvature
stays nearly constant R/R, = 1, while close to the pearling
transition (vertical dashed line) the curvature increases nearly
2 orders of magnitude. The solid line indicates the prediction (1)
with / =7 nm. Inset: The logarithmic plot confirms the pre-
dicted scaling. The dashed line is the best linear fit.

normalized by the radius of curvature of a static drop of the
same volume, Ry = 1.63 mm. At low speeds the curvature
remains constant, while a rapid increase of the curvature
can be seen at capillary numbers Ca = 5 X 1073, This
behavior coincides with the onset of the cornered shape.
The measurements continue up to the “pearling transition”
at which small droplets are entrained, occurring around
Ca =7 X 1073. The smallest tip size we find before this
entrainment is approximately 20 pum, which is nearly 2 or-
ders of magnitude smaller than the global drop size. The
scaling (1) is revealed in the inset of Fig. 2, showing the
curvature 1/R on a semilogarithmic scale versus 1/Ca. In
the corner regime the data agree very well with this ex-
ponential behavior. The solid line was fitted using the
length scale [ as the sole adjustable parameter, yielding [ =
7 nm. We wish to emphasize, however, that the determi-
nation of [ is very sensitive to the details of the fit. For
example, when fitting (1) using 6, as second adjustable
parameter one finds 6, = 41° and [ = 65 nm (dashed
line). We nevertheless conclude that the length scale is of
nanometric size, consistent with the typical size of silicone
oil molecules [17].

We now wish to demonstrate that [ is related to the
regularization of the viscous singularity that appears in
the Cox-Voinov law for the dynamic contact angle 6 [23]

6° = 6> — 9Calnx/I,, ()

which is accurate within 2% for angles up to 45° [24]. This
dynamic angle varies logarithmically with the distance to
the contact line x, cut off at a scale /,. The precise inter-
pretation of this length depends on the physics at molecular
scale, which goes beyond hydrodynamics and beyond the
purpose of the present Letter [23—31]. Here we estimate /,
by measuring the contact angle along the central axis of the
drop, very near the tip, from side view images at different
speeds (cf. inset of Fig. 3). Strictly speaking, (2) is derived
for straight contact lines. We therefore perform our mea-
surements at a distance << R, where the effect of contact
line curvature should be negligible. Given the resolution of
the side view images, we take x = 50 wm in order to have
sufficient accuracy on the contact angle.

Figure 3 shows 6° versus Ca. We clearly distinguish the
linear regime of (2), as well as a departure from this
behavior at higher drop speeds. From a linear fit we recover
the (receding) equilibrium angle 8, = 45 = 1° as well as
lp = 8 =5 nm. This length scale is consistent with the
order of magnitude found from the R measurements. The
deviation from the Cox-Voinov behavior occurs when the
radius of curvature approaches the measurement scale of
50 pum, around Ca = 6 X 1073. This once more suggests
an interaction between R and [, in the corner regime.

Lubrication model.—We interpret these findings within
a lubrication model that incorporates the strongly curved
tip. For small contact angles the shape of the liquid-gas
interface, h(x, y), obeys a partial differential equation that
expresses a balance between capillary and viscous forces
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FIG. 3. The receding contact angle 6 measured at a fixed
distance x = 50 um. A linear fit is made to the Cox-Voinov
regime (solid line). A clear departure from the linear regime sets
in at Ca=~ 6 X 1073, where R approaches the measurement
scale of 50 um. Inset: A side view of the rear of a drop sliding
from right to left. A, is the height of the drop along the center
line.

[32]. The multiscale nature of the problem makes it diffi-
cult to solve the equation by direct simulation. Instead, we
propose an approximate analysis that has the additional
advantage of yielding expressions in closed form. First, we
assume that the flow is oriented purely in the x direction
(Fig. 4, inset), so that the lubrication equation simplifies
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FIG. 4. Rescaled slope H'® obtained from numerical solution
of (6) with boundary conditions H'(c0) = 1, H(0) = 0 (solid
lines). The Cox-Voinov logarithmic variation saturates at a
distance X ~ 1, corresponding to the tip radius. Dotted lines
represent (7) using B as fit parameter. Inset: the drop shape is
modeled by a hyperbolic contact line shape y(x) and parabolic
cross section. The center line profile /y(x) can then be computed
from (6).

k is the interface curvature providing the Laplace pressure
p = —vy«k. For sharp corners with vanishing tip size, this
“planar flow approximation” was found very accurate
[21]. In the present case this corresponds to x > R. For
X < R the flow becomes truly one dimensional since
d/d, < d/d, and (3) is even exact. In this region k =
d.ch, and (3) can be integrated to the Cox-Voinov law
[23,24,33]. For corners such as in Fig. 1 we thus expect
to recover (2) at small distance from the tip.

Away from the tip, x ~ R, the interface exhibits a truly
two-dimensional structure, k = d,.h + d,,h, making the
analysis much more involved. This effect has been consid-
ered in the limit of weak contact line curvature [34], but
this is not sufficient for the present purpose. To make
progress we estimate « by (i) approximating the contact
line shape by a hyperbola, y% =2Rx + ¢*x*, and
(ii) approximating the cross section of the corner by a
parabola. The quality of the former approximation can be
inferred from the dashed line of Fig. 1(d), while the latter
has been justified in detail in [21]. With this, the interface is
parametrized as (cf. inset Fig. 4)

y?
s ) = hoo(1 - 25 ) o)
cl
containing R and ¢, the opening angle of the hyperbola, as
parameters. In addition, we still need to solve the center
line profile /y(x). To close the problem we evaluate the
curvature at the center line y = 0,

p 2hy

i S 5
O 2Rx + ¢*x? )

k=h
which together with (3) provides an ordinary differential
equation for hg(x). This equation was previously studied
with vanishing tip radius R = 0 [21,22], here representing
the limit x > R. This regime admits solutions with a well-
defined corner angle hj(c0) = Q) = (3Ca¢?/2)!/3, ob-
tained by combining (3) and (5).
It is convenient to introduce dimensionless variables
X = x¢?/R and H = hy¢>/RQ, so that from (3) and (5)
we obtain the equation on the center line

¢2 "n __ ( H ! — i
S+ 2)) 7 ©

The only remaining parameter is the opening angle ¢ [35].
We have the asymptotic boundary conditions H'(c0) — 1
(corner solution) and H(0) — O towards the contact line.
Figure 4 displays the solutions obtained from numerical
integration, for various ¢. At small X one recovers the
Cox-Voinov logarithmic variation of the slope H’, showing
up as a straight line on this plot. However, this trend
saturates at large X, when the two-dimensional nature of
the curvature becomes apparent. All solutions are very
accurately represented by the form

H? =1+ % 1n<1 + g) (7)
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as can be seen from Fig. 4 (dotted lines). We used 3 as a fit
parameter that turns out to depend weakly on ¢. A pertur-
bation expansion shows that (7) is in fact the exact solution
for ¢ > 1, with B = 2.

To solve for the tip radius, the final step is to match (2) to
the small scale asymptote of (7), which in original varia-
bles reads 1" =~ Q3 + 9Caln% . Equating the two expres-

sions one finds

: ®)

which is the sought-for relation between R, Ca, and the
contact angles. Since in practice () < @,, it can be recast
as (1) with [ = I,¢?/B. Strictly speaking this length con-
tains a dependence on drop speed through the opening
angle ¢ that also induces a variation of B. This variation,
however, is subdominant with respect to the exponential
dependence in (1).

Let us emphasize that the structure (7) is robust with
respect to the choice of parametrization of the interface
shape and the “planar flow approximation,” since these
only affect the crossover to the corner regime. On the other
hand, the numerical value of B is determined from the
second term in (5) and will certainly be model dependent.
One should bear in mind that these details fall within the
experimental uncertainty on / and /.

Outlook.—We have identified a new kind of singularity
in free surface flows for which the regularization involves a
microscopic (inner) scale instead of a macroscopic (outer)
scale. In fact, the corner is obtained by sharply bending the
line singularity associated to the viscous divergence near
the contact line. This is very specific for wetting flows and
differs qualitatively from other free surface singularities.
Our findings also emphasize that the dynamic contact
angle is strongly affected by the corner. This gives a
departure of the Cox-Voinov behavior when the tip size
becomes comparable to the scale of measurement. It would
be interesting to compare these results to advancing con-
tact lines, where bubble entrainment occurs through sharp
corners as well [8-10].

In the experiment, the minimum tip size that can be
achieved is limited by the onset of the pearling instability.
This instability can possibly be incorporated in the model
by matching the cross sections to the inclined contact lines,
along the lines of Ref. [22]. In that study, however, the tip
radius was neglected and incorrectly predicted a vanishing
size of emitted drops at threshold. In practice these drops
are of the order of 100 wm, which we speculate to be
related to the finite radius of the tip.
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