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Dynamics of a grain on a sandpile model

L. Quartier, B. Andreotti, S. Douady, and A. Daerr
Laboratoire de Physique Statistique de l’ENS, 24 rue Lhomond, 75231 Paris Cedex 05, France

~Received 5 June 2000!

The dynamics of a macroscopic grain rolling on an inclined plane composed of fixed identical grains is
investigated both experimentally and theoretically. As real sand, the system exhibits an hysteretic transition
between static and dynamical states: for angles smaller thanwd , the roller always stops, for angles larger than
ws , it spontaneously starts rolling down. But for angles betweenwd andws , it can be either at rest or in motion
with a constant velocity. It is shown that the limit velocity is given by the equilibrium between gravity driving
and dissipation by the shocks. Moreover, the rough plane acts as a periodic potential trap whose width and
depth decrease when the angle is increased: the static anglews corresponds to the angle for which the trap
disappears; the dynamical anglewd to that for which the limit velocity is sufficient to escape from the trap.
Finally, a continuous description of the force globally acting on the grain is proposed, which preserves this
hysteretic behavior.

PACS number~s!: 83.70.Fn, 45.05.1x
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I. INTRODUCTION

Although sand beaches provide a wide playing field t
allows many pleasant experiments, granular media rem
closed to an intuitive understanding. There are mainly t
reasons for that. One is related to the difficulty of describ
granular media, the other to the lack of physical mechanis
that would simply explain its main behaviors.

First particularity, a sandpile is able to remain static ev
with an inclined free surface. This equilibrium is genera
characterized by the free-surface slope tanw, following the
analogy with solid friction@1#, besides not more intuitive
After having built dynamically a sandpile, it remains sta
with an angle of reposewd . This means that any motion o
the surface spontaneously stops ifw,wd . This sandpile at
rest can now be inclined up to a second critical anglews at
which an avalanche occurs.ws is thus the maximum angle o
stability: for w.ws.wd , the sandpile spontaneously sta
flowing. Also the dynamics of avalanches presents origi
features: contrary to a liquid, only a thin layer of grains is
into motion and contrary to a solid, the avalanche does
accelerate indefinitely, and reaches a finite limit velocity.

The transition between solid and liquidlike behaviors
hysteretic: when the free surface is betweenwd and ws the
sandpile can be either flowing or at equilibrium, depend
on the history. In other words, the free-surface slope is
sufficient to describe the state of the system and its ev
tion, the fact that it is in motion or not being crucial. Actu
ally, the situation is even worse since both the starting an
ws and the dynamical anglewd depend not only on the ma
terial but also on the microscopic arrangement of grains,
the preparation of the sandpile, on its structure@2#, etc.

The second particularity is the absence of a mesosc
lengthscale between the grain diameterd and the macro-
scopic scale~typically 102d2104d! at which the local prop-
erties could be averaged. Because the number of grain
always too large to consider them individually, an importa
problem is the possibility of describing granular material a
continuous system. We are thus interested in two proble
~1! What are the basic mechanisms at the scale of one g
PRE 621063-651X/2000/62~6!/8299~9!/$15.00
t
ns
o
g
s

n

l
t
ot

g
t

u-

le

n

ic

is
t
a
s:
in

that govern the dynamics of a sandpile? and~2! Can we build
a continuous ‘‘macroscopic’’ model to describe these d
namics?

In order to get an intuive idea of the physical mechanis
acting in such a complex system, we will investigate t
previous questions in the simpler case of a single ‘‘e
larged’’ grain on a rough inclined plane~the rest of the sand
pile!. This study has been previously developed@3–10# with
the idea~among others! of studying the segregation phenom
enon. The dynamics of a single bead was thus studied, v
ing the plane roughness, i.e., the bead size compared to
size of bumps beneath it: at large angle~and large size!, the
bead jumps and accelerates indefinitely, for smaller ang
~and smaller size! the bead stabilizes on a constant veloci
and below a threshold value it stops. We already see that
simple system exhibits a bifurcation between static and flo
ing behaviors. Our aim is to reexamine this experiment,
cusing not only on the mean velocity, but also on transie
~on the effective friction force acting on the bead! and on the
subcritical transition between static equilibrium and motio

The experimental setup is described in Sec. II. In the n
part, the stationary states are characterized as a functio
the slope for different materials and the global friction for
is determined experimentally. A simple discrete model
proposed in Sec. IV and compared to the experimental
sults. The possibility of a continuous description of t
forces acting on one grain is finally discussed.

II. EXPERIMENTAL SETUP

A. Setup

The experiment consists in studying the motion of a br
cylinder of diameterd523 mm on an inclined plane made b
an array of 32 cylinders identical to the rolling one~Fig. 1!.
The cylindrical geometry, although leading to imperfect co
tacts, was chosen to enforce the two-dimensional stability
the motion and to avoid the friction on possible lateral wa
The plane~800 mm long and 60 mm wide! can be inclined at
a variable anglew ~Fig. 1!. The distanceD between two
neighboring cylinders is directly linked to the compacity
8299 ©2000 The American Physical Society
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the plane and is equal to 25 mm for all the results presen
here. In order to vary~and control! the initial velocity of the
roller, it is released with a null velocity on a ‘‘launchin
pad’’ at various heights.

We used two methods to determine the cylinder veloc
A video camera was used to measure the position as a f
tion of time ~Figs. 2 and 4!. This method is however limited
by the resolution in time~50 Hz! and space. We thus too
benefit from the particularity of the system: during the m
tion of the roller, it collides with the cylinders beneath it. T
perform measurements, we simply record the sound em

FIG. 1. Schematic view of the experiment. A cylinder of diam
eterd is rolling on a rough plane made by an array of fixed identi
cylinders. The sound emitted during the roller’s motion is record
and analyzed to determine when each shock has occurred.

FIG. 2. Motion of the roller on a smooth plane. Main grap
accelerationẍ as a function of the plane anglew. The slope is
directly related to the dimensionless moment of inertiaj. Inset:
spatiotemporal trajectory obtained by plotting one CCD line para
to the plane as a function of time.
d

.
c-

-

ed

by the successive shocks~Fig. 1! using the 22 kHz audio
input of our computer. After a simple thresholding, the su
cessive times of collisionTn , numbered by the indexn, can
be determined within a 0.5 ms error. The mean velocity
the moving cylinder between two successive shocksn and
n11 is parallel to the inclined plane and equal in modulus

V̄n5
D

Tn112Tn
. ~1!

Since all the quantities can be properly scaled using
roller’s weight m.110 g its diameterd, and gravityg, the
experiment for a given geometry is controlled only by t
plane anglew.

B. Moment of inertia

As the cylinder rolls on the ones underneath, it is imp
tant to determine its moment of inertiaJ5 jmd2/4 about its
axis. To measure the dimensionless moment of inertiaj, the
roller is thrown upward onto a smooth plane made of br
~Fig. 2!. It then rolls up, stops, rolls down and, as a fir
approximation, does not slide on the plane. The spatiot
poral trajectory appears to be parabolic~Fig. 2!, the accel-
eration being thus constant. The acceleration is plotted
function of the plane anglew in Fig. 2. It is proportional to
the component of gravity parallel to the planeg sinw.

If we assume that there is strictly no sliding, the roll
velocity ẋ is related to its angular velocityu̇ by du̇/2. If we
furthermore assume that the contact between the plane
the roller is perfectly linear, the moment of the reaction for
about this line is null. The moment of the force of gravi
about the contact line isK51/2mgdsinw and the angular
momentum is simplyM51/4(11 j )md2u̇. From the equa-
tion of motionṀ5K, we derive the expression of the acce
erationẍ5g sinw/(11j).

From the fit of experimental data~Fig. 2!, we deduce the
dimensionless moment of inertiaj 50.76. As expected, this
value is betweenj 50.5 andj 51, which correspond, respec
tively, to the case of a tube and to the case of a full cylind

III. EXPERIMENTAL RESULTS

A. Stationary states

The simplest stationary state that can be observed is
equilibrium of the roller in the trap created by two cylinde
@situation ~1! in Fig. 3#. There exists a second equilibrium
position@situation~2! in Fig. 3# when the roller is straight up
over the cylinder beneath it, but it is obviously unstable.

l
d

l

FIG. 3. The possible stationary states are~1! the equilibrium of
the roller trapped between the cylinders beneath it,~2! the unstable
equilibrium of the roller on top of the cylinder, and~3! the periodic
motion of the roller.
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PRE 62 8301DYNAMICS OF A GRAIN ON A SANDPILE MODEL
When we increase the anglew above a critical anglews
.33° ~the static angle!, the cylinder spontaneously star
rolling down the plane. This critical anglews corresponds to
the position of the plane for which the line joining the cen
of the roller to the center of the underneath cylinder is v
tical @collapse of situations~1! and ~2! of Fig. 3!#. In other
words, atw5ws , the potential trap disappears.ws can thus
be derived from pure geometrical considerations. Using F
1, we immediately obtain the relation:

sinws5
D

2d
, ~2!

which gives a numerical value close to the measured
~.33°!.

If we now give an initial impulse to the roller at rest~for
w,ws , see above!, two different behaviors are observed. A
small angle, it quickly stops even when it is set into moti
with a large kinetic energy. The only stationary state is th
the static one. In an intermediate angle range, the positio
equilibrium is stable towards small disturbances but, if a s
ficiently large initial velocity is given, the cylinder goes o
rolling and reaches a constant mean velocityV̄` ~inset of
Fig. 4!. This is the third possible stationary state@situation
~2! on fig. 3#. This constant velocity regime can be reach
above the dynamical anglewd.8.5° which is far below the
static onews . This difference betweenwd andws shows that
there is a large hysteresis between static and rolling stat

To summarize, there exists forwd,w a stationary regime
that is reached after a short transient. This means that
local mean velocityV̄n becomes independant of the sho
numbern (V̄n5V̄`). The other stable stationary state is t
equilibrium of the roller in the trap created by the two neig
boring cylinders (V̄`50). It is stable forw,wd , metastable
for wd,w,ws , and does not exist any more forws,w. The
transition between equilibrium and motion is thus subcritic

FIG. 4. Limit velocity as a function of the plane angle. Th
equilibrium ~black diamonds! is observed up to the static anglews .
Above the dynamical anglewd , the roller can reach a nonzero lim
velocity ~black circles!, before it starts taking off the cylinders be
neath it ~triangles!. The fit by the microscopic model assumin
permanent contact is shown in the solid-dashed line, and the m
including the possibility of takeoff and free flight is shown in th
solid line. Inset: spatiotemporal trajectory obtained by plotting o
video line parallel to the plane as a function of time.
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To characterize these stationary states, we measured
limit mean velocityV̄` for different anglesw. For this, we
averagedV̄n over several shocks~typically 10! in the station-
ary regime. The resulting curve is shown in Fig. 4. The bla
diamonds show the angles for which the equilibrium st
(V̄`50) is observed; the last point gives the static an
ws.33°. The black circles correspond to the constant vel
ity regime. The first point has been drawn at the angle
which this regime disappears, i.e., at the dynamical an
wd.8.5°. We can observe that the limit velocity increas
very quickly above the bifurcation threshold: in particular w
did not get any measurement below 10 cm s21 ~one-fourth of
the total range!. The triangles correspond to the points f
which the roller is no more in permanent contact with t
plane. At last, the solid and dashed lines correspond to
microscopic model developed in the next section. The so
dashed line is obtained assuming a permanent contact
tween the roller and the rough plane and the solid line to
full model, including takeoffs of the roller at large anglesw.
It can now be seen that the model provides a very good fi
the data.

To investigate the influence of the material, we have c
ered the roller by a thin felt layer, which has a larger frictio
coefficient than brass~Fig. 5, top! and by a rubber layer
which is more elastic than brass~Fig. 5, middle!. It turns out
that the material properties do not affect strongly the resu
This means that the energy dissipation essentially co
from the shocks and not from the solid friction between t
roller and the plane. We also investigated the case where
cylinders composing the inclined plane are let free to tu
around their axis~Fig. 5, bottom!. In that case, the dynamica
angle is larger than previously (wd.11.7°). Essentially, this
comes from the fact that the rotation kinetic energy is
longer transferred into translation motion when a shock
curs. This shows the importance of rotation in the proble

B. Global forces during transients

The stationary states being characterized, we can inve
gate the force globally acting on the roller. For this, we me
sured experimentally the acceleration during transients.
suming that the acceleration is constant between the sh
n21 andn11, the distance covered by the roller depen
quadratically on time so that we get two relations:

D5V̄~Tn112Tn!1
1

2

dV̄

dt
~Tn112Tn!2,

2D5V̄~Tn212Tn!1
1

2

dV̄

dt
~Tn212Tn!2.

The acceleration can thus be deduced from the succes
timesTn at which the shocks occur:

dV̄

dt
5

2D~2Tn2Tn212Tn11!

~Tn112Tn!~Tn2Tn21!~Tn112Tn21!
. ~3!

In the same way thatV̄ is a macroscopic velocity, it is im-
portant to understand thatdV̄/dt is a macroscopic accelera
tion.
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8302 PRE 62L. QUARTIER, B. ANDREOTTI, S. DOUADY, AND A. DAERR
It is plotted in Fig. 6 as a function of the velocity for tw
angles, one below the dynamical angle and the other ab
In both cases, the relation appears to be of the form

dV̄

dt
.g~w!g2k~w!

V̄2

d
. ~4!

We can see in Fig. 6 thatk(w) is related to the curvature an
g(w) to the value at the origin. From a physical point
view, g(w) is the effective gravity component along th
plane andk(w) is the efficiency of the dissipation by th
shocks. It is important to note that the shocks induce ma
scopically a force proportional to the velocity square@Eq.
~4!# like the turbulent drag and for the same reason. Dur
dt, V̄dt/D collisions occur, on the average. After each c
lision, a part of the momentum is lost (dV̄}2V̄) so that
globally

FIG. 5. Same as Fig. 4 but with a roller covered by felt~top!,
with a roller covered by rubber~middle!, and with a brass roller
rolling on cylinders that are let free to turn around their axis~bot-
tom!. The solid line is the fit by the model and the long-dashed l
that obtained for the brass roller~Fig. 4!.
e.

o-

g
-

dV̄}2
V̄dt

D
V̄.

This shows again that the shocks are the main source
energy dissipation.

We measured the two coefficients as functions of
anglew ~Fig. 7!. k appears to be independent of the anglew
and is of order one (k.0.21). The nondimensional driving

e

FIG. 6. Acceleration as a function of velocity for two angle
w55°, which is below the dynamical angle~top! and w514°,
which is above the dynamical angle~bottom!. The solid line corre-
sponds in each case to the best fit by a quadratic function.

FIG. 7. Main graph: nondimensional driving forceg as a func-
tion of the anglew. Inset: the friction force coefficientk appears to
be independent ofw.
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PRE 62 8303DYNAMICS OF A GRAIN ON A SANDPILE MODEL
forceg increases with the plane angle and is negative be
6.3°. The experimental points are well fitted by a Coulom
like force of the form

g~w!.g`~sinw2m` cosw! ~5!

with g`.0.27 andm`5tan(6.3°). This formula require
several comments. First, the gravity term~proportional to
g sinw! had to be corrected by the factorg` . The apparent
gravity is thus smaller than the real one by a factor of
Second, a solidlike friction appears with a critical ang
smaller than the dynamical angle~respectively, 6.3° and
8.5°!. We will show in the next section that this Coulom
friction term is due to trapping of the roller between
the bumps. Globally, the force determined experimenta
takes the form

F`5g`g~sinw2m` cosw!2k
V2

d
. ~6!

It is unsatisfying in two aspects. First, the equilibrium~F
50 whenV50! does not appear to be a solution. Seco
expression~6! would lead to a supercritical bifurcation, th
critical slope beingm`5tanw` which is 25% smaller than
the dynamical angle. This means that the hysteresis has
appeared from the macroscopic relation between accelera
and velocity. We will see in the next section how these pr
lems can be bypassed.

IV. MODELING

A. Discrete modeling

The modeling of the motion can be simplified by cons
ering that the cylinder rolls without sliding around the cyli
derb on the contact pointC ~Fig. 8!. Under this assumption
the energy of the roller,

E5
11 j

2
md2u̇21mgdcos~u2w! ~7!

is conserved. Consider that the roller has, just after
shock~at the angleu5ws!, an angular velocityu̇a . The an-
gular velocity u̇b just before the next shock~at u52ws! is
related tou̇a by

FIG. 8. The roller is assumed to roll on the cylinderb without
sliding at the contact pointC. The position is specified by the ang
u, which varies fromws just after one shock, down to2ws , just
before the next one.
w
-

.

y

,

is-
ion
-

-

e

u̇b
25 u̇a

212a2 sinws sinw
g

d
, ~8!

wherea is related to the ratio of potential energy transferr
into translation kinetic energy and is given by

a25
2

11 j
. ~9!

The shock between the roller and the next cylindera dissi-
pates part of the kinetic energy, due to the contact fo
exerted at the impact pointI ~Fig. 8!. The motion can then be
complex, with several rebounds, depending among other
the coefficient of elasticity, but after a time that is sm
compared to the delay between two shocks, the cylinder r
again without sliding. If the contact remains linear during t
shock, the moment of the contact force about the imp
point I should be null. The angular momentumM about the
same pointI should thus be conserved. Roughly speaki
this means that the rotation around the impact pointI does
not change during the shock.

Using Fig. 8, the angular momentumMb before the shock
can be computed as

Mb5
cos~2ws!1 j

2
md2u̇b .

Just after the shock, this angular momentum becomes

Ma5
11 j

2
md2u̇a .

The conservation of angular momentum leads to

u̇a5ru̇b , ~10!

where the restitution coefficientr is given by

r5
cos~2ws!1 j

11 j
. ~11!

The coefficient cos(2ws) corresponds to the conservation
the velocity component tangential to the impact surface
the distance between the cylinders constituting the pl
~and thusws! is increased,r decreases. The dependence ij
reflects the restitution of a part of the rotation kinetic ener
into translation motion.r thus increases with the moment o
inertia j.

If we label the successive angular velocities just after
shocks by the indexn, the recursive relation straightfor
wardly derives from Eqs.~8! and ~10!:

u̇n115rAu̇n
212a2 sinws sinw

g

d
. ~12!

It is worth noting that the effective part of the potential e
ergy transformed into translation kinetic energy isra, due to
the shocks. This is the reason why the apparent gravityg`g
is smaller than the real one.

Relation ~12! is plotted in Fig. 9 and graphically corre
sponds to a portion of hyperbola. As the restitution coe
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cient r is smaller than 1, the recursive relation~12! con-
verges quickly towards its stationary solutionu̇` :

u̇`5arA2 sinws

12r2 Ag sinw

d
. ~13!

This relation simply expresses the balance between gra
and the dissipation by the shocks.u̇` corresponds on Fig. 9
to the intersection between the hyperbola defined above
the diagonal.

We now have to include a third ingredient. To move fro
one cylinder to the other, the roller has to escape from
trap, that is to go through the upmost position. We did
consider this condition when we applied the recursive eq
tions to obtain the limit velocity. But if the cylinder, afte
one shock, does not have enough energy to climb the
cylinder beneath it, it just falls back, and makes a new sh
with the previous cylinder, and so on and so forth. The
cursive relation is then simplyu̇n1152ru̇n and the roller
converges towards static equilibrium~Fig. 9!. This is evi-
dently true only if the trap exists, that is to say if the inc
nation angle is smaller than the static one. The condition
escape from the trap is that the roller should have eno
kinetic energy after the shock to pass over the cylind
Enough means that the kinetic energy should not beco
null beforeu5w ~see Eq.~7! and Fig. 8!. This condition can
be written under the form

u̇n
2. u̇ l

2 ~14!

FIG. 9. Relation between the angular velocities just after
shocksn andn11.
ity

nd

e
t
a-

w
k
-

to
h

r.
e

where the escape velocityu̇ l is given by

u̇ l
25a2

g

d
@12cos~ws2w!#. ~15!

The limits defined by the potential trapping are represen
in Fig. 9 by the vertical-solid lines.

The stationary solution is possible only if the limit ang
lar velocity u̇` is larger than the thresholdu̇ l . This condition
defines the dynamical angle:

12cos~ws2wd!

2 sinwd sinws
5

r2

12r2 . ~16!

We are now able to conclude on the origin of the two critic
angles. There are mainly three effects: the gravity, the di
pation by the shocks, and the trapping. As in the myth
Sisyphus, the grain rolls up the one beneath it. It then f
down and reaches the bottom of the trap, with a sligh
larger velocity coming from gravity. But precisely when i
kinetic energy is maximum, a shock occurs that dissipa
part of this energy. The balance between the energy brou
by the gravity and that dissipated by the shocks determin
limit velocity. But if this limit velocity is smaller than the
escape velocity, the roller remains trapped. The dynam
angle is thus the angle for which the limit velocity becom
sufficient to escape from the potential trapping. The sta
angle is the angle for which the trap disappears.

Starting from the angular velocityu̇` just after a collision
~Eq. 13!, the mean velocityV̄` reads

V̄`5
D

*
2ws

ws
du

uuu

, ~17!

whereuu̇u is related to the angleu by

u̇25a2
g

d F @12cos~ws2wd!#
sinw

sinwd
1cos~ws2w!

2cos~u2w!G .
The limit mean velocity@Eq. ~17!# can be computed eithe
using the Legendre elliptical integral of first kind@11# or
numerically. The resulting curve is shown on Fig. 10 f
wd58.5° andws533°. The equilibrium~case 1 in Fig. 3! is
possible forw,ws , and corresponds to a null mean velocit
For the periodic motion~case 3 in Fig. 3!, the mean velocity
increases very quickly above the thresholdwd . Indeed, it is
easy to show that it is approximately equal to

V̄`.2
A2agd

ln~w2wd!
~18!

for small w2wd . It is worth noting that for this particular
bifurcation the order parameter does not scale as a power
but as the inverse of a logarithm. But this is not the on
particularity of this bifurcation. The two stable stationa
states are separated one from the other by an unstable
tion: the equilibrium of the roller on the top of the cylinde

e
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PRE 62 8305DYNAMICS OF A GRAIN ON A SANDPILE MODEL
below it ~case 2 in Fig. 3!. To reach this equilibrium, one ha
to give the roller an initial angular velocityu̇` equal to the
escape velocityu̇ l . The roller then reaches its equilibrium
position infinitely slowly. The corresponding mean veloc
V̄` is thus null and the unstable branch collapses with
metastable one~noted 2 and 1 on Fig. 10, bottom!. This
singular behavior comes from the fact thatV̄` is a macro-
scopic velocity: it can be null even when the roller is not
rest but oscillates in the potential trap.

B. Comparison with experimental results

We have fitted the experimental data by adjusting the
physical parameters of the model: the restitution coefficienr
and the effective part of potential energy restituted into tra
lation kinetic energyra. The resulting curves are shown o

FIG. 10. This graph shows the three possible stationary st

~see Fig. 3!, both for the microscopic angular velocityu̇ and for the

local mean velocityV̄: ~1! the static equilibrium~u̇`50 and V̄`

50! for w,ws , ~2! the condition after one shock leading just to t

unstable equilibrium on the top of the cylinder underneath~u̇5 u̇ l

.0 but V̄`50! for wd,w,ws , and ~3! the periodic motion~u̇`

.0 andV̄`.0!, which is reached only forw.wd . If u̇ is smaller

than u̇ l the roller quickly goes back to equilibrium. If above,
converges toward the constant velocity regime.
e

t

o

-

Fig. 4 for the brass cylinder and in Fig. 5 for the roll
covered by felt and by rubber. In the three cases,ra is found
to be very close to the expected value~respectively, 0.69,
0.70, and 0.71 instead of 0.71!. The restitution coefficientr
is 10% smaller than its predicted value~0.59, 0.59, and 0.62
instead of 0.66!. The small difference between the three r
sults could be mainly due to the slight increase of the ro
radius, when covered by rubber. As a conclusion, the dyn
ics of the real system is completely determined by the th
effects taken into account in the model: driven by the gr
ity, dissipation by the shocks, and potential trapping.

To investigate the large-angle regime, we can add a fou
effect: when the centrifugal forcemu̇2d becomes larger than
the radial component of the gravity forcemgcos(u2w), the
roller takes off. It then makes a parabolic free flight befo
colliding with the rough plane. We can assume that the sh
is instantaneous so that the momentum of inertia about
collision point is conserved. We integrated numerically t
equation of motion with this further effect. We then observ
that the limit mean velocityV̄` is essentially the same fo
anglesw smaller than 21° and then increases~solid line in
Fig. 4!. Indeed, after a free flight the impact parameter
smaller than previously so that the restitution of energy
larger. Above a threshold anglew.27.1°, the constant ve
locity regime disappears and the roller indefinitely accel
ates. This is due to the fact that the free flights becom
longer and longer as the velocity increases so that the n
ber of shocks per unit time becomes smaller and sma
These two behaviors are observed in the experiment~Fig. 4!.

In the case where the cylinders composing the rou
plane are let free to turn around their axis~Fig. 5, bottom!,
there still exists some values of the two parametersra andr
for which the fit is good. The effective part of potential e
ergy transferred into translation kinetic energyra is again
0.71. But evidently, the restitution coefficient is strongly d
creased by this change (r50.48).

C. Continuous modeling

The conclusion of the previous sections is that consid
ing the mean velocityV̄ leads one to forget one of the ma
aspects of the dynamics: the subcritical transition betw
equilibrium and motion, or in other words the stability of th
static state. This comes from the fact that macroscopica
we do not want to know anything about the microscop
position of the roller with respect to the plane bumps.
correct the forceF` derived from the experimental measur
ments, we have to introduce a matching between two vel
ties. At large velocity,V has to be the mean velocityV̄ but at
small velocity,V has to describe the motion of the roller
the potential trap (du̇). This lead us to introduce a matchin
between the forceF` previously determined and a trappin
force F0 . This can be done in the following way:

dV

dt
5~12h!F`1hF0 , ~19!

where the matching functionh should tend to 1 when the
velocity V tends to 0 and should tend to 0 when the veloc
is much larger than the escape velocitydu̇ l .
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For small velocity, we thus assume that the roller
trapped~Fig. 11!. Small velocity means that the initial ki
netic energy is not sufficient to escape from the trap, i.e.,
the velocityV is smaller than the escape velocityVl :

Vl}Agd@12cos~w2ws!#. ~20!

It is then submitted to the trapping forceFl

Fl}g sin~w2ws!, ~21!

which brings the roller back to equilibrium. That implies th
fact that F should be null when the velocityV vanishes.
These basic properties are summarized on Fig. 11 and
strain the construction of the microscopic forceF0 .

As we have seen, the forceF0 tends to 0 when the trap
disappears. It is the case if we assume the proportionalit
g(sinw2mscosw) which is simply the development of ex
pression 21. To introduce the equilibrium, we can assum
force proportional toAV, which interestingly leads to an
abrupt stop, in finite time and length. With these two co
straints,F0 reads

F05g0A V

V0
g~sinw2ms cosw!, ~22!

whereV0 is a typical escape velocity~a fraction ofAgd! and
g0 is a nondimensional prefactor of the order of unity.

Finally, it can be seen in Eq.~20! that the escape velocit
depends linearly on the slope near the static anglews . It is
easy to show that this implies that (12h) should be propor-
tional to V3/2 for small V such as for instance:h5exp@
2(V/V0)

3/2#.
The parametersV0 and g0 were adjusted to recover th

correct dynamical anglewd ~V0.0.12Agd and g0.0.12!.
The force is plotted on Fig. 12 as a function of velocity f
several angles. For large velocities, the force depends
dratically on velocity, as previously, but the force is now n
for V50 and negative for small velocities, as required~see
Fig. 11!. We observe that the dynamical angle correspond

FIG. 11. Left: spatiotemporal trajectory for an anglew just be-
low the dynamical angle. After a short transient, the roller
trapped. Right: when the roller is trapped~for small initial velocity
V!, it is submitted to a forceF0.Fl , which brings it back to equi-
librium ~F50 for V50!. When the velocityV ~at the bottom of the
trap! is sufficient to escape from the trap (V.Vl), the forceF
suddenly becomes positive.
at

n-

to

a

-

a-
l

to

the angle for which a new stationary state (F50) appears
and that the static angle corresponds to the angle at which
trap disappears.

The stationary states obtained are plotted in Fig.
~dashed line!. The experimental data are still fitted by th
continuous model but the subcritical character of the tran
tion between equilibrium and flowing is now recovered
this macroscopic description, without introducing a
knowledge of the microscopic position. If one is interest
by the description of the large-angle regime, where the ro
accelerates indefinitely above a threshold angle, it is su
cient to let the forceF` tend towards a constant Coulom
friction at large velocities. The description of the motion
one grain on a rough plane is then complete~Fig. 13, solid
line!.

V. CONCLUDING REMARKS

This experiment is only an outline of real grains motio
on a sand pile. First because it is two dimensional, sec

FIG. 12. Continuous model of the force globally acting on t
roller. The force is plotted as a function of velocity for differe
angles: w54° ~long-dashed line!, w5wd ~solid line!, w514°
~dashed line!, w519° ~dotted line!, w524° ~dotted-dashed line!,
andw5ws ~solid line!.

FIG. 13. Stationary states in the continuous model of the fo
globally acting on the roller. The possible limit velocities are plo
ted versus the angle.
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because the geometry is regular, and third because the
derneath grains can also start moving in real sand p
However, we think that the most important mechanisms
captured and that the differences essentially lead to cha
the values of the critical angleswd andws . In particular, the
simple experiment proposed in this paper explains the or
of the hysteresis commonly observed in granular media
tween flowing and static states and the constant velo
achieved in the flowing regime. The velocity comes from t
balance between the gain in kinetic energy due to gravity
its loss during shocks. The hysteresis comes from the
that a grain has always to pass above underneath grains
has enough energy, it flows, but if not, it remains trapped.
the other hand, if the angle is too large, the grain acceler
indefinitely as it jumps above the grains, gains more kine
energy, and dissipates less due to fewer shocks.

The simplicity of this experiment also allows us to com
pute all the details of the dynamics. We find that the bif
cation has a particularity that comes from the fact that
have to go from a microscopic description, the angular m
tion of one cylinder above the underneath one, to a ma
scopic description of the average velocity. It is a degenera
subcritical bifurcation in which the metastable and unsta
branches are collapsed. Correspondingly, the order param
re
ts

.
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does not scale as a power law just above the threshold b
the inverse of a logarithm. In the basic macroscopic
proach, we thus loose the description of the metastable e
librium in the traps formed by the plane bumps, giving t
subcritical bifurcation an unusual aspect.

With this experiment it is possible to investigate not on
the stationary regime but also the transients~acceleration!,
and thus to measure the effective macroscopic force ac
on the roller. We find that the effective gravity is reduc
and that a Coulomb friction force naturally appears. But
really build a force model we have to reintroduce the hyst
etic behavior by making a matching for small velocity to t
microscopic trapping. This description of the force has th
the advantage of being well~continuously! defined in the
whole range of velocities~it can thus be used in numerica
simulations!, but also of reproducing interesting properti
~observed! such as a stop in finite time and length, and
acceleration divergence for large angles. What remains to
done is to investigate the effect of the same three mec
nisms~gravity, dissipation by shocks, and potential trappin!
in more complex situations and to see if the force built h
can be adapted to model granular motion in real sandp
@12#.
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