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Dynamics of a grain on a sandpile model
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The dynamics of a macroscopic grain rolling on an inclined plane composed of fixed identical grains is
investigated both experimentally and theoretically. As real sand, the system exhibits an hysteretic transition
between static and dynamical states: for angles smallergharhe roller always stops, for angles larger than
¢, it spontaneously starts rolling down. But for angles betwggand e, it can be either at rest or in motion
with a constant velocity. It is shown that the limit velocity is given by the equilibrium between gravity driving
and dissipation by the shocks. Moreover, the rough plane acts as a periodic potential trap whose width and
depth decrease when the angle is increased: the static ap@erresponds to the angle for which the trap
disappears; the dynamical angtg to that for which the limit velocity is sufficient to escape from the trap.
Finally, a continuous description of the force globally acting on the grain is proposed, which preserves this
hysteretic behavior.

PACS numbds): 83.70.Fn, 45.05tx

[. INTRODUCTION that govern the dynamics of a sandpile? é)dCan we build
a continuous ‘“macroscopic” model to describe these dy-
Although sand beaches provide a wide playing field thanamics?
allows many pleasant experiments, granular media remains In order to get an intuive idea of the physical mechanisms
closed to an intuitive understanding. There are mainly twaacting in such a complex system, we will investigate the
reasons for that. One is related to the difficulty of describingorevious questions in the simpler case of a single “en-
granular media, the other to the lack of physical mechanismkirged” grain on a rough inclined plari¢he rest of the sand-
that would simply explain its main behaviors. pile). This study has been previously developdd 10] with
First particularity, a sandpile is able to remain static everthe idea(among othersof studying the segregation phenom-
with an inclined free surface. This equilibrium is generally enon. The dynamics of a single bead was thus studied, vary-
characterized by the free-surface slope gafollowing the  ing the plane roughness, i.e., the bead size compared to the
analogy with solid friction[1], besides not more intuitive. Size of bumps beneath it: at large an¢ied large sizg the
After having built dynamically a sandpile, it remains static bead jumps and accelerates indefinitely, for smaller angles
with an angle of reposey. This means that any motion on (and smaller sizethe bead stabilizes on a constant velocity,
the surface spontaneously stopspi @4. This sandpile at and below a threshold value it stops. We already see that this
rest can now be inclined up to a second critical angleat ~ Simple system exhibits a bifurcation between static and flow-
which an avalanche occurgy is thus the maximum angle of ing behaviors. Our aim is to reexamine this experiment, fo-
stability: for ¢>¢s> ¢y, the sandpile spontaneously starts Cusing not only on the mean velocity, but also on transients
flowing. Also the dynamics of avalanches presents originalon the effective friction force acting on the beahd on the
features: contrary to a liquid, only a thin layer of grains is setsubcritical transition between static equilibrium and motion.
into motion and contrary to a solid, the avalanche does not The experimental setup is described in Sec. II. In the next
accelerate indefinitely, and reaches a finite limit velocity. ~part, the stationary states are characterized as a function of
The transition between solid and liquidlike behaviors isthe slope for different materials and the global friction force
hysteretic: when the free surface is betwwand ©s the is determined experimentally. A simple discrete model is
sandpile can be either flowing or at equilibrium, dependingProposed in Sec. IV and compared to the experimental re-
on the history. In other words, the free-surface slope is nogults. The possibility of a continuous description of the
sufficient to describe the state of the system and its evoluforces acting on one grain is finally discussed.
tion, the fact that it is in motion or not being crucial. Actu-
ally, the situation is even worse since both the starting angle Il. EXPERIMENTAL SETUP
¢s and the dynamical angley depend not only on the ma-
terial but also on the microscopic arrangement of grains, on
the preparation of the sandpile, on its structizg etc. The experiment consists in studying the motion of a brass
The second particularity is the absence of a mesoscopicylinder of diameted=23 mm on an inclined plane made by
lengthscale between the grain diameteand the macro- an array of 32 cylinders identical to the rolling offéig. 1).
scopic scaldtypically 10°d— 10%d) at which the local prop- The cylindrical geometry, although leading to imperfect con-
erties could be averaged. Because the number of grains facts, was chosen to enforce the two-dimensional stability of
always too large to consider them individually, an importantthe motion and to avoid the friction on possible lateral walls.
problem is the possibility of describing granular material as arhe plang800 mm long and 60 mm widean be inclined at
continuous system. We are thus interested in two problems variable anglep (Fig. 1). The distanceD between two
(1) What are the basic mechanisms at the scale of one graimeighboring cylinders is directly linked to the compacity of

A. Setup
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‘ FIG. 3. The possible stationary states ékpthe equilibrium of

the roller trapped between the cylinders beneatt?jtthe unstable
equilibrium of the roller on top of the cylinder, arid) the periodic
t(s) motion of the roller.

by the successive shockEig. 1) using the 22 kHz audio
input of our computer. After a simple thresholding, the suc-
cessive times of collisioif,,, numbered by the inder, can

be determined within a 0.5 ms error. The mean velocity of
the moving cylinder between two successive shockand
n+ 1 is parallel to the inclined plane and equal in modulus to

— D

T W

Since all the quantities can be properly scaled using the
roller's weight m=110g its diameted, and gravityg, the
experiment for a given geometry is controlled only by the

FIG. 1. Schematic view of the experiment. A cylinder of diam- plane anglep.
eterd is rolling on a rough plane made by an array of fixed identical
cylinders. The sound emitted during the roller’s motion is recorded
and analyzed to determine when each shock has occurred.

B. Moment of inertia

As the cylinder rolls on the ones underneath, it is impor-
the plane and is equal to 25 mm for all the results presentet@nt to determine its moment of inertls= jmd?®/4 about its
here. In order to varyand control the initial velocity of the ~ axis. To measure the dimensionless moment of ingrtiae
roller, it is released with a null velocity on a “launching roller is thrown upward onto a smooth plane made of brass
pad” at various heights. (Fig. 2. It then rolls up, stops, rolls down and, as a first

We used two methods to determine the cylinder velocity approximation, does not slide on the plane. The spatiotem-
A video camera was used to measure the position as a fungoral trajectory appears to be parabdliég. 2), the accel-
tion of time (Figs. 2 and 4 This method is however limited eration being thus constant. The acceleration is plotted as a
by the resolution in tim&50 H2) and space. We thus took function of the plane angle in Fig. 2. It is proportional to
benefit from the particularity of the system: during the mo-the component of gravity parallel to the plagsin¢.
tion of the roller, it collides with the cylinders beneath it. To  If we assume that there is strictly no sliding, the roller
perform measurements, we simply record the sound emittegelocity X is related to its angular velocit§ by d6/2. If we

furthermore assume that the contact between the plane and

3 - the roller is perfectly linear, the moment of the reaction force
x_z * 4 about this line is null. The moment of the force of gravity
(ms )2.5_ about the contact line iK=1/2mgdsine and the angular
o* momentum is simplyM = 1/4(1+j)md?6. From the equa-
21 tion of motionM =K, we derive the expression of the accel-
t erationX=g sing/(1+}j).
1.5+ From the fit of experimental dai#ig. 2), we deduce the
{ dimensionless moment of inertja=0.76. As expected, this
14 value is betweef=0.5 andj =1, which correspond, respec-
tively, to the case of a tube and to the case of a full cylinder.
0.5
= Ill. EXPERIMENTAL RESULTS
0 TTIA [ Ta T i a F [ I T [ Ea 8 [ T3 B [dht1 1
o 5 10 15 20 25 30 35 °? A. Stationary states

FIG. 2. Motion of the roller on a smooth plane. Main graph: ~ The simplest stationary state that can be observed is the
accelerationx as a function of the plane angle. The slope is  €quilibrium of the roller in the trap created by two cylinders
directly related to the dimensionless moment of inejtidnset:  [situation(1) in Fig. 3]. There exists a second equilibrium
spatiotemporal trajectory obtained by plotting one CCD line parallelposition[situation(2) in Fig. 3] when the roller is straight up
to the plane as a function of time. over the cylinder beneath it, but it is obviously unstable.
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To characterize these stationary states, we measured the
limit mean velocityV., for different anglesp. For this, we

averaged7n over several shock@ypically 10 in the station-
ary regime. The resulting curve is shown in Fig. 4. The black
t diamonds show the angles for which the equilibrium state

(V,,=0) is observed; the last point gives the static angle
¢s=33°. The black circles correspond to the constant veloc-
ity regime. The first point has been drawn at the angle for
which this regime disappears, i.e., at the dynamical angle
©q=8.5°. We can observe that the limit velocity increases
very quickly above the bifurcation threshold: in particular we
50 did not get any measurement below 10 ¢m &ne-fourth of
the total range The triangles correspond to the points for
FIG. 4. Limit velocity as a function of the plane angle. The which the roller is no more in permanent contact with the
equilibrium (black diamondpis observed up to the static angg. plane. At last, the solid and dashed lines correspond to the
Above the dynamical angleq, the roller can reach a nonzero limit microscopic model developed in the next section. The solid-
velocity (black circles, before it starts taking off the cylinders be- dashed line is obtained assuming a permanent contact be-
neath it (triangles. The fit by the microscopic model assuming tween the roller and the rough plane and the solid line to the
permanent contact is shown in the solid-dashed line, and the mod@lill model, including takeoffs of the roller at large angles
including the possibility of takeoff and free flight is shown in the |t can now be seen that the model pro\/ides avery good fit of
solid line. Inset: spatiotemporal trajectory obtained by plotting onethe data.
video line parallel to the plane as a function of time. To investigate the influence of the material, we have cov-
ered the roller by a thin felt layer, which has a larger friction
When we increase the angleabove a critical angleo, ~ coefficient than brassFig. 5, top and by a rubber layer,
=33° (the static anglg the cylinder spontaneously starts which is more elastic than bragig. 5, middle. It turns out
rolling down the plane. This critical angles corresponds to  that the material properties do not affect strongly the results.
the position of the plane for which the line joining the centerThis means that the energy dissipation essentially comes
of the roller to the center of the underneath cylinder is verfrom the shocks and not from the solid friction between the
tical [collapse of situationgl) and (2) of Fig. 3)]. In other  roller and the plane. We also investigated the case where the
words, ate= ¢, the potential trap disappears, can thus cylinders composing the inclined plane are let free to turn
be derived from pure geometrical considerations. Using Figaround their axigFig. 5, bottom. In that case, the dynamical

0 5 10 15 20 25 30

1, we immediately obtain the relation: angle is larger than previouslyg=11.7°). Essentially, this
comes from the fact that the rotation kinetic energy is no
. D longer transferred into translation motion when a shock oc-
S'n%:%’ 2) curs. This shows the importance of rotation in the problem.

B. Global forces during transients
which gives a numerical value close to the measured one . . 9 ) . )
(=339). The stationary states being characterized, we can investi-

If we now give an initial impulse to the roller at re§or ~ 9ate the force globally acting on the roller. For this, we mea-
@< @5, see above two different behaviors are observed. At Sured experimentally the acceleration during transients. As-
small angle, it quickly stops even when it is set into motionSUMing that the acceleration is constant between the shocks
with a large kinetic energy. The only stationary state is thud'—1 andn+1, the distance covered by the roller depends
the static one. In an intermediate angle range, the position §uadratically on time so that we get two relations:
equilibrium is stable towards small disturbances but, if a suf- —
ficiently large initial velocity is given, the cylinder goes on D=V(T,,—To)+ 1 ﬂ(TnH—Tn)z,
rolling and reaches a constant mean velodity (inset of 2 ot
Fig. 4). This is the third possible stationary stdtstuation
(2) on fig. 3]. This constant velocity regime can be reached
above the dynamical angle;=8.5° which is far below the
static onep,. This difference betweeay and ¢4 shows that
there is a large hysteresis between static and rolling states. The acceleration can thus be deduced from the successive

To summarize, there exists fay< ¢ a stationary regime timesT,, at which the shocks occur:
that is reached after a short transient. This means that the o
local mean velocityV,, becomes independant of the shock oV 2D(2Tp=Tp-1=Th+1)

ot

numbern (V,=V..). The other stable stationary state is the (Ths1= T (Tn=Tn-0)(Tne1=Th-1) 3
equilibrium of the roller in the trap created by the two neigh- o

boring cylinders ¥..=0). It is stable forp< ¢4, metastable [N the same way that is a macroscopic velocity, it is im-
for pg< @< ¢, and does not exist any more fpg<¢. The  portant to understand th@aV/ét is a macroscopic accelera-
transition between equilibrium and motion is thus subcritical tion.

_ 16V ,
—D=V(Tp_1—Tp+ E E(Tnfl_Tn) .
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FIG. 6. Acceleration as a function of velocity for two angles:
¢=5°, which is below the dynamical angigop) and ¢=14°,
which is above the dynamical angleottonm). The solid line corre-
sponds in each case to the best fit by a quadratic function.
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FIG. 5. Same as Fig. 4 but with a roller covered by fadip), D

with a roller covered by rubbefmiddle), and with a brass roller
rolling on cylinders that are let free to turn around their axist-
tom). The solid line is the fit by the model and the long-dashed lineThis shows again that the shocks are the main source of
that obtained for the brass rolléFig. 4). energy dissipation.

We measured the two coefficients as functions of the
angleo (Fig. 7). x appears to be independent of the angle

It is plotted in Fig. 6 as a function of the velocity for two gnd is of order one~0.21). The nondimensional driving

angles, one below the dynamical angle and the other abov
In both cases, the relation appears to be of the form

0.075- |0-257k(9) .
_ — () 02T T
oV V2 0.15 I B
§:7(¢)9_K(¢)E- (4) 0.05- 0 > 10 15 2 25
L]
We can see in Fig. 6 that( o) is related to the curvature and 0.0257 oA

v(¢) to the value at the origin. From a physical point of

view, y(¢) is the effective gravity component along the

plane andk(¢) is the efficiency of the dissipation by the 0
shocks. It is important to note that the shocks induce macro-
scopically a force proportional to the velocity squaEe.

(4)] like the turbulent drag and for the same reason. During -0.025~

ot, Vét/D collisions occur, on the average. After each col- FIG. 7. Main graph: nondimensional driving forgeas a func-

lision, a part of the momentum is Ios'ﬁVx*V) so that tion of the anglep. Inset: the friction force coefficient appears to
globally be independent o.

0 % 1o 15 20 ® 25
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02= 63+ 2a? sin<pssin<pg, )

whereq is related to the ratio of potential energy transferred
into translation kinetic energy and is given by

2_ 2 9
=17 9

The shock between the roller and the next cylindetissi-
pates part of the kinetic energy, due to the contact force
exerted at the impact poihtFig. 8. The motion can then be
complex, with several rebounds, depending among others on
the coefficient of elasticity, but after a time that is small
compared to the delay between two shocks, the cylinder rolls
again without sliding. If the contact remains linear during the

. . . . shock, the moment of the contact force about the impact
force y increases with the plane angle and is negative below

6.3°. The experimental points are well fitted by a Coulomb-pomtI Sh.OUId r?e InduIIhThebanguIar mo(;nentumrﬁbout thE.
like force of the form same pointl should thus be conserved. Roughly speaking,

this means that the rotation around the impact pbidbes
not change during the shock.
Using Fig. 8, the angular momentuvh, before the shock

with v,,=0.27 and u..=tan(6.3°). This formula requires Can be computed as
several comments. First, the gravity teriproportional to COS 200+ ]
g sing) had to be corrected by the factgr,. The apparent b:¢]
gravity is thus smaller than the real one by a factor of 4. 2
Second, a solidlike friction appears with a critical angle .

smaller than the dynamical angleespectively, 6.3° and Just after the shock, this angular momentum becomes
8.5°. We will show in the next section that this Coulomb
friction term is due to trapping of the roller between

the bumps. Globally, the force determined experimentally 2
takes the form

FIG. 8. The roller is assumed to roll on the cylindewithout
sliding at the contact poir€. The position is specified by the angle
6, which varies fromgg just after one shock, down te ¢, just
before the next one.

Y(@)="y..(SiNg— .. COSe) 5

mdng

The conservation of angular momentum leads to
_ V2 : :
F..=v,9(sing— o, COS(p)—KF. (6) 0,=pby, (10)

It is unsatisfying in two aspects. First, the equilibriuim where the restitution coefficientis given by

=0 whenV=0) does not appear to be a solution. Second,

expression6) would lead to a supercritical bifurcation, the p
critical slope beingu..=tane, which is 25% smaller than

the dynamical angle. This means that the hysteresis has di?

_ C082¢9)+]

1+] (11)

appeared from the macroscopic relation between acceleratiq{ e coefficient cos(@) corresponds to the conservation of

and velocity. We will see in the next section how these prob- € vglocity component tangential to the ‘”T‘pa.Ct surface. If
the distance between the cylinders constituting the plane

(and thuse) is increasedp decreases. The dependencg in
reflects the restitution of a part of the rotation kinetic energy
into translation motionp thus increases with the moment of
A. Discrete modeling inertiaj.

If we label the successive angular velocities just after the
shocks by the index, the recursive relation straightfor-
wardly derives from Eqs(8) and (10):

lems can be bypassed.

IV. MODELING

The modeling of the motion can be simplified by consid-
ering that the cylinder rolls without sliding around the cylin-
derb on the contact poin€ (Fig. 8. Under this assumption,
the energy of the roller,

L €n+1=p\/€ﬁ+2a23in¢ssin¢%. (12)

E=ijd2€2+mgdcos(0—¢) (7)

It is worth noting that the effective part of the potential en-
rgy transformed into translation kinetic energyis due to

is conserved. Consider that the roller has, just after on T .
hock h leh— | locitd.. . Th the shocks. This is the reason why the apparent grauity
shock(at the angled= @), an angular velocityy,. The an- is smaller than the real one.

gular Ve'QCityéb just before the next shodat 6= — ¢) is Relation (12) is plotted in Fig. 9 and graphically corre-
related tof, by sponds to a portion of hyperbola. As the restitution coeffi-
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0,41 e where the escape velocity is given by
7
\ g 67 = a2§[1— cod os— )] (15)
7 (Y
o
= O, The limits defined by the potential trapping are represented
// 7 g in Fig. 9 by the vertical-solid lines.
/ I ‘ 2% S s The stationary solution is possible only if the limit angu-
. A “ lar velocity 6., is larger than the thresholg] . This condition
0,41 o defines the dynamical angle:
[Pa=P<9;] "t 5
~ 6. _—%. 12 COt6s—¢a) _ P (16)
— e Sinpgsingg 1—p
% O We are now able to conclude on the origin of the two critical
o o angles. There are mainly three effects: the gravity, the dissi-
% L 27850 pation by the shocks, and the trapping. As in the myth of
, o, 4 Sisyphus, the grain rolls up the one beneath it. It then falls
6,1 5 7 down and reaches the bottom of the trap, with a slightly
P<@ / larger velocity coming from gravity. But precisely when its
s ) kinetic energy is maximum, a shock occurs that dissipates
P \//QQ"‘ part of this energy. The balance between the energy brought
7 A by the gravity and that dissipated by the shocks determines a
Z G, limit velocity. But if this limit velocity is smaller than the
£ p escape velocity, the roller remains trapped. The dynamical
y s angle is thus the angle for which the limit velocity becomes
#° 0 G sufficient to escape from the potential trapping. The static

. o angle is the angle for which the trap disappears.
FIG. 9. Relation between the angular velocities just after the . O .
Starting from the angular velocit§., just after a collision
shocksn andn+1. g
(Eg. 13, the mean velocity,, reads

cient p is smaller than 1, the recursive relatioh2) con- D

verges quickly towards its stationary solutién: V.= d0’ (17)
Ps
2 sin i f“Ps| 0|
. ¢s [gSing
1-p where|d| is related to the anglé by
This relation simply expresses the balance between gravity b »9 1 B sin N B
and the dissipation by the shock, corresponds on Fig. 9 —Yd [1-coses—¢a)] Singy cod s~ @)
to the intersection between the hyperbola defined above and
the diagonal. —cog 6 ¢)
We now have to include a third ingredient. To move from '

one cylinder to the other, the roller has to escape from the o , )
trap, that is to go through the upmost position. We did not!he limit mean velocity Eq. (17)] can be computed either
consider this condition when we applied the recursive equa¥sing the Legendre elliptical integral of first kirid1] or
tions to obtain the limit velocity. But if the cylinder, after Numerically. The resulting curve is shown on Fig. 10 for
one shock, does not have enough energy to climb the newd=38-5° andes=33°. The equilibrium(case 1 in Fig. Bis
cylinder beneath it, it just falls back, and makes a new shocROSSible forp< ¢, and corresponds to a null mean velocity.
with the previous cylinder, and so on and so forth. The refor the periodic motioricase 3 in Fig. B the mean velocity
cursive relation is then simply, , .= — p#, and the roller increases very quickly above the threshelg. Indeed, it is

converges towards static equilibriutiig. 9). This is evi- easy to show that it is approximately equal to

dently true only if the trap exists, that is to say if the incli- - m
nation angle is smaller than the static one. The condition to Vy=——— (18
escape from the trap is that the roller should have enough In(e— @q)

kinetic energy after the shock to pass over the cylinder
Enough means that the kinetic energy should not becom
null before#= ¢ (see Eq(7) and Fig. 8. This condition can
be written under the form

for small ¢ — ¢4. It is worth noting that for this particular
Bifurcation the order parameter does not scale as a power law
but as the inverse of a logarithm. But this is not the only
particularity of this bifurcation. The two stable stationary
states are separated one from the other by an unstable solu-

07> 07 (149 tion: the equilibrium of the roller on the top of the cylinder
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d Fig. 4 for the brass cylinder and in Fig. 5 for the roller
covered by felt and by rubber. In the three cagesis found
to be very close to the expected val(respectively, 0.69,
0.70, and 0.71 instead of 0.)/IThe restitution coefficienp
is 10% smaller than its predicted val(@59, 0.59, and 0.62
instead of 0.66 The small difference between the three re-
sults could be mainly due to the slight increase of the roller
radius, when covered by rubber. As a conclusion, the dynam-
ics of the real system is completely determined by the three
effects taken into account in the model: driven by the grav-
ity, dissipation by the shocks, and potential trapping.

To investigate the large-angle regime, we can add a fourth

effect: when the centrifugal foram#?d becomes larger than
the radial component of the gravity foroegcos@—¢), the
roller takes off. It then makes a parabolic free flight before
colliding with the rough plane. We can assume that the shock
is instantaneous so that the momentum of inertia about the
collision point is conserved. We integrated numerically the
equation of motion with this further effect. We then observed

that the limit mean velocityv., is essentially the same for
anglese smaller than 21° and then increagsslid line in
Fig. 4). Indeed, after a free flight the impact parameter is
smaller than previously so that the restitution of energy is
larger. Above a threshold angle=27.1°, the constant ve-
locity regime disappears and the roller indefinitely acceler-
ates. This is due to the fact that the free flights becomes
longer and longer as the velocity increases so that the num-
ber of shocks per unit time becomes smaller and smaller.
These two behaviors are observed in the experirtiegt 4).

In the case where the cylinders composing the rough
plane are let free to turn around their axiS§g. 5, bottom,
0 T T T T T T—herey there still exists some values of the two paramepersindp
0 510 15 20 25 30 ¢35 for which the fit is good. The effective part of potential en-
rgy transferred into translation kinetic energy is again
.71. But evidently, the restitution coefficient is strongly de-
creased by this change € 0.48).

047 ’ \:

(=]

FIG. 10. This graph shows the three possible stationary state
(see Fig. 3, both for the microscopic angular velocityand for the
local mean velocityV: (1) the static equilibrium(6,,=0 andV.,
=0) for p< ¢g, (2) the condition after one shock leading just to the
unstable equilibrium on the top of the cylinder underne@ 6,
>0 butV, =0) for p4<e<e, and(3) the periodic motion(d.. The conclusion of the previous sections is that consider-

>0 andV..>0), which is reached only fop> 4. If 6 is smaller  ing the mean velocity/ leads one to forget one of the main
than 8, the roller quickly goes back to equilibrium. If above, it aspects of the dynamics: the subcritical transition between
converges toward the constant velocity regime. equilibrium and motion, or in other words the stability of the
static state. This comes from the fact that macroscopically,
below it (case 2 in Fig. B To reach this equilibrium, one has V¢ 'd'o not want to knqw anything about the microscopic
. . i position of the roller with respect to the plane bumps. To
to give the rollgr an initial angular velocity., equal to the correct the forcd=,, derived from the experimental measure-
escape velocity, . The roller then reaches its equilibrium ments, we have to introduce a matching between two veloci-
position infinitely slowly. The corresponding mean velocity ties. At large velocity) has to be the mean velocft_ybut at

V.. is thus null and the unstable branch collapses with themall velocity,V has to describe the motion of the roller in

metastable onénoted 2 and 1 on Fig. 10, bottgmThis the potential trapd#). This lead us to introduce a matching

singular behavior comes from the fact that is a macro-  petween the forc&., previously determined and a trapping
scopic velocity: it can be null even when the roller is not atforce F,. This can be done in the following way:

rest but oscillates in the potential trap.

C. Continuous modeling

d—V:(l—h)FerhFO, (19
B. Comparison with experimental results dt

We have fitted the experimental data by adjusting the two ) )
physical parameters of the model: the restitution coeffigient Where the matching functioh should tend to 1 when the
and the effective part of potential energy restituted into transvelocity V tends to 0 and should tend to 0 when the velocity
lation kinetic energypa. The resulting curves are shown on is much larger than the escape velodits, .



8306 L. QUARTIER, B. ANDREOTTI, S. DOUADY, AND A. DAERR PRE 62

t 0.1+
~ 14v
g dt
0.05
0
k
Ol v
-0.05
X Fl
FIG. 11. Left: spatiotemporal trajectory for an anglgust be- 014
low the dynamical angle. After a short transient, the roller is '

trapped. Right: when the roller is trapp&dr small initial velocity
V), itis submitted to a forc&,=F,, which brings it back to equi- FIG. 12. Continuous model of the force globally acting on the
librium (F=0 for V=0). When the velocity (at the bottom of the  roller. The force is plotted as a function of velocity for different
trap) is sufficient to escape from the trafy$V,), the forceF angles: ¢=4° (long-dashed line ¢=¢4 (solid ling), ¢=14°
suddenly becomes positive. (dashed ling ¢=19° (dotted ling, ¢=24° (dotted-dashed line
and o= ¢ (solid line).

For small velocity, we thus assume that the roller is
trapped(Fig. 11). Small velocity means that the initial ki- the angle for which a new stationary stafe=0) appears
netic energy is not sufficient to escape from the trap, i.e., thaénd that the static angle corresponds to the angle at which the

the velocityV is smaller than the escape velocity: trap disappears.
The stationary states obtained are plotted in Fig. 13
V< \gd[1—coq ¢ — ) ]. (200 (dashed ling The experimental data are still fitted by the
continuous model but the subcritical character of the transi-
It is then submitted to the trapping forég tion between equilibrium and flowing is now recovered in
this macroscopic description, without introducing any
Flegsin(e—¢q), (21)  knowledge of the microscopic position. If one is interested

by the description of the large-angle regime, where the roller
accelerates indefinitely above a threshold angle, it is suffi-
cient to let the forcer., tend towards a constant Coulomb
fiction at large velocities. The description of the motion of

which brings the roller back to equilibrium. That implies the

fact thatF should be null when the velocity vanishes.

These basic properties are summarized on Fig. 11 and co , ' ) y

strain the construction of the microscopic fof€g. one grain on a rough plane is then complefeg. 13, solid
As we have seen, the forde, tends to O when the trap N®)-

disappears. It is the case if we assume the proportionality to

g(sing—pugscose) which is simply the development of ex- V. CONCLUDING REMARKS

pression 21. To introduce the equilibrium, we can assume a

force proportional to\V, which interestingly leads to an

abrupt stop, in finite time and length. With these two con-

straints,F, reads

This experiment is only an outline of real grains motion
on a sand pile. First because it is two dimensional, second

v s
Vi gd o8-
Fo=70\/ 9(sine— pscosp), (22 o
whereV, is a typical escape velocifa fraction of\/gd) and 06
vo IS @ nondimensional prefactor of the order of unity.
Finally, it can be seen in Eq420) that the escape velocity
depends linearly on the slope near the static anglelt is 047
easy to show that this implies that{th) should be propor-
tional to V32 for small V such as for instanceh=exqg
— (V/V0)3/2] ) 0.2
The parameter¥, and vy, were adjusted to recover the
correct dynamical anglery (Vo=0.12/gd and y,=0.12). 0]
The force is plotted on Fig. 12 as a function of velocity for 00 z 0 15 2 % 30 <p

several angles. For large velocities, the force depends qua-

dratically on velocity, as previously, but the force is now null  FIG. 13. Stationary states in the continuous model of the force
for V=0 and negative for small velocities, as requifgsde  globally acting on the roller. The possible limit velocities are plot-
Fig. 11). We observe that the dynamical angle corresponds teed versus the angle.
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because the geometry is regular, and third because the udees not scale as a power law just above the threshold but as
derneath grains can also start moving in real sand pileghe inverse of a logarithm. In the basic macroscopic ap-
However, we think that the most important mechanisms ar@roach, we thus loose the description of the metastable equi-
captured and that the differences essentially lead to chang@rium in the traps formed by the plane bumps, giving the
the values of the critical anglesy and ¢s. In particular, the  subcritical bifurcation an unusual aspect.

simple experiment proposed in this paper explains the origin - with this experiment it is possible to investigate not only
of the hysteresis commonly observed in granular media bée stationary regime but also the transiefasceleration
tween flowing and static states and the constant velocityng thus to measure the effective macroscopic force acting
achieved in the flowing regime. The velocity comes from the,, the roller. We find that the effective gravity is reduced
balance between the gain in kinetic energy due to gravity and 4 that a Coulomb friction force naturally appears. But to
its loss during shocks. The hysteresis comes from the fagl, v 1y.;iid a force model we have to reintroduce the hyster-

that a grain has always to pass above underneath grains. lfé&ic behavior by making a matching for small velocity to the

has enough energy, it flows, butif not, it remains trapped. Or|]”nicroscopic trapping. This description of the force has then

the other hand, if the angle is too large, the grain accelerat : . . .
indefinitely as it jumps above the grains, gains more kinetiiﬂ%e advantage of being we{tontinuously defined in the

energy, and dissipates less due to fewer shocks. V\{hole range of velocitiegit can thl_Js b'e used_in numericgl

The simplicity of this experiment also allows us to com- simulations, but also of reprngcmg interesting properties
pute all the details of the dynamics. We find that the bifur-(0bServed such as a stop in finite time and length, and an
cation has a particularity that comes from the fact that weAcceleration divergence for large angles. What remains to be
have to go from a microscopic description’ the angu|ar mo.done IS to |ﬂV€St|gate the effect of the same three mecha-
tion of one cylinder above the underneath one, to a macroRisms(gravity, dissipation by shocks, and potential trapping
scopic description of the average velocity. It is a degeneratetd more complex situations and to see if the force built here
subcritical bifurcation in which the metastable and unstableean be adapted to model granular motion in real sandpiles
branches are collapsed. Correspondingly, the order paramef{gi2].
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