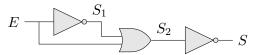
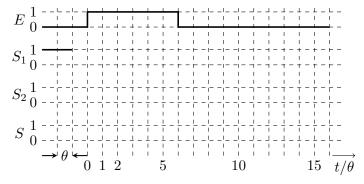
Questions de cours


1. Simplifiez l'expression Booléenne suivante : (1 point)

$$A = a \cdot b + \overline{(b + \overline{a} \cdot b) \cdot \overline{c}}$$

2. La sortie d'une porte A doit être branchée à l'entrée d'une porte logique B. Étant donné l'extrait des spécifications techniques reproduit ci-dessous, a-t-on la garantie que le circuit se comportera correctement, donc que la porte B interprétera correctement les niveaux logiques en sortie de la porte A? Justifiez votre réponse. (1 point)


		$\mathbf{porte}\ A$			$\mathbf{porte}\ B$		
		MIN	MAX	UNIT	MIN	MAX	UNIT
$\overline{V_{IH}}$	High-level input voltage	2		V	3.5		V
V_{IL}	Low-level input voltage		0.8	V		0.7	V
V_{OH}	High-level output voltage	3		V	4		V
V_{OL}	Low-level output voltage		0.4	V		0.3	V

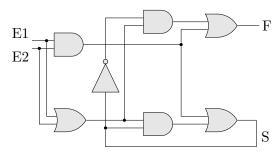
3. Exprimez la valeur de la sortie S du circuit ci-dessous en fonction de son entrée E. Simplifiez l'expression et commentez-là. (1 point)

4. Le temps de passage (ou délai de propagation) d'une porte logique est la durée entre l'instant où les signaux sont appliqués à l'entrée et celui où leur effet se répercute en sortie. Pour la suite nous allons supposer qu'un inverseur possède un temps de passage 3θ , tandis que le temps de passage d'une porte à deux entrées vaut 2θ . On considère la conséquence d'une impulsion à l'entrée du circuit de la question 3: l'entrée E, longtemps restée à 0, passe de 0 à 1 au temps t=0, et de 1 à 0 au temps $t=6\theta$, pour rester ensuite à 0.

Dessinez dans votre copie un chronographe semblable à celui ci-dessous, montrant l'évolution de E, S_1, S_2 et S entre $t = -3\theta$ et $t = 16\theta$. Commentez le comportement du circuit. (2 points)

- 5. Expliquez la contradiction apparente entre le résultat de la question 3 et le chronographe que vous avez construit à la question 4. (1 point)
- 6. Quelle pourrait être l'utilité pratique du circuit ci-dessus? (1 point)

- 7. a) Rappelez le tableau de vérité d'un additionneur élémentaire prenant deux bits (a, b) et une retenue r en entrée, et affichant en sortie la somme a+b+r en notation binaire sur 2 bits $(R\Sigma)$. Ici Σ représente le chiffre de poids faible de la somme (la somme modulo 2), R le chiffre de poids fort (la retenue à reporter). (1 point)
 - b) À partir d'un tel additionneur élémentaire, qu'on représentera par le symbole suivant :



dessiner le schéma d'un additionneur de deux mots de 4 bits. (1 point)

c) En supposant qu'un additionneur élémentaire met 40 ns à calculer les sorties (Σ, R) , combien de temps faut-il à l'additionneur complet à 4 bits pour afficher une sortie valide après un changement des entrées? (1 point)

Circuit séquentiel

Dans cet exercice il s'agit d'analyser le circuit suivant, et de décrire son comportement.

- 8. À quoi voit-on que ce circuit logique est séquentiel et non pas simplement combinatoire? (1 point)
- 9. Proposez une variable interne adaptée et expliquez pourquoi une seule suffit. (1 point)
- 10. Écrivez le tableau de Karnaugh de la fonction d'excitation pour la sortie correspondante du circuit d'excitation. (1 point)
- 11. Qu'est-ce qui caractérise de manière générale un état stable du d'un système séquentiel? Identifiez dans le tableau de Karnaugh de la question précédente les six états stables du système ci-dessus et numérotez-les. (2 points)
- 12. Tracez le graphe de fluence du circuit, donc un graphe où les différents états stables sont représentés par des nœuds, reliés par des flèches indiquant les transitions possibles entre ceux-ci. (2 points)
- 13. Expliquez pourquoi la séquence d'entrées (E_1E_2) suivante : $(00)\rightarrow(01)\rightarrow(00)\rightarrow(10)\rightarrow(11)\rightarrow(10)\rightarrow(11)\rightarrow(01)\rightarrow(11)$ engendre une sortie qui commence par les valeurs

$$(0) \rightarrow (1) \rightarrow (0) \rightarrow (1) \rightarrow (1) \rightarrow (0) \rightarrow (a) \rightarrow (b) \rightarrow (c).$$

Comment voit-on à cette séquence qu'il s'agit de la sortie d'un circuit séquentiel et non d'un circuit combinatoire? Que valent les trois dernières valeurs a,b et c de cette séquence? (3 points)