4.7 Mathematical Example of the Limit Re — oo

Since the discussion above deals with some of the most important fundamentals
of boundary-layer theory, let us elucidate these ideas further with a very simple
mathematical example given by L. Prandt]*.

‘We consider the oscillation of a point mass with damping, given by the differ-
ential equation

d*z dx

mﬁ + k'ﬂ
Here m is the oscillating mass, k the damping constant, ¢ the spring constant, =
the distance of the mass from the position of rest, and ¢ the time.

The initial conditions are given as

t=0: =z=0. (4.63)
In analogy to the Navier-Stokes equations with very small kinematic viscosity v,
we consider the limit of very small mass m, since then in Eq. (4.62) too the highest
order term becomes very small.

The complete solution of (4.62) with initial condition (4.63) reads

z = Ale™@®) o= ®B/m™ 0, (4.64)

where A is a free constant which could be fixed by a second initial condition.

+ex=0. (4.62)

! L. Prandtl, Anschauliche und niitzliche Mathematik, lectures Winter semester
1931/32, Géttingen.



If we set m =0 in Eq. (4.62) we obtain the simplified differential equation

kiw— +ez=0, (4.65)

which is now a first order differential equation with solution
To(f) = Ae™HE) | (4.66)

By choosing the initially arbitrary constant A suitably, this solution agrees with the
first term of the complete solution. However it cannot satisfy the initial condition
(4.63). Therefore it is a solution for large times (“outer” solution).

A simplified differential equation can also be derived from Eq. (4.62) for the
solution for small times (“inner” solution). To this end a new “inner” variable is
introduced by “stretching” the time coordinate ¢:

t

= (4.67)

Using this, Eq. (4.62) reads

dt*’ +kd +mez=0. (4.68)
For m = 0 we obtain the differential equation for the “inner solution”:
d%z dz

w7 Th =0, (4.69)
with the solution
zi(t") = Are™™ + Az . (4.70)

In spite of the simplification, this equation remains second order, and it can satisfy
the initial condition (4.63). We then have

Ay =—4As. (4.71)



Determining the constant A» is carried out by matching up the “inner” solution
and the “outer” solution corresponding to Eq. (4.66). The solutions in Eq. (4.66)
and (4.70) must be equal in an overlap region, i.e. for intermediate times. It must
hold that:

2‘lx_r)nco zi(t") = ll_r}é Zo(t) - (4.72)
In words the conforming condition says: the “outer” limit of the inner solution is

equal to the “inner” limit of the outer solution. From Eq. (4.72) it immediately
follows that

A=A (4.73)
and thus for the inner solution
m(t*) = A(l—e ). (4.74)

This solution can also be obtained from the complete solution in Eq. (4.64) if
the first term is expanded for small ¢ and only the first term of the expansion is
taken into account, i.e. setting

lim e~ /% = 1. (4.75)

=0
The two solutions, the outer solution from Eq. (4.66) and the inner solution from
Eq. (4.74) represent the entire solution if each is applied in its region of validity.



At a given t, Eq. (4.64) for m — 0 passes over to the outer solution. We
obtain the entire solution valid for the whole ¢ region (the composite solution) from
the partial solutions by adding both solutions. Here the part in common to both
solutions may only be taken into account once, i.e. it must be subtracted:

z(t) = zo(t) + (L") — rlgn(><> zi(t") = zo(t) + =i {t™) — 11.!,% zo(t) . (4.76)

In this manner, the composite solution in Eq. (4.64) follows from the two separate
solutions.

(4 Fig. 4.2. Solution of the oscillator equation
(4.62) for m — 0.
e (a) Solution of the simplified differential
equation (4.65), m = 0;

[ (b), (¢), (d) Solutions of the complete differ-
ential equation (4.62) for different values of
m. For small values of m, curve (d) depicts
t  asolution with “boundary-layer character”




The composite solution in Eq. (4.64) is shown graphically in Fig. 4.2 for 4 > 0.
Curve a is the outer solution. Curves b, ¢ and d are the composite solution, where
the value of m decreases as we go from b to d.

If we compare this solution with the Navier—Stokes differential equations, the
complete differential equation (4.62) corresponds to the Navier-Stokes differential
equations of a viscous fluid; the simplified differential equation (4.65) to the outer
solution of the Euler differential equation of an inviscid fluid; and the simplified
differential equation (4.69) to the inner solution of the boundary-layer equations
which have still to be derived. The initial condition (4.63) corresponds to the no-slip
condition of the viscous fluid, which can be satisfied by the solutions of the Navier—
Stokes equations but not by the solutions of the Buler equations. The outer solution
corresponds to the inviscid outer flow (potential flow) which does not satisfy the
no-slip condition at the wall. The inner solution corresponds to the boundary-layer
flow which is determined by tlie viscosity and which is only valid in a narrow zone
attached to the wall (boundary layer or frictional layer). However it is only by
including this boundary-layer solution that the no—slip condition at the wall can
be satisfled, and thus the entire solution make sense physically.

Therefore this simple example has again confirmed the same mathematical idea
we saw in the previous section, namely that taking the limit to very small viscosities
(very large Reynolds numbers) in the Navier—Stokes equations cannot be carried out
by simply eliminating the friction terms in the differential equation. It is performed
by first obtaining the solution and then allowing the Reynolds number to become
very large.

Later we will see that it is not necessary to retain the complete Navier-Stokes
equations when taking the limit Re — co. For reasons of mathematical simplicity,
we will be able to assume a number of terms in these equations, in particular friction
terms, are small enough to be neglected. However it is important that not all the
friction terms are neglected, since this would reduce the order of the Navier-Stokes
equations.



