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1 Taylor-Couette flow and viscosimeter

In a Taylor-Couette device 1 a liquid (which we suppose incompressible, of density ρ
and dynamic viscosity η) fills the gap between two coaxial cylinders of length L and of
radii R1 and R2, respectively (L � R2 − R1). We are interested in the stationary flow
when both cylinders rotate at uniform angular velocities Ω1 resp. Ω2.

1. What are the symmetries in this system ? What are the implications for the flow ?
Under what conditions ? Use the incompressibility relation to further narrow down
the general shape of the velocity field.

2. Use the equations of motion to calculate the velocity in the gap in the steady state.
Does the viscosity play a role ? Why (or why not) ?

3. What is the vorticity of this flow ? What component of the velocity field contributes
to it ?

4. Determine the torques exerted by the flow on the inner and outer cylinders. How
do they relate ? Check how the torque acts on the inner cylinder when Ω1 = 0 and
Ω2 > 0, or when Ω1 > 0 and Ω2 = 0. Repeat this analysis for the outer cylinder.

∗based on notes by Philippe Gondret
1. Such a device was built by Eugène Ducretet (who also assembled the first wireless telegraph), and

then studied experimentally as well as theoretically by Maurice Couette (1858–1943) during his PhD
thesis in 1888. It allowed for remarkably precise measurement of the viscosity of water and air. In 1923,
G.I. Taylor (1866–1975) showed both theoretically and experimentally that rotating the inner cylinder
whilst keeping the outer cylinder fixed leads to an instability of the Taylor-Couette flow through the
formation of counter-rotating annular vortices.



2 Bent Poiseuille flow

Let us now consider the flow between two bent plates of radii R1 resp. R2 and of
transverse dimension L � R2 − R1 (see figure). The flow is now induced by a pressure
gradient acting along the azimuthal (orthoradial) direction, and having a magnitude
independent of θ. We wish to determine the steady flow, by adequately simplifying, and
then solving, the Navier-Stokes equations. What is the expression for the stationary
velocity field ?

3 Taylor–Dean flow

Consider finally a cylindrical Couette-Taylor viscosimeter flipped on its side so that
the axis is horizontal. This device is now only half-way filled with liquid (see figure).
Again we assume that the gap between the coaxial cylinders d = R2 − R1 is small
compared to the length of the latter, and we wish to determine once more the stationary
flow when the cylinders are rotated at constant frequencies.

1. How does the system reach the steady state ? How is this problem linked to the two
problems studied above ? Far from the free surfaces of the liquid, what can be said
about the velocity components ur and uθ ? Sketch the velocity field and streamlines
in this region. Then draw the velocity field and streamlines near the free surfaces.
Using the incompressibility relation, estimate the size of the perturbed regions
near the free surfaces.

2. Using the results obtained in the two problems studied earlier, express the velocity
field far from the free surfaces without further calculus. Specify the boundary
conditions and the additional constraint required to solve the problem.

3. In order to simplify calculations, we now assume the gap and the curvature to be
very small, that is d � R1, R2. This allows us to write the flow as a superposition
of a plane Coutte flow and a plane Poiseuille flow. Under these assumptions, show
that the velocity field may be written as

uθ(y) = Ω1R1[1 − 2(2 + µ)y + 3(1 + µ)y2]

where µ = Ω2/Ω1 is the ration of the rotation rates and y = (r − R1)/d denotes
the dimensionless coordinate across the gap.

4. Express the difference in the heights of the free surfaces ∆h as a function of the
control parameters.

5. Sketch the velocity field for various rotation ratios, e. g. µ = 1, 0 and −1.


