
TD3 — Flow at low Reynolds numbers

M2 ICFP Physics of Fluids – Adrian Daerr∗

1 Sedimentation of a stick

We would like to determine the trajectory of a stick falling through a viscous liquid in
the steady state. We will model the stick by a cylinder, and note θ the angle by which
its axis is tilted away from the vertical.

1. Given the symmetries of the problem, what can we say about the tensors A, B, C
and D that link the forces and torques to the translational and rotational motion ?
Defining friction coefficients λ⊥ = Axx and λ‖ = Azz perpendicular respectively
parallel to the z-axis, write A, B and C out in full. Do we need to know the tensor
D ?

2. For a cylinder of length L and radius R, one can show that

λ‖ = 4πL
log(L/R) − 0, 72 et λ⊥ = 8πL

log(L/R) + 0, 5

What is the ratio λ⊥/λ‖ for a very slender cylinder.
3. For a slender cylinder (L � R), calculate the relation between the angles θ and α,

where α denotes the angles spanned by the trajectory and the axis of the cylinder.
Specify the deviation θ−α as a function of the cylinder tilt θ. Picture the trajectory
of the falling cylinder. What is the maximum deviation, and for what value of θ
does it occur ? To answer this it is convenient to consider the function tan(θ− α).

∗based on notes by Philippe Gondret



2 Motion of a sphere approaching a plane

Let us analyse the motion of a rigid sphère of radius a and density ρs sedimenting under
gravity towards an infinite solid horizontal plane, in an uncompressible newtonian fluid
of mass density ρ and viscosity η (viscous diffusivity ν = η/ρ. We will assume that the
flow is laminar at all times, and we will neglect forces that are not of hydrodynamical
origin, such as van der Waals and other short-ranged forces.

2.1 The smooth sphere
1. At first suppose that the sphere is perfectly smooth and far away from the plane.

It sinks slowly enough for the Reynolds number to be much smaller than one.
Recall the expression for the viscous force on the moving sphere, and calculate the
vertical stationary velocity U∞ as a function of the system parameters.

2. Suppose now that the sphere is very close to the wall, at a minimal distance h0
already much less that its radius a. Suppose that we may apply the lubrication
approximation, and that the local thickness h(r, t) of the fluid layer at a distance
r of the vertical symmetry axis is roughly h(r, t) = h0(t) + (r2/2a).

a) Write down the mass conservation relation for the fluid between the sphere
and the wall at a distance between r and r + dr from the symmetry axis.
Show that it can be written as

∂h

∂t
= −1

r

∂

∂r

(
rhVr

)
,

where Vr(r, t) is the average radial velocity at a distance r from the axis:
Vr(r, t) = [1/h(r, t)]

∫ h(r,t)
0 Vr(r, z, t)dz.

b) Calculate the expression of the radial velocity Vr(r, z, t) as a function of the
pressure gradient ∂p/∂r. Use it to rewrite the previous equation as follows:
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c) Show that if pat denotes the pressure outside the thin confined layer and near
the wall, the pressure at a distance r where the fluid layer has a thickness h
obeys the equation 1

p = pat − 3ηa
h2

∂h

∂t

d) Conclude that the force resulting from the pressure distribution on the sphere
goes as

F = −6πη a
2

h0

dh0

dt

(as previously consider h0 very small)
Compare this value to the drag force acting on a sphere far from solid boun-
daries.

e) Write an equation of motion for the height dh0/dt as the sphere sediments
under its own weight (under what conditions may we assume that the mou-
vement is quasi-static ?). Calculate the height h0(t) given the initial distance
h0i at t = 0. (again h0 and h0i � a). Sketch h0(t). What is the characteristic
time τ over which h0 evolves ? When does the sphere touch the bottom?

f) It is possible (though long and tedious) to show that for an arbitrary distance
h0 of the sphere from the bottom, the force acting on the sphere is given to
a good approximation by the relation

F = −6πη
(

1 + a

h0

)
dh0

dt
. (1)

Argue why this result at least agrees with the two limits (?? and ??) found
before.

2.2 The rough sphere

3. The aim of this part is to go one step further and to generalise these results to a
simple way to estimate the roughness of a sphere sinking in a viscous liquid towards
a horizontal bottom. The rugosity of the sphere of radius a will be modelled by a
series of small hemispheres of radius ε attached to the original sphere (with ε � a,
see figure). The distance h0(t) is still defined as the minimal distance between the
(rough) sphere and the solid plane, at a given moment in time. We will consider
the sphere to be in contact with the bottom once a number n of the hemispheres
are closer than a small distance h0m (typically a fraction of a nanometer) from the
wall.

1. Tip: use h instead of r as dependent variable for parts of the calculations.



a) Justify why n = 3 is a reasonable value when the sphere is rough enough. We
will keep this value in the following.

b) Justify from equation (??) and from the argument above why the force F
exerted by the fluid on the sphere approaching the bottom is approximated
by

F = −6πη
(

1 + a

h0 + ε
+ 3ε2

ah0

)
dh0

dt
.

4. We now turn the system upside-down, keeping the sphere in contact with the solid
wall (still immersed in the liquid). At time t = 0 we allow the sphere to fall away
from the wall under the action of gravity.

a) Can the previous results (?? to ??) be re-used to solve this problem ?
b) What differential equation does h0(t) obey ? Show that h0(t) satisfies the

following implicit equation:

h0 − h0m + a log
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where h0m is the initial distance between the wall and the asperities of the
rough sphere. Evaluate the various terms to show that for typical values of
the rugosity (a few microns) and values h0m of the order of atomic distances
(0.5 · 10−9 m), the influence of h0m (as well as that of n) on the falling time is
negligible compared to the other terms.

c) The measurement of the falling time starting from the wall thus leads to an
experimental estimate of the relative rugosity ε/a of the sphere as a function
of the other parameters of the problem. The role of the other parameters can
be eliminated by performing two successive measurements of the falling time.
Show in particular that the relative rugosity can be estimated from the times
ta and t2a it takes the sphere to cover distances of a respectively 2a from its
position at contact, according to the formula

ε

a
= 2 exp
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2 − t2a(1 + log 2)
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)
.

d) Estimate the times ta and t2a (and the ratio t2a/ta) for beads of diameter 2a =
1mm, density ρs = 1050 kg/m3, and roughness ε = 1µm or ε = 10µm. The
liquid has density ρ = 1000 kg/m3 and viscosité η = 10−2 Pa s or 10−1 Pa s,
and g = 10m/s2.


