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7.5 Asymptotic Behaviour of Solutions Downstream

In what follows we shall investigate the asymptotic behaviour of boundary-
layer solutions far downstream. Here again we deal with series expansions of
the solutions, but in this case for large values of . The main term under con-
sideration in this expansion is the leading term which reflects the asymptotic
behaviour of the solution for z — oo.

7.5.1 Wake Behind Bodies

As the examples of the mixing layer and the free jet showed, the application
of the boundary-layer equations is not necessarily restricted to the presence
of fixed walls. They can also be applied when there is a layer with dominating
frictional effects in the interior of a flow.
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Fig. 7.9. Wake behind a two—
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The wake flow behind a flat plate of length [ as in Fig. 7.9 is also such
an example. The two boundary layers on the upper and lower sides coalesce
at the trailing edge and further downstream produce a wake profile, whose
width increases with increasing distance from the body, while the velocity
defect decreases. On the whole, as we will see later, the shape of the velocity
profile in the wake, also called wind shadow, is independent of the shape of
the body for £ — oo, up to a scaling factor. The asymptotic development for
= — oo has been given by W. Tollmien (1931). Since the magnitude of the
velocity defect continually decreases with increasing x, it can be assumed for
x — oo that the velocity defect

ui(z,y) = Uso — u(z,y) (7.86)
is small compared to Uy, so that quadratic terms of u; and equivalently of
vy can be neglected. Since the pressure is constant far downstream, we use the

boundary-layer equation (7.4) and insert Eq. (7.86), neglecting the quadratic
terms in u; and vy to obtain

aul 62’&1
with the boundary conditions
y:(); %:O’ Yy — 00 u; =0.
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This equation is a linear partial differential equation. This linearity is charac-
teristic for the computation of small perturbations. The differential equation
is, as Eq. (7.80), again identical to the unsteady heat conduction equation.
With the trial solution
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)va(n), n=g S (7.88)
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we obtain the following differential equation for the function F'(n):

F" + 2nF' + 4mF =0 (7.89)
with the boundary conditions

n=0: F'=0; n—ooo: F=0.

Table 7.2. Balance of volume flux and z momentum on the control surface in
Fig. 7.9

cross—section volume flux z momentum
AB 0 0
h h
AA, bem dy gbf UZ dy
0 0
h h
BB, ~b [udy —ob [ dy
0 0
h h
A1 By —b [(Uso — u)dy —0b [Uso(Uso —u)dy
0 0
> = control surface > volume flux = 0 > momentum flux = drag

The still unknown exponent m ( eigenvalue) can be determined via a global
momentum balance around the body in Fig. 7.9. The rectangular control
surface AA; B, B is placed far enough away from the body that the pressure
on it is unperturbed. The pressure is constant over the whole of the control
surface and so there is no contribution to the momentum balance from the
pressure forces. In calculating the momentum flux across the control surface,
we must note that for continuity reasons fluid must flow out across the upper
and lower surfaces. The quantity of fluid leaving through A, B; is equal to
the difference between that entering through AA; and leaving through BB;.
The momentum balance is given in Table 7.2, where inflowing volume fluxes
are counted positive and outflowing volume fluxes negative. Then the drag
corresponds to the total momentum flux, thus giving us

+00

D =bp f u(Us —u)dy . (7.90)
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Here the limits of integration may be set to ¥y = +oo instead of y = =+h,

since the integrand in Eq. (7.90) vanishes for |y| > h. With the trial solution
(7.88), Eq. (7.90) yields
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Since this balance must be independent of z, it follows that m = 1/2. Equa-
tion (7.89) thus determined becomes

F" +2nF' +2F =0 (7.92)
which, after integrating once, yields
F'+2nF =0
with the solution
F(n)=e . (7.93)
Using the integral
+0o +00
[Foyan= [ e an= v
—o0 —o0

it follows from Eq. (7.91) that the drag coefficient is

D ayEC
D= ey T '

(7.94)
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Therefore the final solution for the defect velocity in the wake of a body with
drag coefficient cp is

ui(z,y) o [Uxl (z -3 _yzUOC
U  4ymV v ([) P v ) (7.95)
From Eq. (7.88) it then follows that the half-value width of the wake is

v
Yo.5 = 17“@; (7.96)

i.e. here too the width of the frictional layer is proportional to /v.
190 7. General Properties and Exact Solutions of Boundary-Layer Equations

It is worth noting that, in spite of the widening of the wake, the defect
volume flux in the wake is independent of z, i.e. no side entrainment occurs
in this flow. The compensating volume flux which flows out through the sides
of the control surface does so already in the near field of the body, and not
in the far field described by the solution (7.95). This solution may be used
at about = > 3l.

For the extension of this solution to smaller z values, see the work by
S.A. Berger (1971), p. 237.

In most practical cases, wake flows are turbulent, since the velocity profiles
in the wake possess points of inflection and are thus particularly unstable.
Consequently the transition to turbulent flow takes place at relatively low
Reynolds numbers, cf. Chap. 15.

Note (Jet in parallel flow)

The wake solution is also valid for the asymptotic decay of a free jet flow in an
equally directed parallel flow. Instead of the drag coefficient c¢p, the analogously
defined jet momentum coefficient c,, appears, and u; (z, y) is interpreted as an excess
velocity.



