Table 5.2 Dimensionless Groups in Fluid Mechanics

	Definition ρUL	Qualitative ratio of effects	Importance
Daymolds number D	ρUL		F
Reynolds humber Re	$e = \frac{\rho UL}{\mu}$	Inertia Viscosity	Always
Mach number M	$Ma = \frac{U}{a}$	Flow speed Sound speed	Compressible flow
Froude number Fr	$r = \frac{U^2}{gL}$	Inertia Gravity	Free-surface flow
Weber number W	$Ve = \frac{\rho U^2 L}{\Upsilon}$	Inertia Surface tension	Free-surface flow
Cavitation number Ca (Euler number)	$Ca = \frac{p - p_v}{\rho U^2}$	Pressure Inertia	Cavitation
Prandtl number Pr	$r = \frac{\mu c_p}{k}$	Dissipation Conduction	Heat convection
Eckert number Ec	$c_{\mathbf{C}} = \frac{U^2}{c_p T_0}$	Kinetic energy Enthalpy	Dissipation
Specific-heat ratio k	$=\frac{c_p}{c_v}$	Enthalpy Internal energy	Compressible flow
Strouhal number St	$t = \frac{\omega L}{U}$	Oscillation Mean speed	Oscillating flow
Roughness ratio $\frac{\epsilon}{L}$	<u> </u>	Wall roughness Body length	Turbulent, rough walls
Grashof number Grashof number	$\operatorname{Gr} = \frac{\beta \Delta T g L^3 \rho^2}{\mu^2}$	Buoyancy Viscosity	Natural convection
Temperature ratio $\frac{T_0}{T_0}$	$\frac{\Gamma_w}{\Gamma_0}$	Wall temperature Stream temperature	Heat transfer
Pressure coefficient C_I	$C_p = \frac{p - p_{\infty}}{\frac{1}{2}\rho U^2}$	Static pressure Dynamic pressure	Aerodynamics, hydrodynamics
Lift coefficient C	$G_L = rac{L}{rac{1}{2} ho U^2 A}$	Lift force Dynamic force	Aerodynamics, hydrodynamics
Drag coefficient C_{I}	$G_D = rac{D}{rac{1}{2} ho U^2 A}$	Drag force Dynamic force	Aerodynamics, hydrodynamics

ing effect in the turbulent-flow or high-Reynolds-number range, as we shall see in Chap. 6 and in Fig. 5.3.

This book is primarily concerned with Reynolds-, Mach-, and Froude-number effects, which dominate most flows. Note that we discovered all these parameters (except ϵ/L) simply by nondimensionalizing the basic equations without actually solving them.

If the reader is not satiated with the 15 parameters given in Table 5.2, Ref. 34 contains a list of over 300 dimensionless parameters in use in engineering. See also Ref. 35.