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Abstract. We report an experimental study of a dilute “gas” of magnetic particles subjected to a vertical alternating magnetic
field in a 3D container. Due to the torque exerted by the field on the magnetic moment of each particle, a spatially homogeneous
and random forcing is reached where only rotational motions are driven. This forcing differs significantly from boundary-
driven systems used in most previous experimental studies on non equilibrium dissipative granular gases. Here, no cluster
formation occurs, and the equation of state displays strong analogy with the usual gas one apart from a geometric factor.
These observations and the measurement of collision statistics at a container wall are well explained by a simple model, and
enable to better understand out-of-equilibrium systems uniformly “heated”.

Keywords: Granular gases ; Experiments ; Homogeneous forcing ; Equation of State
PACS: 45.70.-n, 81.05.Rm, 05.20.Dd, 75.50.-y

INTRODUCTION

Granular gases display striking properties compare to

molecular gases: cluster formation at high enough den-

sity [1–3], anomalous scaling of the pressure [2, 3] and

of the collision frequency [4], non-Gaussian distribu-

tion of particle velocity [5]. These differences are mainly

ascribed to dissipation occurring during inelastic colli-

sions between particles. A continuous input of energy

is thus required to reach a non equilibrium steady state

for a granular gas. This is usually performed experimen-

tally by vibrating a container wall or the whole con-

tainer. For such vibration-fluidized systems, the role of

the boundary condition affects the shape of the particle

velocity distribution [5], as well as the extent of energy

nonequipartition [6]. A spatially homogeneous forcing,

driving each particles randomly, is thus needed to probe

the validity domain of granular gas theories, but is hardly

reachable experimentally [7]. Here, we experimentally

report the equation of state and the collision statistics

of a spatially homogeneous driven granular gas in a 3D

container [8]. Magnetic particles subjected to a magnetic

field oscillating in time are used to homogeneously and

randomly drive the system by injecting rotational energy

in each particle. Rotational motions are transferred in

translational ones by the collisions with the boundaries

or particles. To our knowledge, this type of forcing has

been only used to investigate the pattern formation of

magnetic particles either in a 2D cell or suspended on

a liquid surface [9], as well as the velocity distribution

of magnetic particles in a 2D cell [10]. Beyond direct in-

terest in out-of-equilibrium statistical physics, granular

medium physics, and geophysics (such as dust clouds or

planetary rings [11]), our study provide insight into ap-

plied problems such as magnetic hyperthermia for medi-

cal therapy [12] or electromagnetic grinders in steel mills

[13], both being based on control of magnetic particle

dynamics by alternating magnetic field.

EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. A cylindrical

glass container, 10 cm in diameter and 14 cm in height,

is filled with N magnetic particles, with 2≤ N ≤ 60 cor-

responding to less than 1 layer of particles at rest. Mag-

netic particles are made of a disc permanent magnet (5

mm in diameter and 2 mm thick) encased in a plexi-

glass cylinder (d=1 cm in outer diameter, 0.5 cm thick,

and L = 1 cm long), both axes being collinear (see pic-

tures in Fig. 1). This configuration enables a significant

reduction of the dipole-dipole interaction between two

particles. The magnetic induction of this dipolar parti-

cle, μ0M = 250 G is measured by a Hall probe at the

top of the cylinder, M being the magnetization of the

particle or its magnetic moment per unit volume, and

μ0 = 4π10−7 H/m. The container is placed between two

coaxial coils, 18 cm (40 cm) in inner (outer) diame-

ter, 12.5 cm apart, the container and the coil axes be-

ing collinears as in Fig. 1. A 50 Hz ac current is sup-

plied to the coils in series by a variable autotransformer

(Variac 260V/20 A). An ac vertical magnetic induction B

is thus generated in the range 0≤ B≤ 225 G with a fre-

quency f = 50 Hz. Due to the Helmholtz configuration

of the coils, B is homogeneous within the container vol-

ume with a 3% accuracy. Motions of particles are visual-

ized with a fast camera with a 250 fps. An accelerometer

stuck on the lid records the collision frequency and the

Powders and Grains 2013
AIP Conf. Proc. 1542, 815-818 (2013); doi: 10.1063/1.4812056

©   2013 AIP Publishing LLC 978-0-7354-1166-1/$30.00

815

Downloaded 18 Jul 2013 to 81.194.35.225. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://proceedings.aip.org/about/rights_permissions



impact amplitude on the lid during 500 s, the sampling

frequency being 100 kHz to resolve collisions (∼ 60 μs).

We focus here on the dilute regime with volume fractions

of 0.2% ≤ NVp/V ≤ 8%, with V the container volume

and Vp = πd2L/4� 0.78 cm3 the particle volume.
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FIGURE 1. Experimental set up. Right insets shows pictures
of a magnetic particle (1 cm scale).

EXPERIMENTAL RESULTS

N particles are placed at the bottom of the container, their

axes being in the horizontal plane, normal to B (see Fig.

2a). A plexiglass lid lays on the particles, its mass be-

ing balanced by a counterweight. When B is increased,

a transition occurs at a critical Bc where particles begin

to jump and lift up the lid. We found that Bc = 75± 5

G whatever N. When B is further increased a stationary

gas-like regime is observed with particles rotating and

translating erratically - see Fig. 2b-d and movies in [14].

We observe that the rotation axis of most particles is nor-

mal to the particle axis in order to align the direction of

its magnetic moment with the vertical oscillating mag-

netic field. The frequency and the direction of particle

rotation is erratic, showing unpredictably reversing, and

is thus not synchronized with the forcing frequency f .

Measurements are performed as follows. A mass M

is added on the lid (0.82 ≤ M ≤ 10 g with a 0.82 step)

and the lid is stabilized due to the particle collisions at a

height that depends on B (constant-pressure experiment).

The height h(t) reached by the lid exhibits fluctuations

in time around a mean height 〈h〉 - see inset of Fig. 3.

h(t) is measured by an angular position transducer at a

200 Hz sampling frequency during 200 s, the sensor out-

put voltage being linear with the angle, and h. Note that

the results reported here are unaffected when perform-

ing constant-volume experiments (the lid height is kept

constant by adding a mass on the lid that depends on B).

FIGURE 2. Snapshots of magnetic granular gas. N = 20.
(a) Initial conditions: B = 0, a plexiglass lid is laying on the
particles. When B is increased from (b) to (d), a gas-like regime
develops and the lid rises up due to the particle collisions on it.
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FIGURE 3. Hysteretic evolution of 〈h〉 for an increasing
(•) and decreasing (�) magnetic field B. N = 10, M = 4.7 g.

Dashed line is 〈h〉 ∼ B1/2. Inset: Typical temporal evolution
of h(t) for B = 101 G, N = 10 and M = 4.7 g. Dashed line is
〈h〉=3.3 cm.

The mean height 〈h〉 reached by the lid is shown in

Fig. 3 as a function of B for fixed N and M. The onset

of the particle fluidization is hysteretic, occurring at Bi
c

for increasing B, and at Bd
c < Bi

c for decreasing B. One

finds Bd
c = 56± 1 G and Bi

c = 75± 5 G whatever N.

The thresholds come from the balance between magnetic

energy, Em, of a particle and the gravity energy, Eg =
mgd, needed to vertically move it over its diameter, d,

where m = 1 g is the particle mass, Vp its volume, and
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FIGURE 4. 〈h〉 vs. increasing B for different particle num-
bers N = 4,10,15,20,30 and 40 (from bottom to top). M = 6.9

g. Inset: best rescaling 〈h〉/N1/2 vs. B1/2.

g the acceleration of gravity. When B is decreased, Em

corresponds to the particle dipolar energy, Ed =MVpB,

and one finds Bd
c = mgd/(MVp) � 63 G. When B is

increased, particles are initially in contact, and Em is

the sum of the dipole-dipole interaction energy of two

particles in contact, Edd = μ0M
2Vp/12 [15], and the

dipolar energy of a single particle Ed . By balancing

Edd −Ed with Eg, one has Bi
c−Bd

c = μ0M /12 � 21 G

as found experimentally. The hysteresis is thus due to the

additional field needed to separate two particles initially

in contact.

Far from the onset, Fig. 3 shows that 〈h〉 scales as

B1/2 meaning that the gaseous regime expands more and

more when B increases. For fixed M, 〈h〉 is shown in

Fig. 4 as a function of B for different particle numbers

N. The larger N is, the higher is the height reached by

the lid for a fixed B. The best rescaling is displayed in

the inset of Fig. 4, and shows that 〈h〉/N1/2 ∼ B1/2. For

fixed N, 〈h〉 is shown in Fig. 5 as a function of B for

different added mass M on the lid. The larger M is, the

smaller is the height reached by the lid for a fixed B.

The best rescaling is displayed in the inset of Fig. 5,

and shows that 〈h〉M1/2 ∼ B1/2. To sum up, one finds

an experimental state equation for the magnetic granular

gas

M〈h〉2 ∼ NB . (1)

MODEL

Assume θ the angle between the vertical field B and

a magnetic moment of a particle. A torque MVp × B

is thus exerted by the field on the magnetic moment

of each particle. The kinetic momentum theorem writes

Id2θ (t)/dt2 = MVpBsinωt sinθ , with I = m(3d2/4+
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FIGURE 5. 〈h〉 vs. increasing B for different masses added
M = 2.3, 3.1, 3.9, 4.7, 5.3, 6.9, 8.6 and 10 g (from top to

bottom). N = 15. Inset: best rescaling 〈h〉/M1/2 vs. B1/2.

L2)/12 = 1.4 10−8 kg.m2 the moment of inertia of the

particle. This equation is known to display periodic mo-

tions, period doubling, and chaotic motions [16]. The ra-

tio between the magnetic energy, Ed , and the rotation en-

ergy, Erot = Iω2/2 controls the stochasticity degree. The

synchronization between the angular velocity of the par-

ticles and the magnetic field one, ω = 2π f , is predicted

to occur when Ed � Erot , that is B � Iω2/(2MVp) =
220 G. When this condition is violated, as it is the case

for our range of B, chaotic motions occur [16]. The ex-

ternal magnetic field thus generates an erratic rotational

driving of each particles. A spatially homogeneous forc-

ing is thus obtained where only the rotational degrees of

freedom of each particle are erratically driven.

Particle-particle and particle-boundary collisions have

a key role. They “randomize" the angular momentum

of the particles, they dissipate their energy, and this is

the only way to give a translational velocity, v, to the

particles. Assume that a loss of kinetic energy during

a collision is compensated by a gain magnetic energy

of the particle. Then, one has MVpB(t) ∼ v2. Thus, the

typical particle velocity scales as

v(B)∼
√

B . (2)

More precisely, from the inelastic collision rules,

the energy loss by a particle of mass m dur-

ing a collision with the lid of mass M writes

mMv2(1 − ε2)/[2(m + M)], ε being the particle-

boundary restitution coefficient. The energy balance

finally leads to v=
√

MVpB(m+M)/[mM(1− ε2)].
On the other hand, the time of flight τ of a single par-

ticle between 2 collisions with the lid (at the altitude h)

reads simply τ = 2h/v (neglecting gravity). For N par-

ticles, this time is assumed to be divided by the volume

fraction NVp/V , with V = Sh, S being the container area,
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and thus

τ =
2h2S

Nv(B)Vp

. (3)

The time of flight under gravity of the lid is τl = vl/g

with vl the lid velocity due to the particle collisions on

the lid. When both times are synchronized τl = τ , one has

h2 = NvvlVp/(2gS). From the inelastic collision rules,

the lid velocity vl ∼ v, and writes vl = vm(1+ ε)/(m+

M). The gas expansion thus reads h∼N1/2v. Substituting

Eq. (2) into this equation thus leads to the theoretical

state equation

Mh2 ∼ NB , (4)

in good agreement with the experimental one of Eq. (1).

DISCUSSION

We have obtained the equation of state of a dissipa-

tive granular gas driven homogeneously by the rotations.

With usual notations (the pressure P on the lid ∼Mg/S,

and the container volume V = Sh), the equation of state

thus reads PV ∼ NEc
Vp

V
, with Ec ∼ 〈v2〉 ∼ B the mean

kinetic energy of particles of velocity v. Surprisingly,

this equation is close to the equation of state of a per-

fect gas (PV = NEc) with a geometric correction: the

particle-container volume ratio. Moreover, it differs from

the equation of state of a dissipative granular gas driven

by a vibrating wall PV ∼ Ec with Ec ∼ V θ(N) with V the

forcing velocity of the wall, and θ (N) a decreasing func-

tion from θ = 2 at low N to θ � 0 at large N when the

clustering phenomenon occurs [3]. Here, no clustering is

observed even when the volume fraction is increased up

to 40%. We also show that the magnetic field B in our ex-

periment is the analogous of the thermodynamic temper-

ature for molecular gases, or the analogous of the gran-

ular temperature for dissipative granular gases since one

has 〈v2〉 ∼ B. Finally, the collision frequency ∼ 1/〈τ〉 is

found to scale as N
√

B (not shown here). This result is

consistent with the frequency collision of a perfect gas

∼ N
√
〈v2〉, but not with the one of a vibro-fluidized dis-

sipative granular gas in a dilute regime ∼ N1/2V [4].

This difference is related to the spatially homogeneous

forcing.

CONCLUSION

We have experimentally studied, for the first time, a 3D

granular gas driven homogeneously in volume by par-

ticle rotations. This differs from previous experimental

studies of granular gas where the energy was injected by

vibration at a boundary. A state of equation is experi-

mentally identified and the scaling of the mean frequency

collision with the forcing obtained. Several differences

are reported with respect to thermodynamiclike gas or

non equilibrium vibro-fluidized dissipative granular gas:

(i) the gas-like state equation has a geometric correction

(container-particle aspect ratio), and (ii) no cluster for-

mation occurs at high density. The use of this new type

of forcing will be of primary interest to experimentally

probe the distribution of particle velocity [8], and to test

the possible equipartition of rotational and translational

energy, a feature not guaranteed for out-of-equilibrium

systems [17].
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