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Abstract. We report on observations of the electrical transport within a chain of metallic beads (slightly
oxidized) under an applied stress. A transition from an insulating to a conductive state is observed as
the applied current is increased. The voltage-current (U–I) characteristics are nonlinear and hysteretic,
and saturate to a low voltage per contact (0.4 V). Our 1D experiment allows us to understand phenomena
(such as the “Branly effect”) related to this conduction transition by focusing on the nature of the contacts
instead of the structure of the granular network. We show that this transition comes from an electro-thermal
coupling in the vicinity of the microcontacts between each bead – the current flowing through these contact
points generates their local heating which leads to an increase of their contact areas, and thus enhances
their conduction. This current-induced temperature rise (up to 1050 ◦C) results in the microsoldering of
the contact points (even for voltages as low as 0.4 V). Based on this self-regulated temperature mechanism,
an analytical expression for the nonlinear U–I back trajectory is derived, and is found to be in very good
agreement with the experiments. In addition, we can determine the microcontact temperature with no
adjustable parameters. Finally, the stress dependence of the resistance is found to be strongly non-hertzian
due to the presence of the surface films. This dependence cannot be usually distinguished from the one
due to the disorder of the granular contact network in 2D or 3D experiments.

PACS. 45.70.-n Granular systems – 72.80.-r Conductivity of specific materials

1 Introduction

Coheration effect or the “Branly effect” is an electrical
conduction instability which appears in a slightly oxidized
metallic powder under a constraint [1]. The initially high
powder resistance falls several orders of magnitude as soon
as an electromagnetic wave is produced in its vicinity. Al-
though discovered in 1890 and used for the first wireless
radio transmission [2], this instability and other related
phenomena of electrical transport in metallic granular me-
dia are still not well understood [3]. Several possible pro-
cesses at the contact scale have been invoked without any
clear demonstrations: electrical breakdown of the oxide
layers on grains [4,5], modified tunnel effect through the
metal-oxide ∼ semiconductor-metal junction [6], attrac-
tion of grains by molecular or electrostatic forces [7,8],
local soldering of microcontacts by a Joule effect [9,10]
also labelled as “A-fritting” [6]; each being combined with
a global process of percolation [4,5,7–9].

Understanding the electrical conduction through gran-
ular materials is a complicated many body problem which
depends on a large number of parameters: global proper-
ties concerning the grain assembly (i.e. statistical distribu-
tion of shape, size and pressure) and local properties at the
contact scale of two grains (i.e. degree of oxidization, sur-
face state, roughness). Among the phenomena proposed
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to explain the coheration effect, it is easy to show that
some have only a secondary contribution. For instance,
since coheration effect has been observed by Branly with
a single contact (crossed cylinders or tripod) [11,12], or
with a column of beads [13] or disks [14], percolation can
not be the predominant mechanism. Moreover, when a
powder sample [15] or just two beads in contact [16,17]
are connected in series with a battery, a coheration effect
is observed at high enough imposed voltage, in a similar
way as the action at distance of a spark or an electro-
magnetic wave. In this paper, we deliberately reduce the
number of parameters, without loss of generality, by focus-
ing on the electrical transport within a chain of metallic
beads directly connected to an electrical source. As with
the acoustical propagation in granular media [18,19], such
one-dimensional experiments facilitate the understanding
of the electrical contact properties, and is a first step to-
ward more realistic media, such as a 2-D array of beads
(including disorder of contact) [20], and powder samples
(including disorder of position). Despite some earlier stud-
ies in 1900, with a 2 bead “coherer” showing nonlinear
characteristics and saturation voltage [16,17,21–24], sur-
prisingly no 1D-work has been attempted to tackle this
problem.

The second motivation of our work is to know the
pressure dependence of the electrical resistance, R, of a
granular packing, which also remains an open problem. It
was first measured in the case of a contact between two
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conductors, submitted to a force, F , in order to determine
the real area of contact [25]. Indeed, careful attention
was paid to initially break any oxide layers at the sur-
face [25], or to work with noble metals [26], or specific
surface coatings [27] in order to get reproducible results
which follow; R ∼ 1/F 1/3, in agreement with the elastic
Hertz law. However, when superficial oxide and/or impu-
rity layers are present, this scaling is found again to be a
power law but with an exponent greater than 1. This has
been observed in a 3D packing of steel beads [28,29] un-
der weak (elastic) compression, or for strongly compressed
powders [30]. This anomalous exponent is ascribed either
to a superficial contaminant film [28,29], or a combinaison
of a contaminant film and the degree of contact disorder
in the packing [28]. Here again, a 1D experiment should
allow to answer if this exponent is driven by contact prop-
erties since the effect of contact disorder is absent.

2 Experimental setup

The experimental setup is sketched in Figure 1. It consists
of a chain of 50 identical stainless-steel beads, each 8 mm
in diameter, with a tolerance of 4 µm on diameter,
and 2 µm on sphericity [31]. The physical properties of
the beads are summarized in Table 1. The beads are
surrounded by an insulating framework of polyvinylchlo-
ride (PVC). It consists of two parts, each one 30 mm high,
40 mm wide and 400 mm long, with a straight channel
having a squared section with 8.02 mm sides milled in
the lower part to contain the beads. A very small clear-
ance of 2/100 mm is provided in the channel, so that
the beads move freely along the chain axis but not in
the perpendicular direction. A static force F is applied
to the chain of beads by means of a piston (8 mm diam-
eter duralumin cylinder), and is measured with a static
force sensor (FGP Instr. 1054) with a 6.1 mV/N sensitiv-
ity in the range from 1 to 500 N. A 1.8 degree stepper
motor (RS 440-442) fitted to a gearhead (gear ratio 25:1)
is linked to an endless screw, with a 1 mm thread, in or-
der to axially move the piston and the force sensor with
a 0.2 µm/step precision. The number of motor steps is
measured with a counter (Schlumberger 2721) to deter-
mine the piston displacement necessary to reach a spe-
cific force. Electrical contacts between the chain and the
electrical source are made by soldering leads on particular
beads, and the measurements are performed in a four-wire
configuration. Note that the lowest resistance of the whole
chain (about 3 Ω) is always found much higher than the
electrode or the stainless steel bulk material. The bead
number N between both electrodes is varied from 1 to 41
by moving the electrode beads within the chain. DC volt-
age (resp. current) source is supplied to the chain by a
source meter (Keithley K2400) which also gives a mea-
sure of the current (resp. voltage). The maximum power
output is 22 W (210 V at 0.105 A or 21 V at 1.05 A).
During a typical experiment, we chose to supply the cur-
rent (10−6 ≤ I ≤ 1 A) and to simultaneously measure the
voltage V and the resistance R. The current is supplied
during a short time (�1 s) in order to avoid possible Joule
heating of continuous measurements. We note that similar

Fig. 1. Schematics of experimental setup.

Table 1. Relevant mechanical and electrical properties of
stainless steel beads used in the chain (norms: AISI 420C,
AFNOR Z40C13, grade IV) [31] or for another stainless steel
type (AISI 304) [32].

Signification Value

r Bead radius 4 mm ± 2 µm [31]
Ra Roughness 0.1–0.2 µm [31]
ρ Density 7750 kg/m3 [31]
ν Poisson’s ratio 0.27
E Young’s modulus 1.95 × 1011 N/m2 [32]
ρel Electrical resistivity 20 ◦C 72 µΩ cm [32]

650 ◦C 116 µΩcm [32]
λ Thermal conductivity 20 ◦C 16.2 W/(Km) [32]

500 ◦C 21.5 W/(Km) [32]
Tmel Approx. melting point 1425 ◦C [32]

results have been found when repeating experiments with
imposing the voltage (10−2 ≤ U ≤ 2 × 102 V) and mea-
suring current and resistance. The results reported here
are highly reproducible.

3 Mechanical behaviour

The relation between the force F applied on two identical
spheres and the distance of approach δ of their centers
is given by linear elasticity through the so-called Hertz
law [33],

F =
E
√

2r

3(1 − ν2)
δ3/2, (1)

and the “apparent” radius of the circular contact by [33]

A =
[
3(1 − ν2)

4E
rF

]1/3

, (2)

E being the Young’s modulus, ν the Poisson’s ratio
and r the radius of the beads. For stainless steel beads
used in the chain (see bead properties in Tab. 1), when F
ranges from 10 to 500 N, equation (1) leads to a range
of deformations δ between two beads from 2 to 20 µm,
and equation (2) to a range of the contact radii A from 40
to 200 µm.

Figure 2 shows the total chain displacement δtot as a
function of F . As expected, there is good agreement with
the F 2/3 Hertz law for our range of F . The departure at
low F is linked to the fact that δtot includes the piston
displacement x0, needed to bring all the beads in contact,
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Fig. 2. Total chain displacement, δtot, as a function of the
applied static force, F . (Full line of slope 2/3). Inset shows
dδtot/dF vs. F (Full line of slope of −1/3). N = 13.

i.e. δtot = x0 + 49δ. This is indeed shown in the inset
of Figure 2, where dδtot/dF is found to scale as F−1/3

and to be independent of x0. Using equation (1), the in-
tersection of the F−1/3 fit with the ordinate axis gives a
measurement of the elastic properties of the bead materi-
als through E/(1 − ν2) � 1011 N/m2 in agreement with
values extracted from Table 1. From the sensor documen-
tation, we have checked that the force sensor displace-
ment is 50 times less than the total bead displacement,
δtot − x0, at F = 500 N. The mechanical contact of the
bead chain is thus very well described by the Hertz law
(see also Ref. [18,34]).

4 Electrical behaviour

4.1 Dependence of the resistance on the applied force

Let us denote R0 as the electrical resistance of the bead
chain, at low imposed voltage or current. The evolution
of R0 as a function of the applied force is shown in Fig-
ure 3. Experimental points are found to be well fitted by
a F−3/2 power law (solid line). This measurement is per-
formed simultaneously with the mechanical displacements
corresponding to those found in Figure 2 which are well
described by the Hertz law (see Sect. 3). Thus, assum-
ing R0 ∼ 1/A for metallic contact or R0 ∼ 1/A2 for a
slightly oxydized one [6,25], equation (2) leads to an elec-
trical resistance scaling of F−1/3 or F−2/3, respectively.
The unexpected F−3/2 scaling observed in Figure 3 thus
shows that R0 does not only depend on F through the
radius of contact A but also through the resistivity and
thickness of the contaminant and/or oxide film probably
present at the interface between metallic surfaces.

The R0 ∼ F−3/2 scaling is only valid at low current.
When I is increased, the R − F law is changed as shown
in Figure 4. For each applied I, one can roughly assume a
R ∼ F θ power law where θ is found to be I-dependent (see
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Fig. 3. Electrical resistance, R0, as a function of the applied
static force, F , at low imposed voltage U = 10−3 V. (◦) Same
sample as the one in Figure 2. An other run (see text for details)
with increasing F (�), then decreasing F (�). (−) shows F−3/2

fit, and (−−) the F−2/3 scaling from the Hertz law. N = 13.
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Fig. 4. Electrical resistance, R, as a function of F , for various
current I : 10−6 (♦), 10−4 (�), 10−3 (�), 10−2 (◦), 10−1 (+) A.
F is increased then decreased. For each curve, θ(I) exponents
are extracted from R ∼ F θ power law fits, and are shown in
the inset (semilogx axis). N = 41.

inset of Fig. 4). This complex dependence of θ(I) comes
from the nonlinear characteristics of the system as shown
in Section 4.2.

These scaling laws are very robust when repeating our
experiments. After each cycle in force, we roll the beads
along the chain axis to have a new and fresh contact be-
tween beads for the following cycle. This is a critical con-
dition to have reproducible measurements. Indeed, Fig-
ure 3 shows another force cycle leading to the same low
current scaling in F−3/2, but shifted vertically by one or-
der of magnitude in resistance. This indicates that, at a
given force, R0 depends on the film properties at the loca-
tion where the new contacts have been created. Therefore,
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Fig. 5. Log-log R − I (a) or U–I (b) characteristics when in-
creasing the current I (open symbols) from 10−6 to 1 A, then
decreasing I (full symbols) for N = 13 and various F = 34 (♦),
119 (�), 305 (�), 505 (◦) N. Saturation voltage U0 = 5.8 V
is shown (−−). Inset shows the U–I scaling by the low cur-
rent resistance R0(F ). Generator maximum compliance values
of 21 V and 1.05 A (−), and measurements of test resistances
Rtest = 104, 91, 12.7 and 2.7 Ω (small •-marks) instead of the
chain are indicated.

R0 will subsequently be the control parameter instead
of F .

Finally, as for the different pressure dependences of the
sound velocity observed in a 1D [18] or 2D [19] granular
medium, the electrical resistance scaling (R0 ∼ F−3/2 at
low current) should be different for higher dimensions due
to the effects of contact disorder and/or percolation. This
work is in progress in a 2D hexagonal array of stainless
steels beads [20] or in 3D copper powder samples [35].

4.2 Nonlinear U–I characteristics

For various applied forces, Figure 5a shows the typical
hysteretical R–I characteristics when imposing the cur-

rent 10−6 ≤ I ≤ 1 A to the bead chain. At low I, the
chain resistance R is found to be constant and reversible.
As I is increased further (see open symbols), the resistance
strongly decreases and reachs a constant bias (see dashed
line of slope 1). This will be referred to as the saturation
voltage U0. As soon as U0 is reached, the resistance is ir-
reversible upon decreasing the current (see full symbols).
This decrease of the resistance by several orders of mag-
nitude has similar properties as that of the coherer effect
with powders [1,15] or with a single contact [11–14,16,17].
We have verified these observations are not due to experi-
mental artefacts. The compliance values of the source me-
ter (see solid lines in Fig. 5a) are indeed greater than the
measured values, and when the chain is replaced by test
resistances of known values from 2.7 to 104 Ω, measure-
ments (see •-marks) lead to the expected results in the
full range of currents. As explained previously, after each
cycle in the current, the applied force is reduced to zero,
and we roll the beads along the chain axis to have new
and fresh contact between beads for the next cycle. With
this methodology, the resistance drop (coherer or Branly
effect) and the saturation voltage are always observed and
are very reproducible.

The U–I representation of Figure 5a is displayed in
Figure 5b. It more easily shows the constant reversible
resistance at low current (see open symbols of slope 1),
followed by the asymptotical approach to a constant bias
value of U0 for larger I. When decreasing I, it also reveals
the irreversible behaviour at another constant resistance
(see full symbols of slope 1) having a lower value which
depends on the maximum imposed current, but not on
the applied force (see Sects. 4.3 and 4.4). As mentioned
in Section 4.1, the best way to rescale all the U–I curves
of Figure 5b (performed at various F ) is not by the force
itself but by the resistance at low current, R0(F ). This
rescaling is shown in the inset of Figure 5b leading to an
impressive collapse on a single master curve. The current-
voltage characteristic has thus an ohmic (linear) compo-
nent which is followed continuously by a nonlinear part
saturating for a critical voltage.

4.3 The saturation voltage

In this section, we focus on the saturating regime of
the U–I behaviour. We performed similar U–I studies
as described in Section 4.2, but with linear increments
of the imposed current. Figure 6a shows that the char-
acteristic depends on the history of the maximum ap-
plied current Imax. At low current, U–I is reversible and
ohmic of resistance R0(F ) (arrow 1). As I is increased,
the characteristic follows a constant irreversible line (ar-
rows 2). Then, a decrease from different values of Imax

leads to different U–I trajectories (see full symbols) which
are found reversible and non-ohmic (arrows 3 and 4).

One can show that the saturation voltage U0 depends
on the number of beads, N , between the electrodes. When
varying N from 1 to 41, the saturation voltage per contact
U0/c ≡ U0/(N + 1) is found constant and on the order of
0.4 V per contact as shown in Table 2. These value changes
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Fig. 6. (a) U–I characteristics (in linear axes) showing the
saturation voltage, U0 = 5.8 V, when increasing the current I
in the range 1 mA ≤ I ≤ Imax (open symbols), then decreas-
ing I (full symbols) for various F = 32 (�), 125 (◦), 321 (�)
and 505 (♦) N with Imax = 1 A, and for F = 211 N (�) with
Imax = 0.5 A. Measurement of test resistance Rtest = 2.7 Ω
(small •-marks) instead of the chain. (b) Same open symbols
as (a) rescaled by R0(F ) in linear or semilogx axes (inset). Ad-
ditional F = 13 N (�) is shown. Solid line show empirical fit
of Guthe [17]. N = 13.

when replacing all stainless steel beads with others of an-
other material, U0/c � 0.2 V for bronze beads and 0.3 V
for brass beads (see Tab. 2). Therefore, U0/c depends
slightly on the bead material (see also Refs. [16,17,22]),
but does not depend on the bead radius [16] nor on the
gas surrounding the beads [22,24]. Moreover, the non-
linear saturation bias U0 does not depend explicitly on
the force F . This means that when the previous charac-
teristics obtained for different F are rescaled by R0(F ),
all U–I curves collapse as shown in Figure 6b on lin-
ear or semilog (see inset of Fig. 6b) axes. This satura-
tion bias was first observed in 1901 by Guthe [17] for
two beads in contact. He suggested an empirical fit of

Table 2. Saturation voltage, U0, for various bead numbers, N ,
in the chain and for different bead materials. Nc ≡ (N + 1) is
the number of bead-bead contacts.

Materials Nc U0 (V) U0/Nc (V)

Stainless Steel 02 0.75 0.37

Stainless Steel 14 5.8 0.41

Stainless Steel 42 16.5 0.39

Brass 14 4.4 0.31

Bronze 14 3 0.21

the form U = U0[1 − exp (−IR0/U0)] which does not de-
scribe our data (see solid line in the inset of Fig. 6b). If
we use a more complex fit, U = U0[1− exp (−IR0/U0)

α]β
with αβ = 1 as used in percolation studies [36], this
leads to a better description but with one adjustable pa-
rameter. However, no satisfactory physical description has
been proposed for such characteristics and the conduction
mechanisms involved. In Section 5, we suggest a physical
interpretation for U0/c based on an electro-thermal cou-
pling within the microcontacts. Finally, we note that the
saturation voltage has not been reported in higher dimen-
sional systems, although these systems exhibit a nonlinear
and irreversible U–I characteristics (e.g. in 3D polydis-
perse packing of beads [37] or in 2D metallic packing of
pentagons [38]).

4.4 Symmetry properties of the U–I characteristics

Due to contaminants and/or oxide layers probably present
on the bead surfaces, a contact between two beads can be
described as a Metal/Oxide/Oxide/Metal contact. If the
conduction through this contact is ionic or electronic, we
expected that the Oxide/Oxide interface has less influence
than the Metal/Oxide one. In this case, the conduction via
a bridge between metals through the oxide should thus
lead to an ionic or electronic accumulation on one side
of the contact. When the saturation voltage is reached, it
should affect differently the two sides, breaking the origi-
nal symmetry. This broken symmetry should be observed
by an asymmetrical characteristic U–I, when reversing the
applied current to the chain.

However, when the current is reversed and applied to
the chain, Figure 7 clearly shows a symmetrical curve
U(I) = −U(−I). At low applied current, U–I is reversible
and ohmic (solid arrow 1), then it nonlinearly reaches
the irreversible saturation regime (solid arrow 2) for in-
creasing I up to Imax+ = 1 A, and finally follows a
nonlinear and reversible back trajectory (solid arrow 3)
when I is decreased to 1 mA. When reversing the cur-
rent up to Imax− = −1 A, the characteristic follows this
reversible non-ohmic line symmetrically (solid arrows 4
and 5). We can thus conclude that the important inter-
face is the Oxide/Oxide interface in this case.

We now repeat the experiment (see ♦-marks) up to
a different Imax+ = 0.5 A. It leads to a different back
trajectory (dashed arrow 3) which is again symmetrical
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Fig. 7. Symmetrical characteristics U–I for various current
cycles in the range 1 mA ≤ I ≤ Imax+ and Imax− ≤ I ≤
−1 mA, and for various forces. Inset shows the reversible back
trajectories rescaled by R0b. Umax ≡ R0b ∗ Imax 	 3.5 V. N =
13. (See text for details.)

when reversing the applied current up to Imax− = −0.5 A
(dashed arrow 4). When the current is further decreased
up to −1 A, the characteristic symmetrically reaches the
saturation bias −U0 (see ♦-marks), before joining the pre-
vious reversible non-ohmic line (dashed arrow 5), when the
current is increased from −1 A to 1 mA. Thus, the back
trajectory of this symmetrical loop is driven by |Imax|. To
check this, let us first define R0b as the electrical resistance
of the chain, at low decreasing current, that is, the slope
of the back trajectory in Figure 7. When repeating this
experiment up to different values of Imax and for various
applied forces F , one can show that R0b does not depend
on F , but only on Imax such as R0b ∗ Imax ≡ Umax is
constant. It is indeed shown in the inset of Figure 7 where
the reversible back parts of Figure 7 are rescaled by R0b,
and follow the same back trajectory.

5 Interpretation

5.1 Qualitative interpretation

Assume a mechanical contact between two metallic
spheres covered by a thin contaminant film (∼few nm).
The interface generally consists of a dilute set of microcon-
tacts due to the roughness of the bead surface at a specific
scale [6]. The mean radius, a, of these microcontacts is of
the order of magnitude of the bead roughness ∼0.1 µm,
which is much smaller than the apparent Hertz contact
radius A ∼ 100 µm. Figure 8 schematically shows the
building of the electrical contact by transformation of this
poorly conductive film. At low applied current, the high
value of the contact resistance (kΩ – MΩ) probably comes
from a complex conduction path [39] found by the elec-
trons through the film within a very small size (�0.1 µm)

Fig. 8. Schematic view of the electrical contact building
through microcontacts by transformation of the poorly con-
ductive contaminant/oxide film. At low I , the electrical contact
is mostly driven by a complex conduction mechanism through
this film via conductive channels (of areas increasing with I).
At high enough I , an electro-thermal coupling generates a
soldering of the microcontacts leading to efficient conductive
metallic bridges (of constant areas).

of each microcontact (see lightly grey zones in Fig. 8). The
electron flow then damages the film, and leads to a “con-
ductive channel”: the crowding of the current lines within
these microcontacts generates a thermal gradient in their
vicinity, if significant Joule heat is produced. The mean ra-
dius of microcontacts then strongly increases by several or-
ders of magnitude (e.g., from ai � 0.1 µm to af ∼ 10 µm),
and thus enhances their conduction (see Fig. 8). This cor-
responds to a nonlinear behaviour (arrow 1 until 2 in
Fig. 7). At high enough current, this electro-thermal pro-
cess can reach the local soldering of the microcontacts (ar-
row 2 in Fig. 7); the film is thus “piercing” in a few areas
where purely metallic contacts (few Ω) are created (see
black zones in Fig. 8). [Note that the current-conductive
channels (bridges) are rather a mixture of metal with the
film material rather than a pure metal. It is probable that
the coherer action results in only one bridge – the contact
resistance is lowered so much that puncturing at other
points is prevented]. The U–I characteristic is then re-
versible when decreasing and then increasing I (arrow 3
in Fig. 7). The reason is that the microcontacts have been
soldered, and therefore their final size af does not vary
any more with I < Imax. The U–I back trajectory then
depends only on the temperature reached in the metal-
lic bridge through its parameters (electrical and thermal
conductivities), and no longer on its size as previously.

5.2 Quantitative interpretation

To check quantitatively the interpretation in Section 5.1,
we shall first recall the voltage–temperature U–T rela-
tion, and we shall see that this electro-thermal coupling is
the simplest way to interpret quantitatively the U–I back
trajectory (arrows 3 in Fig. 7). Indeed, the relationship
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between the voltage-drop across the contact U , the cur-
rent I and the microcontact radius a is strongly modified
compared to the classical constricted case, U/I = ρel/2a,
derived without taking into account the significant heat
production within the microcontact.

Assume a microcontact between two clean metal-
lic conductors (thermally insulated at uniform temper-
ature T0, with no contaminant or tarnish film at the
contact). Such a clean microcontact is generally called a
“spot”. If an electrical current flowing through this spot
is enough to produce Joule heating, then a steady-state
temperature distribution is quickly reached (∼ µs) in the
contact vicinity. The maximum temperature Tm is located
at the contact, and is linked to the voltage-drop U by the
Kohlrausch’s equation [6,40,41]

U2 = 8
∫ Tm

T0

λρel dT, (3)

where, ρel is the electrical resistivity and λ the thermal
conductivity, both being dependent on the temperature T .
However, for many conductors, the Wiedemann-Franz law
states that [6,41,42]

λρel = LT, (4)

where L = π2k2/(3e2) = 2.45×10−8 V2/K2 is the Lorentz
constant, k the Boltzmann’s constant, and e the electron
charge. This is a consequence that the electron scattering
time contributes to both the electrical conductivity and
the heat conductivity. Combining equations (3) and (4)
yields for the local heating;

T 2
m − T 2

0 =
U2

4L
. (5)

This relationship shows that the maximum tempera-
ture Tm reached at the contact is independent of the
contact geometry and of the materials in contact! This
is a consequence that both the electrical and thermal
conductivities are related to the conduction electrons
through equation (4). However, the temperature distri-
bution within the bridge depends on the geometry [42].
A voltage near 0.4 V across a constriction thus leads
from equation (5) to a contact temperature near 1050 ◦C
for a bulk temperature T0 = 20 ◦C. This means that
U � 0.3−0.4 V leads to contact temperatures that exceed
the softening or/and the melting point of most conduc-
tive materials [42]. Efficient conductive metallic bridges
(or “hot spots”) are therefore created by microsoldering.
Moreover, equation (5) shows that the parameter deter-
mining the spot temperature is the voltage-drop across
the contact, not the magnitude of the current: this ex-
plains why the experimental saturation voltage U0/c is
the relevant parameter in Section 4. In addition, when U
approaches U0/c, the local heating of microcontacts is
enough, from equation (5), to soft them (mainly at their
peripheries [42]). Then, their contact areas increase thus
leading to a decrease of local resistances, and thus stabiliz-
ing the voltage, the contact temperatures and the contact

areas, since the current is fixed. The phenomenon is there-
fore self-regulated in voltage and temperature.

Let us now specify the temperature dependence for the
thermal and electrical conductivity in the case of an alloy
or a pure metal. For an alloy, some defects are present in
the bulk metal, and contribute to the electrical conduc-
tivity (but have no influence on the Eq. (4) [6]). The elas-
tic scattering of the conductive electrons with the metal
phonons and with the defects is random, and thus the
corresponding scattering frequencies add up. This leads
to the Mathiessen’s rule: the total resistivity is the sum of
a temperature dependent resistivity due to the scattering
with phonons and a residual resistance at zero tempera-
ture due to defects such as

ρel(T ) ≡ α(T + βT0) (6)

where α = 6.98 × 10−10 Ω m/K and β = 2.46 are ex-
tracted from the stainless steel resistivity in Table 1, and
T0 = 293 K is the room temperature. This defines an
effective temperature linked to the defects Tdef ≡ βT0.
Note that for pure metals, α = ρ0/T0, β = 0 (since only
the “phonon resistivity” contributes), and thus from equa-
tion (4), λ(T ) = λ0 = LT0/ρ0, where ρ0 and λ0 are the
electrical resistivity and thermal conductivity of the pure
metal at T0.

One can analytically solve the electro-thermal problem
for the general case of an alloy, i.e. with ρel(T ) and λ(T )
as in equations (4) and (6), as shown in the appendix:

– the isothermal temperature Tm at the contact surface
as a function of the voltage U is

Tm =

√
T 2

0 +
U2

4LN2
c

, (7)

– the normalized current IR0b through the contacts only
depends on this temperature Tm (i.e. on U) such as

IR0b = 2T0Nc

√
L(1 + β)

∫ θ0

0

cos θ

β cos θ0 + cos θ
dθ, (8)

where θ0 ≡ arccos (T0/Tm).

We remind the reader that Tm does not depend on the
material properties, or the microcontact geometry, but
only on the room temperature, T0, the number of bead-
bead contacts in the chain, Nc ≡ N + 1, and the Lorentz
constant L. IR0b has an additional parameter β related
to the defects in the material. For pure metals, i.e with
α = ρ0/T0 and β = 0 in equation (6), equation (8) sim-
plifies to the well-known explicit expression with no ad-
justable parameter [6,40]

IR0b = 2NcT0

√
L arctan[T ∗

m(2 + T ∗
m)], (9)

where T ∗
m ≡ (Tm − T0)/T0.

The normalized U–I back trajectory (i.e., IR0b as a
function of U) is displayed in Figure 9. Here, the exper-
imental results of Figure 7 are compared with the the-
oretical solutions for an alloy (Eq. (8)) calculated with
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Fig. 9. Comparison between experimental U–I back trajec-
tories of Figure 7 (symbols), and theoretical curves for an
alloy (Eq. (8)) with stainless steel properties [β = 3 (−) or
β = 2.46 (· · · )], and for a pure metal (−.−) (Eq. (9)). Inset
shows the theoretical maximum temperature, Tm (Eq. (7)),
reached in one contact when the chain is submitted to a volt-
age U . N = 13.

AISI 304 stainless steel properties, and for a pure metal
(Eq. (9)). A very good agreement is shown between the ex-
perimental results and the electro-thermal theory, notably
for the alloy case. Qualitatively, the alloy solution has a
better curvature than the pure metal one. The agreement
is quantitatively excellent when choosing β = 3 instead
of 2.46 (the β value for AISI 304 stainless steel), since
the β value for the bead material (AISI 420 stainless steel)
is unknown, but should be close. This gives a measurement
of the effective temperature due to the defects Tdef = 3T0.
During this experimental back trajectory, the equilibrium
temperature, Tm, on a microcontact is also deduced from
equation (7) with no adjustable parameter (see inset of
Fig. 9). Therefore, when the saturation voltage is reached
(U0 = 5.8 V), Tm is close to 1050 ◦C which is enough
to soften or to melt the microcontacts. Our implicit mea-
surement of the temperature is equivalent to use a resistive
thermometer. When very high voltage (more than 500 V)
is applied to a monolayer of aluminium beads, direct visu-
alization with an infrared camera has been performed by
Vandembroucq et al. [9].

6 Conclusion

We have reported the observation of the electrical trans-
port within a chain of oxidized metallic beads under ap-
plied static force. A transition from an insulating to a
conductive state is observed as the applied current is in-
creased. The U–I characteristics are nonlinear, hysteretic,
and saturate to a low voltage per contact (�0.4 V). Elec-
trical phenomena in granular materials related to this
conduction transition such as the “Branly effect” were
previously interpreted in many different ways but with-

out a clear demonstration. Here, we have shown that
this transition, triggered by the saturation voltage, comes
from an electro-thermal coupling in the vicinity of the
microcontacts between each bead. The current flowing
through these spots generates local heating which leads
to an increase of their contact areas, and thus enhances
their conduction. This current-induced temperature rise
(up to 1050 ◦C) results in the microsoldering of contacts
(even for so low voltage as 0.4 V). Based on this self-
regulated temperature mechanism, an analytical expres-
sion for the nonlinear U–I back trajectory is derived, and
is found in very good agreement with the data. It also al-
lows the determination of the microcontact temperature
all through this reverse trajectory, with no adjustable pa-
rameter. Finally, the stress dependence of the resistance
is strongly found non-hertzian underlying a contribution
due to the surface films.

We thank D. Bouraya for the realization of the experimen-
tal setup, and G. Kamarinos for sending us references [4,5].
L.K.J. Vandamme and E. Guyon are grateful for the fruitful
discussions.

Appendix A

Assume a single plane contact (of any shape) between
two identical conductors (of large dimensions compared
to the contact ones) submitted to a constant current I.
The electrical power dissipated by the Joule effect is as-
sumed totally drained off by thermal conduction in the
conductors. This thermal equilibrium and Ohm’s law lead
to the potential ϕ at the isotherm T in the contact
vicinity [6,40,42],

ϕ2(T ) = 2
∫ Tm

T

ρel(T ′)λ(T ′)dT ′, (10)

where Tm is the maximum temperature occurring in the
contact plane, λ the thermal conductivity and ρel the
electrical resistivity of the conductor. Denote by R0b, the
“cold” contact resistance presented to a current low en-
ough not to cause any appreciable rise in the tempera-
ture at the contact (the conductor bulk being at the room
temperature T0). The relation between the current flow-
ing through the contact and the maximum temperature
produced is then [40]

IR0b = 2ρel(T0)
∫ Tm

T0

λ(T )
ϕ(T )

dT. (11)

Note that the dependence on temperature of the right-
hand side of equation (11) arises solely from the presence
of material parameters, and that only R0b depends on the
contact geometry. Solving this equation for the general
case of λ(T ) and ρel(T ) such as in equations (4) and (6).
Substituting equations (4) and (6) in the so-called “ϕ–T ”
relation (the Kohlrausch’s Eq. (10)) leads to equation (7)
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for Nc contacts in series, since ϕ(T0) ≡ U/2. Substituting
equations (4) and (6) in equation (11) yields to

IR0b = 2
√

LT0(1 + β)
∫ Tm

T0

T/T0
β+T/T0

Tm

√
1 − (T/Tm)2

dT. (12)

Making the change of variable θ ≡ arccos (T/Tm), equa-
tion (12) reduces to

IR0b = 2
√

LT0(1 + β)
∫ θ0

0

cos θ

cos θ + β cos θ0
dθ, (13)

with θ0 ≡ arccos (T0/Tm). For Nc contacts in series, equa-
tion (13) leads to equation (8).
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