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Behavior of one inelastic ball bouncing repeatedly off the ground
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Abstract. An experimental study of the behavior of one bead bouncing repeatedly off a static flat horizontal
surface is presented. We observe that the number of bounces made by the bead is finite. When the duration
between two successive bounces becomes of the order of the impact duration, the bead no longer bounces
but oscillates on the elastically deformed surface before coming to rest. This transition is explained with
a modified Hertz interaction law in which gravity is taken into account during the interaction. For each
bounce, measurement of both the duration of collision and the restitution coefficient have been done.
The effective restitution coefficient is essentially constant and close to 1 during almost all bounces before
decreasing to zero when the impact velocity vanishes. This is due to an interplay between gravity and
viscoelastic dissipation.

PACS. 46.10.+z Mechanics of discrete systems – 83.70.Fn Granular solids

1 Introduction

Recently, considerable attention has been devoted to the
study of granular materials (for an overview see Refs.
[1,2]). In particular, granular flows give rise to a variety of
phenomena, such as convection [3,4], surface excitations
[5–7] and fluidization [8–10]. In all cases, the inelastic char-
acter of collisions between two grains or between a grain
and a wall of the container strongly affects the dynamical
behavior of such dissipative media. Very large scale exam-
ples of granular gases are the planetary rings, e.g., those
of Saturn, whose dynamics are basically determined by
the properties of the inelastic collisions occurring between
particles composing the rings [11–13].

While over the years many attempts [10,14–17] have
been made to formalize the complex rheology of dissipa-
tive granular gases, several recent theoretical and numer-
ical studies of the role of inelastic collisions in such media
have shown surprising dynamics. For example, when an
inelastic hard core granular gas is initially in a thermal-
ized state and then freely evolves without the addition of
energy, the inelastic dynamic of such a “cooling” granu-
lar system results in the evolution through four different
regimes (kinetic, shearing, clustered and collapsed) [18],
two of which leads to structures in 1–D or 2–D: Clus-
ters [19,20] or “inelastic collapse” [20–23]. The inelastic
collapse is a special type of clustering in which a group
of particles undergo an infinite number of collisions oc-
curring in a finite time. The result of inelastic collapse is
that the particles actually come into contact, whereas in
a cluster the particles are close together, but not in con-
tact. Most people working on inelastic collapse consider
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that this phenomenon is qualitatively akin to the behavior
of one inelastic ball bouncing repeatedly off the ground.
Indeed, if during each bounce, the collision is assumed
instantaneous and inelastic with constant restitution co-
efficient, it is easy to show that the ball comes to rest
after an infinite number of bounces in a finite time. This
theoretical feature will be called hereafter the “collisional
singularity”.

As well as the role of inelastic collisions, the role of
contacts between grains is basic for the study of granu-
lar materials since energy dissipation takes place mostly
at those contacts. In this respect, normal binary colli-
sions may facilitate the understanding of such contact’s
properties, and are a first step toward multibodies colli-
sion [24]. Although there have been many works [25–27]
dealing with the dynamic of inelastic binary collisions and
a lot of measurements of the energy loss in such collisions
[11–14,27–38], there is a considerable scatter in exist-
ing data. At high impact velocities, i.e., when fully plas-
tic deformations occur, the evolution of the restitution
coefficient, ε, as a function of the impact velocity is
well known both experimentally [27,35] and theoretically
[26,35]. However, at very low incident velocities, both the
behavior of ε with the impact velocity and the mecha-
nisms responsible for a possible dissipation are still open
problems.

In this paper, we analyse experimentally the behavior
of one bead bouncing repeatedly off a stationary massive
flat surface. The bead is dropped, without initial veloc-
ity, from a fixed height above this surface. This system is
well adapted to study how the collisional singularity and,
in a wider sense, the inelastic collapse, are “smoothed”
when the simplifying theoretical assumptions are replaced
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by realistic experimental conditions. Obviously, an infi-
nite number of bounces occurring in a finite time is not
expected in an experiment since the duration of a collision
is non zero. However, it is not trivial to understand how
the collisional singularity is removed, i.e., which is the
saturation mechanism. Finally, this problem raises sev-
eral questions: Does the duration between two successive
bounces tend to zero? How many times does the bead
bounce before coming to rest? How do the restitution co-
efficient and the duration of impact, scale when the impact
velocity of the bead tends to zero? What are the mecha-
nisms of energy loss during a bounce at very low impact
velocity?

This paper is organized as follows. The elementary
model of an inelastic bead bouncing on a flat surface is re-
called in Section 2. In this model each collision is assumed
instantaneous, and the bead comes to rest, after an infinite
number of bounces, in a finite time. However, experimen-
tal results will show that the finite duration of bounces
cannot be neglected, so that the elementary model does
not apply. The experimental setup is presented in Section
3. The experimental results are reported and discussed in
Section 4. We observe that when the duration of a collision
is of the order of the flight time between two successive
bounces, the bead no longer bounces but oscillates on the
plane with a characteristic period. Because of dissipation,
the oscillation amplitude decreases to zero until the bead
comes to rest. For each bounce, measurement of both the
duration of collision and the restitution coefficient have
been done. The restitution coefficient is found to be essen-
tially constant and close to 1 during almost all bounces till
it decreases when the impact velocity tends to zero, i.e.,
for the last bounces. The duration of collision is in fair
agreement with the prediction of Hertz’s theory [39] dur-
ing almost all bounces, but becomes longer at very small
impact velocities, i.e., for the last bounces. Section 5 is
devoted to the presentation and the outcomes of a non–
dissipative model. This latter describes both the contact
dynamic of the last bounces and the bead oscillations on
the plane. We then give the derivation of an analytical
expression of the period of the bead oscillations, and an
integral expression of the duration of impact. The differ-
ent mechanisms of energy loss occurring during a bounce
are then discussed in Section 6. Finally, in Section 7, we
present a dissipative numerical model which leads to an
interpretation of the evolution of the restitution coefficient
with the impact velocity of the bead.

2 Elementary model of the inelastic ball

A bead is dropped from a height h0 without initial ve-
locity. The bead falls vertically onto a perfectly smooth
horizontal surface of a perfectly hard material with infi-
nite mass, then bounces a number of times before coming
to rest. During the free fall, we assume that the bead is
subjected only to gravity. Besides, during each bounce,
the collision is assumed instantaneous, i.e., the duration
of contact is zero, and inelastic, i.e., a part of the kinetic
energy of the bead is dissipated. The bead’s velocity after
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Fig. 1. Schematic representation of the first few collisions.

a collision is therefore smaller than before the collision,
and consequently the height of bounces decreases with
time. Let ε be the ratio between the bead velocity after
and before the impact. This ratio, called the restitution
coefficient between the bead and the surface, is assumed
constant for all bounces. As the air resistance is neglected,
the bead velocity before the n + 1th bounce corresponds
to the one after the nth bounce. Thus, if vn is the bead
velocity before the nth bounce, ε has the following expres-
sion

ε =
vn+1

vn
(n = 1, 2, 3, · · · ) . (1)

Using the notations of Figure 1, it is easy to show that
the bead first strikes the surface after a time t0 =

√
2h0/g,

with a velocity v1 =
√

2h0g where g is the acceleration of
gravity. Let tn be the time of flight of the bead between the
nth and the n+1th bounces. Using the above assumptions,
we have

tn = εn−1t1 = εn

√
8h0

g
(n = 1, 2, 3, · · · ) , (2)

and the bead comes to rest after a time T∞

T∞ =
∞∑
n=0

tn = t0 + t1 ×
∞∑
n=1

εn−1 =
1 + ε

1− ε

√
2h0

g
, (3)

since ε < 1. Consequently, the bead comes to rest after an
infinite number of bounces in a finite time T∞.

Let ζn be the time passed between the release and the
nth bounce, i.e., ζn =

∑n
i=0 ti. The bouncing frequency

νn for the nth bounce then is

νn ≡
dn

dζn
=

1

ln ε
(ζn − T∞)−1 (n = 1, 2, 3, · · · ). (4)

Consequently, the bouncing frequency tends to infinity,
a phenomenon called the “sound of singularity” in refer-
ence [20], as the bead stops, i.e., as ζn → T∞ or n→ ∞.
Nevertheless, as we will show in Section 4.1 (see Fig. 3), it
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Fig. 2. Schematic diagram of the experimental setup (not to
scale).

is necessary to take the finite durations of collisions into
account. This elementary model is therefore unacceptable
to describe the dynamic of the bead. However, it is useful
to keep in mind equation (2) when analyzing experimental
data for the collision times (see Sect. 4.1).

3 Experimental setup

A tungsten carbide bead, 8 mm in diameter, is suspended
at the end of a vertical brass tube inside which a partial
vacuum is drawn by means of a pump. The bead has a
tolerance of ±1 µm in diameter and ±0.8 µm in spheric-
ity. The tube is fixed on a micrometric linear positioner
allowing a precise adjustment of the height of the release.
A quick opening valve relieves the vacuum and releases
the bead above a PCB 200B02 piezoelectric force sensor
which is screwed on a duralumin square flat plate. Each
side of this latter is 30 cm long, and its thickness is 2 cm.
As it is shown in Figure 2, the whole setup is fixed on a
table with adjustable legs in order to ensure horizontality
of the impact plane. The force sensor is connected to a
digital oscilloscope performing single shot acquisition of
50 000 points with a sampling rate up to 10 ns/pt. The
height of fall h0 is 2 mm in order to avoid the plastic
limit of the sensor material. For such height of fall, the air
friction force on the bead motion is negligible1. In order
to have a satisfactory resolution on the oscilloscope, i.e.,
5 µs/pt, only the last bounces are recorded. For all exper-
iments the total duration of bounces is about 1.28 s and
the trigger delay of the oscilloscope is 1.08 s. Only the last
0.20 s of signal are thus recorded, corresponding to about
a hundred measurable bounces.

The reproducibility of measurements strongly depends
of the release of the bead (i.e., a fixed initial height of fall,

1 During the free fall in the air of a tungsten carbide bead,
8 mm in diameter, the bead should be in free fall during more
than 5 s, i.e., for a height of fall of the order of 150 m, in order
that the bead reach its sedimentation speed.

no initial rotational and translational velocity), the tol-
erance in the bead diameter and sphericity, the surface
roughness of the target as well as its horizontality. The
principal feature of this apparatus (see also Ref. [40]) is
that it releases the bead reproducibly and avoids the prob-
lems encountered with other mechanisms: Either an elec-
tromagnet (magnetization of the bead causing an induced
current that distorts the piezoelectric sensor response), or
a diaphragm and a screw (rotational velocity of the bead
during the release). A tolerance better than ±10 µm in di-
ameter and ±5 µm in sphericity allows all the bounces to
occur on the sensor till the stopping of the bead. For beads
with poorer tolerance than previous ones (e.g., glass, nylon
or polyurethane beads), it is not possible to observe the
latest bounces on the sensor, even for an extremely pre-
cise adjustment of the horizontality. Indeed, during each
bounce, the bead gains a very small rotational velocity
due to the little differences of sphericity and diameter.
This velocity becomes more and more important as the
number of bounce increases, till the bead bounces outside
the sensor.

4 Experimental results

4.1 Duration of collision

The duration of a collision is finite so that it is necessary
to introduce the following variables: fn, the time of flight
of the bead between the nth and the n+ 1th bounce, dn,
the total elapsed time between the nth and the n + 1th
bounce, and τn the duration of the nth collision

dn = τn + fn (n = 1, 2, 3, · · · ) . (5)

For the elementary model of Section 2, assuming τn =
0 whatever n, we have obviously tn = dn = fn. Figure 3
shows the observed evolution of the natural logarithm of
both fn and dn as a function of n−N0. N0 is the number
of bounces made by the bead during the trigger delay of
the oscilloscope. Till the duration of collision becomes sig-
nificant, the two curves in Figure 3 are identical and are
described by a linear relation between ln(tn) and n− N0

with tn = dn = fn since τn � fn. Taking the natural log-
arithm of both sides of equation (2), we identify the slope
and the ordinate intercept of the straight line as, respec-
tively, ln (ε) and ln(

√
8h0/g) + N0 ln(ε). Experimentally,

we measure the values ε = 0.974 and N0 = 80. Thus, as
long as τn � fn, the elementary model in Section 2 is in
agreement with experimental results since ε is constant.

Without taking τn into account, Bernstein [41,42] mea-
sures a nonlinear law between ln(tn) and n during the first
20 bounces of a solid plastic bead dropped from a height
of 1 m onto a smooth massive stone. His observations dif-
fer considerably from ours since his height of fall is 500
times greater than ours, and consequently an important
amount of energy is dissipated during each impact (see
Sect. 6). Note that Smith et al. [43] resumed Bernstein’s
work entirely interfacing the experiment with a computer.
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Fig. 3. Evolution of ln(fn) (∗) and ln(dn) (+) as a function
of n −N0 for a carbide tungsten bead dropped from a height
h0 = 2 mm. N0 is the number of bounces made by the bead
during the trigger delay of the oscilloscope (1.08 s). The time
of flight for the last two measured bounces is 301 µs (∗) and
the total elapsed time 448 µs (+).

2 2.5 3 3.5 4
80

100

120

140

160

180

vn
−1/5 (m−1/5s1/5) 

τ n
 (

µs
)

Fig. 4. Duration τn of the nth bounce as a function of

v
−1/5
n . Crosses correspond to experimental points. The solid

line corresponds to Hertz’s theory τ = Av−1/5 with A =
37.92 × 10−6 m1/5s4/5.

Although their experimental conditions are unclear, their
results seem qualitatively identical to Bernstein’s ones.

Hertz’s theory [39] shows that the duration of collision
between a bead and a plane, with a relative velocity v, is
τ ∝ v−1/5. Thus, the smaller the velocity before the im-
pact, the greater the duration of impact. It is clear from
Figure 3 that the duration of impact increases with the
number of bounces. The values of the duration of collision
τn for each bounce are obtained from Figure 3 in accor-
dance with equation (5). The evolution of τn is shown in

Figure 4 as a function of v
−1/5
n . The values of vn are ex-
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Fig. 5. Signal from the force sensor for the ultimate bounces.
The double arrow indicates the location of the last measure for
fn and dn. The single arrow indicates the time for which the
bead starts to oscillate on the sensor without taking off.

tracted from the values of fn−1 multiplied by g/2. The
solid line corresponds to Hertz law τ = Av−1/5 where
A is found experimentally by means of a second oscillo-
scope recording the first two bounces. The measure of the
duration of collision of the first impact (τ1 = 52.4 µs),
knowing the height of fall (h0 = 2 mm) and thus the
impact velocity of the bead, gives for the value of this
constant A = 37.92× 10−6 m1/5s4/5. Figure 4 shows good

agreement with Hertz’s theory for v
−1/5
n < 3 m−1/5s1/5.

Beyond 3 m−1/5s1/5, i.e., for very small impact velocities,
corresponding to the last measured bounces, the discrep-
ancy with Hertz law is clear, despite some scattering in
the experimental data: The duration of collision seems to
increase much faster than according to the Hertz’s law.

4.2 Period of the bead oscillations on the sensor

The signal from the force sensor is represented in Figure 5.
Only the last few bounces are shown. The double arrow
indicates the location of the last measure of fn and dn in
Figure 3, where the flight time of the last two measured
bounces (300 µs) is of the order of twice the duration of the
last measured bounce. Beyond, it is not possible to define
the end and the beginning of two successive collisions in
order to measure exactly fn and dn. Indeed, it is easy to
find the start and the end of collisions for the first bounces
because of the fast variations of the signal, whereas for the
last bounces (located between the double arrow and the
single arrow in Figs. 5 or 6), these variations are of the
same order as the signal pseudo–period.

The single arrow indicates the end of the bouncing
regime and the beginning of the oscillatory one. Indeed,
as it is shown in Figure 5, beyond the single arrow the
bead oscillates on the plate until the oscillation amplitude
reaches the experimental noise. For times greater than
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Fig. 6. Smoothing of the signal in Figure 5 by an arithmetic
mean over 8 successive points (35 µs).

the one indicated by the single arrow, the force felt by
the sensor oscillates around a constant and non–zero mean
value. This comes from the fact that the sensor feels the
weight of the bead: The bead no longer takes off but
“spends all its time” oscillating on the sensor, before com-
ing to rest.

After the last bounce, the impact velocity is so small
that the bead has not the time to end its quasi–elastic
loading and unloading cycle before feeling again gravity
in a significant way, so that the bead does not take off
from the sensor.

In order to measure the period of the bead oscillations,
the signal recorded by the oscilloscope and shown partially
in Figure 5 is transferred to a computer. To maximize the
signal to noise ratio, each point of the smoothed curve
in Figure 6 has been redefined from a point of the orig-
inal signal, at the same abscissa, by an arithmetic mean
over the 4 points before and the 4 points after. Then, we
measure the typical frequency of the smoothed curve in
Figure 6 for the last five oscillations, which leads to the
period of the bead oscillations

Texp = 297 µs± 20 µs. (6)

4.3 Restitution coefficient

For a given collision, the restitution coefficient is defined as
the ratio of the bead’s velocity after and before the impact.
The values of the restitution coefficient are extracted from
those of the time of flight between two successive bounces.
Using the notations in Sections 2 and 4.1, and the fact that
the air resistance is negligible, the restitution coefficient
for the nth impact is

εn =
vn+1

vn
=

fn

fn−1
(n = 1, 2, 3, · · · ) . (7)

Figure 7 shows the evolution of the restitution coeffi-
cient εn as a function of the bounce’s number for n > N0.
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Fig. 7. Evolution of the restitution coefficient εn as a func-
tion of n − N0 for a tungsten carbide bead dropped from a
height h0 = 2 mm. N0 is the number of bounces made by the
bead during the trigger delay of the oscilloscope (1.08 s). The
error bars correspond to ±∆εn = ±∆fn−1(1 − εn)/fn−1 with
∆fn−1 = 5 µs.

For the first N0 = 80 bounces (not represented here), the
restitution coefficient is found to be essentially constant
and equal on average to 0.97. For n > N0, the value of the
restitution coefficient, for each bounce, is obtained from
the last 200 ms signal recorded from the force sensor ac-
cording to equation (7). Unlike the assumption of the el-
ementary model in Section 2, εn is not constant for all
bounces but fluctuates around the mean value 0.97 be-
fore decreasing for the last bounces. Thus, the restitution
coefficient is not only a property of the materials in col-
lision, but also a characterization of the dynamics of the
collision, and of the actual way in which energy dissipation
occurs. The different mechanisms of energy dissipation oc-
curring during a bounce are discussed in Section 6. Except
for the very last bounces, the velocity loss is of the order
of 3% corresponding to a combined energy loss effect in
the form of elastic waves, flexural vibrations of the plate
and viscoelastic behavior of the bead and the target (see
Sect. 6). The fluctuations around this mean value are due
to the fact that the restitution coefficient is very sensitive
to the slightest surface imperfections of the target since
the contact radius is very small (of the order of 10−4 m
to 10−6 m when the impact velocity varies from 10−1 m/s
to 10−5 m/s). Although the errors on the measurement of
εn are more and more important as the impact velocity
decreases, εn seems to decrease for the very last measured
bounces. Since the dissipated energy both in the form of
elastic waves and in the form of viscoelastic or flexural
vibrations of the target has to decrease when the velocity
decreases (see Sect. 6), the decrease of εn in Figure 7 could
be an indication of the appearance of a new mechanism
of dissipation. However, as it will be shown in Section 7,
it will be nothing of the sort.
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5 Conservative model

In this section, we show that the nonlinear Hertz inter-
action cannot describe the last bounces and the bead os-
cillations on the sensor reported above. To this end, the
Hertz’s contact law will be modified, taking gravity into
account during the interaction between the bead and the
sensor. Obviously, we will not be able to describe the dis-
sipative phenomena intrinsic to the experiment that will
be considered in Section 7.

Let x be the distance between the bead and the
ground2 located on a vertical downward axis with the
ground surface as origin. Consequently, an interpenetra-
tion between the bead and the surface will correspond to
a positive displacement x whereas the bead detachment
from the surface will correspond to a negative displace-
ment. If the dissipation is neglected, the bead is subjected
to its weight whatever the sign of x and to the Hertz’s in-
teraction with the ground when x > 0. The bead motion
is governed by the following equation

m
d2x

dt2
= mg − k|x|3/2H(x), (8)

where

H(x) =

{
1 if x > 0,
0 otherwise,

with m = 4 × 10−3 kg the mass of the tungsten carbide
bead and g = 9.81 m/s2 the acceleration of gravity. The
constant k is the coefficient of the Hertz’s law for a sphere–
plane contact and reads [39]

k =
4

3

√
R

(
1− ν2

s

Es
+

1− ν2
c

Ec

)−1

, (9)

where Ec and νc are, respectively, the Young’s modu-
lus and the Poisson’s ratio of the stainless steel coated
sensor, Es and νs being the corresponding quantities for
a tungsten carbide bead of radius R. Using the proper-
ties of tungsten carbide (νs = 0.22 and Es = 53.4 ×
1010 N/m2) [44] and R = 4 mm, a good estimate of k is
obtained if we let νc = 0.276 and Ec = 21.6× 1010 N/m2,
as for plain stainless steel [44]; the result is

k = 1.392× 1010 kg m1/2s−2 . (10)

We just describe the contact between the bead and the
ground, i.e., x > 0. Equation (8) becomes

d2x

dt2
= g −

k

m
x3/2 . (11)

The weight of the bead may be neglected during its
interaction with the ground if the second term of the left
hand–side of equation (11) is greater than g, i.e., for x
such that

x�
(mg
k

)2/3

∼ 10−8 m . (12)

2 In practice, the “ground” corresponds to the top of the
force sensor. We will keep this designation afterwards.
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Fig. 8. Shape of the potential V (x) = −gx + 2k
5mx

5/2 + C,
with C = 0, as a function of the interpenetration distance x
(solid line). x0 is the abscissa of the minimum of V (x). xc is
the critical maximal interpenetration such that for xmax > xc
the bead separates from the ground whereas for xmax ≤ xc the
bead oscillates on the ground around x0. Shape of the potential

V (x) around x0: V (x) ≈ V (x0)+ 3k
4m
x

1/2
0 (x−x0)2 (dashed line)

and of the Hertz’s potential V ∗(x) = 2k
5mx

5/2 + C with C = 0
(dot–dashed line) as a function of x.

When the bead is dropped from a height of the order of
millimeter, the maximal distance of interpenetration is of
the order of micrometer. The effects of gravity during the
interaction are therefore negligible for the first bounces.
However, at the end of the bounces, the impact velocities
are very small and the bead can embed on a distance of the
order of 10−8 m; the bounces dynamics is then modified
in a significant way by gravity.

Equation (11) can be put in the form of an equation
describing the motion of a point mass in a potential V (x)

d2x

dt2
= −

dV

dx
where V (x) = −gx+

2k

5m
x5/2 + C,

(13)

with C a constant of integration determined by the initial
conditions. This potential energy corresponds to the sum
of elastic energy and gravitational potential energy. The
dynamics of the system is governed by the competition
between those two energies. The shape of this potential is
shown in Figure 8. The abscissa x0 of the minimum of the
potential is

x0 =
(mg
k

)2/3

' 2× 10−8 m, (14)

and the intercept of V (x) with the x–axis, for C = 0, is

xc =

(
5mg

2k

)2/3

' 3.68× 10−8 m. (15)
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Fig. 9. Interpenetration x as a function of time for different
values of xmax: (a) xmax = 2.6 × 10−6 m � xc; (b) xmax =
3.69 × 10−8 m > xc; (c) xmax = 3.68 × 10−8 m = xc; (d)
xmax = 1.8×10−8 m < xc. The dashed line in Figures (a) and
(b) are obtained from Hertz’s law where gravity is neglected.
Solid lines correspond to the numerical integration of equation
(11). Notice that in Figure (a) both curves are identical. The
oscillation periods in Figures (c) and (d) are, respectively, 242
and 231 µs. In Figures (a) and (b), the calculations diverge
when the bead separates from the ground (x < 0) whereas
those in Figures (c) and (d) are stopped after 500 µs.

During the contact between the bead and the ground,
the bead undergoes its loading cycle from x = 0 up to a
maximal distance of interpenetration xmax where its ve-
locity vanishes. At this instant, the bead has only potential
energy. If this total energy is large enough (V (xmax) > 0),
i.e., if xmax is large enough (xmax > xc), the bead will
have stored enough elastic potential energy to be able to
make completely its unloading cycle and then to take off
the ground. On the other hand, if xmax ≤ xc, the elastic
potential energy stored at the end of the loading cycle will
be too weak (V (xmax) ≤ 0) to allow the bead to complete
its unloading cycle. In that case, the motion of the bead
is oscillatory, with a constant amplitude since we assume
in this model that there is no energy dissipation.

The previous results, based on a simple study of the
potential V (x), are confirmed by the numerical integra-
tion of equation (11). At t = 0, we assume that the bead
has ended the loading cycle and is located in x(0) = xmax
where its velocity is ẋ(0) = 0. With those initial condi-
tions, we can study the bead motion for different values
of xmax.

Figure 9 shows the evolution of the interpenetration
x as a function of time, during the unloading cycle,
for different values of xmax. When the bead is dropped
from a height of 2 mm, the maximal interpenetration is
xmax = 2.6 µm; and consequently gravity is negligible
compared to the elastic force (see Eq. (12)). The unload-
ing cycle is governed by the Hertz’s law, as it is shown

in Figure 9a, until the bead takes off the ground after a
contact of 42.8 µs. Figure 9b shows the evolution of x
for a contact time large compared to the previous one,
i.e., for xmax so small that it is necessary to take into ac-
count gravity during the unloading cycle. However, xmax
is slightly greater than xc, which allows the bead to have
enough stored elastic energy to be able to take off the
ground. The discrepancy between the dashed line in Fig-
ure 9b, solution of the standard Hertz’s law, and the solid
line, solution of equation (11), shows the importance of
gravity during the interaction. For xmax ≤ xc, the bead
has no longer enough elastic energy to take off the ground
(see Fig. 8) and oscillates infinitely on the ground, since
the system is conservative (see Figs. 9c–d).

5.1 Influence of gravity on the contact time

By multiplying equation (11) by (dx/dt) and integrating
over time t, we obtain

1

2

(
dx

dt

)2

= gx−
2k

5m
x5/2 + C, (16)

where the integration constant C is determined by three
independent conditions: First, at t = 0, x(0) = 0 and
(dx/dt)|t=0 = vimp and, on the other hand the bead ve-
locity is zero when x = xmax. Thus,

C =
1

2
v2
imp = −gxmax +

2k

5m
x5/2
max. (17)

The relation between the bead velocity vimp just before
the impact and the maximal interpenetration made during
this impact is then

vimp =

√
4k

5m
x

5/2
max − 2gxmax, with xmax ≥ xc, (18)

The second term under the square root is the correction to
Hertz’s law due to the effect of gravity. Indeed, with g = 0
in equation (18), we find again the standard result for the
interpenetration x∗max derived from the Hertz’s law.

We may integrate equation (16); since there is no dis-
sipation, the duration of collision is twice the time spent
by the bead to go from x = 0 to x = xmax, so that the
total contact time reads

τ = 2

xmax∫
0

dx√
v2
imp + 2gx− 4k

5mx
5/2

. (19)

With ν = x/xmax, equation (19) becomes

τ = 2
xmax

vimp

∫ 1

0

dν
√

1 + aν − bν5/2
, (20)

where a and b are functions of xmax such that

1

a
=

2k

5mg
x3/2
max − 1 ,

1

b
= 1−

5mg

2kx
3/2
max

· (21)
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identical to the one in Fig. 4). Crosses are the experimental
points.

The duration of impact τ is a function of one single
variable xmax or vimp, since both are linked by equation
(18). Equation (20) may be compared with the duration
of impact derived from the Hertz’s law, which reads

τ∗ = 2
x∗max
vimp

∫ 1

0

dν
√

1− ν5/2
' 2.94

x∗max
vimp

· (22)

The integral in equation (20) has no analytical expres-
sion, but may be calculated by numerical integration. In
order to compare quantitatively the experimental results
of the duration of collision (Fig. 4) with the numerical
ones, it will be necessary to change the value of the con-
stant k. Indeed, the coefficient k of the Hertz’s law has
been calculated for a contact between a massive tungsten
carbide sphere and a massive stainless steel plane. It is
obvious that the elastic parameters of the force sensor,
coated by stainless steel, are not the same as the ones of
a massive stainless steel material. And the ones of a tung-
sten carbide bead, which is probably an alloy of tungsten
carbide and cobalt, are not exactly the same as the ones
of a massive tungsten carbide material.

However, an experimental value kexp can be extracted
from the duration of collision of the first bounce. Since
the duration of a collision is obtained by the Hertz’s
law, in inserting equation (18) with g = 0 into equa-
tion (22), it is easy to find an experimental value of k,
knowing the measure of the duration of collision of the
first bounce (see Sect. 4.1) and the height of the free fall:
kexp = 8.386× 109 kg m1/2s−2. Notice that this value is
considerably smaller than the one of equation (10).

The dashed line in Figure 10 shows the evolution of τ ,
calculated by numerical integration of equation (20), with

k = kexp, for different values of xmax, as a function of

vimp
−1/5. The experimental results (crosses) are qualita-

tively and quantitatively similar to the ones of the Hertz’s
model modified by gravity (dashed line): The duration of
collision increases much faster than the prediction of the
Hertz’s theory. The gravity causes the bead to spent a
longer time on the sensor. This behavior comes from the
fact that at a fixed impact velocity, we have xmax > x∗max.
Indeed, gravity is opposed to the elastic force.

This difference between the two models diverges when
vimp → 0, i.e., using equation (15) and equation (18),
when xmax → xc for the Hertz’s model modified by grav-
ity whereas x∗max → 0 for the pure Hertz’s model. This
means that when a bead is put without velocity on the
ground, the bead is slightly compressed on a maximal dis-
tance xc when gravity is taken into account, whereas no
deformation occurs with the pure Hertz’s model. Thus, at
vimp = 0, i.e., for xmax = xc, the influence of gravity dur-
ing the interaction causes the bead to oscillate infinitely
on the plane surface (see Fig. 9c).

Obviously, experimentally, the value vimp = 0 is never
reached and thus xmax cannot be less than or equal to
xc and consequently, the bead oscillations on the sensor
should be not observable. However, although the impact
velocity for the last bounces is not exactly equal to zero,
the dissipation during the contact allows the bead to reach
a value of xmax less than xc. The oscillatory motion is then
also damped because of dissipative effects.

5.2 Period of the bead’s oscillations

The simulations in Figure 9 have shown that the effect of
gravity dominate the elastic one for xmax ≤ xc; below this
critical value the bead oscillates with a constant period.
The difference with the experimental result (the decay of
the amplitudes of oscillations) is due to the absence of
dissipation in the model. In this section, an expression of
the period of the bead oscillations is derived and compared
to the experimental value (Texp) and the numerical one
(Figs. 9c–d).

Dimensional analysis of equations (16) and (17) gives
the general expression of the period of oscillations

T = B

(
m

kg1/2

)1/3

F

[
xmax

x0

]
, with xmax ≤ xc, (23)

where B is a numerical constant and F [·] an unknown
function. Note that this period depends on the maximal
amplitude of the oscillations xmax.

First, assume that the amplitude of the oscillations are
small, i.e., xmax ' x0, and F is a constant. For xmax ≤ xc,
the system oscillates around x0. We may develop around
x0 the potential V (x) of equation (13) as displayed by the
dashed line in Figure 8. Identifying the bead motion in
the vicinity of x0 with an harmonic oscillator, and using
equation (14), we obtain the expression of the period of
the bead oscillation around x0

T
∣∣
xmax'x0

= 2π

√
2

3

(
m

kg1/2

)1/3

. (24)
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In order to compare the theoretical value to the exper-
imental one, T is calculated from equation (24) with
k = kexp which leads to

T
∣∣
xmax'x0

' 274 µs, (25)

which is in fair agreement with the experimental result
(Eq. (6)). Moreover, we can compare the numerical value
Tnum ' 231 µs found by the simulation for xmax close to
x0 (see Fig. 9d), with k as in equation (10). Equation (24)
with k as in equation (10) then leads to T ' 231 µs which
is in very good agreement with Tnum.

For large amplitude oscillations, the period is given
by equation (19) with vimp = 0 and xmax = xc, setting
ν = xmax/xc, such that

T
∣∣
xmax=xc

= 2
√

2

(
5

3

)1/3 (
m

kg1/2

)1/3 ∫ 1

0

dν
√

1− ν3

' 5.38

(
m

kg1/2

)1/3

.

(26)

The theoretical value of the period of large amplitude os-
cillations is calculated from equation (26) with k = kexp
and leads to

T
∣∣
xmax=xc

' 287 µs, (27)

which is in good agreement with the experimental value
of (6). Moreover, we can compare the numerical value
Tnum ' 242 µs found by the simulation for xmax close
to xc (see Fig. 9c), with k as in equation (10). Equation
(26) with k as in equation (10) then leads to T ' 243 µs.

6 Mechanisms of energy loss during
a collision

During an ideal bounce, i.e., an elastic collision, all the
kinetic energy of the bead is converted into elastic strain
energy during the deformation process, and then recon-
verted into kinetic energy when the bead takes off. In
pratice, some energy is always lost during an loading and
unloading cycle. This energy loss, comparable to an effec-
tive dissipation, comes mainly from three mechanisms:

1. Energy loss due to the vibration radiated in the tar-
get (surface and volumic waves and vibrational modes)
and the residual vibrations stored in the bead after the
collision,

2. Energy loss due to a plastic deformation of the bead
or/and the target,

3. Energy dissipation due to the viscoelastic properties of
the bead and the target.

However, for our experiments, the first two mecha-
nisms are almost negligible and independent of the impact

velocity:

– Dissipated energy in the form of elastic waves
This has been studied theoretically by Hunter [29] and
Reed [30]. They showed that the dissipated energy into
the target in the form of elastic waves decreases with
decreasing impact velocity. Reed’s theory [30] has been
confirmed experimentally [30–32] and predicts, for our
experiments, a variation of the restitution coefficient
due to this form of energy losses about 0.7% if the
impact velocity ranges from 0.2 to 0 m/s.

– Dissipated energy in the form of vibrational modes of
the target
The restitution coefficient is independent of the finite
extent of the target if the plate is thicker than a few di-
ameters of the impacting bead [31–34]. If this condition
is not fulfilled, the restitution coefficient ε decreases
when the impact velocity increases. Experimentally, a
preliminary study with plates of different thicknesses
(5, 10 and 15 mm) has shown that ε decreases when
the impact velocity increases. The thickness we have
finally chosen (20 mm) leads to a restitution coefficient
which is constant and independent of the impact veloc-
ity. For our experiments, Zener’s theory [34] predicts a
variation of the restitution coefficient due to the energy
losses in form of flexural modes of the target (which are
the most important ones for a plate [31]) lower than
2.5% if the impact velocity ranges from 0.2 to 0 m/s.

– Energy loss due to plastic deformation
If a critical impact velocity is exceeded, the impact
causes plastic deformation and some energy is lost to
produce the plastic indentation. This critical velocity
is very small for most impacts between metallic bodies,
i.e., of the order of 0.1 m/s [45]. At significantly higher
velocities fully plastic deformation occurs, and when
this stage is reached, i.e., of the order of 5 m/s [45],
the experiments of references [27,28,35] confirm the
theory [26,35] indicating a restitution coefficient pro-
portional to the power −1/4 of the impact velocity.
When impacts lie between the critical velocity for plas-
tic indentation and the fully plastic deformation veloc-
ity, the restitution coefficient is nearly constant for the
lower velocities and gradually falls at higher veloci-
ties [26,33,36,37,46]. Our initial impact velocity being
less than 0.2 m/s, all the bounces may be almost con-
sidered without plastic indentation.

Consequently, within our experimental conditions, the
only important dissipative mechanism is the viscoelastic
one.

7 Viscoelastic dissipative model

The conservative model of Section 5 describes in a sat-
isfactory way the bounces of the bead as well as the
bead oscillations on the sensor. However, in practice, dur-
ing a quasi–elastic binary collision, a very small amount
of energy is always lost by the system (see Sect. 6).
In order to take these dissipative phenomena into ac-
count, a dissipative force Fdiss is inserted into equation (8)
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of the conservative model

m
d2x

dt2
= mg − k|x|3/2H(x) − FdissH(x) (28)

where H(x) is as defined previously.
We have seen in Section 6 that the energy losses due to

the vibrations radiated in the target and the bead or to the
creation of plastic deformation are almost negligible and
independent of the impact velocity. Thus, subsequently,
we will only take into account the viscoelastic mechanism
of dissipation and Fdiss then reads

Fdiss = µẋ|x|γ , (29)

where γ is a real number characterizing the linear (γ = 0)
or nonlinear (γ 6= 0) nature of the viscoelastic force, and
µ is a dissipation coefficient.

The viscous contact force F = −k|x|3/2 − µẋ|x|γ of
equation (28) has been used in numerical simulations with
γ = 0 [47,48] and γ = 1/4 [49], in order to describe the
interaction law between grains in a granular medium. A
comparative study of the properties of these viscoelastic
interaction laws, frequently used in numerical simulations,
have been made recently [50,51]. From a theoretical point
of view, taking only the viscoelastic dissipative effects into
account, Kuwabara and Kono [38], and others [52,53] gen-
eralize the Hertz’s arguments and derive an expression of
the contact force between two interacting viscoelastic bod-
ies. In a quasi–static limit, they found a dissipative force
of the form of equation (29) with γ = 1/2.

For a collision between a sphere and a plane, we can
generalize the Kuwabara and Kono’s work [38] for γ = 1/2
to any value of γ to derive an expression of the restitu-
tion coefficient as a function of the impact velocity. This
expression will be valid for an interaction law described
by equation (28) for x > 0, in the weakly dissipative
regime, without the gravity term and with a viscoelas-
tic force given by equation (29). In the limit ε → 1, it is
possible to show [54] that

ε = 1−
4

5
B

[
3

2
,

2

5
(γ + 1)

]
ϕ ∀γ > −1, (30)

with

ϕ =
µ

m

(
5m

4k

)2(γ+1)/5

v
(4γ−1)/5
imp , (31)

and B[y, z] a Beta function3 where y and z must be real
numbers with positive real parts. This general expression
of ε confirms estimates for the velocity dependence of the
restitution coefficient reported by Luding et al. [51] and
leads for γ = 1/2 to the same expression as the one derived
by Kuwabara and Kono (see Eqs. (9, 12) in Ref. [38]).

The evolution of ε from equations (30) and (31) is
shown in Figure 11 as a function of vimp for γ = 0, 1/4

3 See equation (8.380.11) in reference [55] for a definition of
the Beta function.
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Fig. 11. Coefficient of restitution ε as a function of vimp.
Crosses correspond to experimental points. Lines correspond
to theoretical solutions of equations (30) and (31): γ = 0
with µ/m = 530 s−1 (dashed line); γ = 1/2 with µ/m =
1.3 × 106 m−1/2s−1 (dot–dashed line) and γ = 1/4 with
µ/m = 2.7 × 104 m−1/4s−1 (solid line). In all cases, k/m =
kexp/m = 2.092 × 1012 m1/2s−2.

and 1/2. For each value of γ, the dissipative parameter µ
is chosen to get the best fit of the experimental results.
When the impact velocities are large enough, so that grav-
ity is negligible, the results derived from equations (30)

and (31), i.e., 1 − ε ∝ v
(4γ−1)/5
imp , should be in agreement

with the experimental ones. Experimentally, for such ve-
locities, ε is constant in average and independent of vimp
(see crosses in Fig. 11), the fluctuations of the experimen-
tal data around this mean value being due to the slight
surface imperfections of the bodies in contact (see Sect.
4.3). This implies γ = 1/4. Obviously, when gravity is non
negligible, i.e., at low impact velocities, equations (30)
and (31) are no longer valid and consequently, we have
disagreement with the experimental data (see lines in Fig.
11). Thus, we have to look for which value of γ, (29) best
describes the experimental results at low impact velocity.
This is the aim of the next two sections. Only three values
of γ will be considered: γ = 0 for simplicity (linear model),
γ = 1/4 since this model leads to ε ∝ (vimp)

0 which is cor-
rect at high impact velocity, and γ = 1/2 corresponding
to the theoretical model of reference [38].

7.1 Phenomenological viscoelastic models
(γ = 0 and γ = 1/4)

A fourth order Runge–Kutta method is used for numer-
ically solving the nonlinear equation (28) for γ = 0 or
γ = 1/4. At t = 0, the bead hits the plane with an impact
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velocity vimp. The initial conditions of the problem are
thus x(t = 0) = 0 and ẋ(t = 0) = vimp. The integration
time step is much less than the typical impact time4 of
a sphere and a plane: The duration of the first bounce
is 52.4 µs and the time step 0.5 µs. The numerical inte-
gration is stopped when the interpenetration x becomes
negative, i.e., at the end of the interaction between the
bead and the plane, determining then the duration τ of
the collision. The velocity of the bead vf at the end of the
collision is given by ẋ(t = τ) and the value of the restitu-
tion coefficient by vf/vimp. Repeating this procedure for
various values of the impact velocity vimp, we have then
access to the evolution of the restitution coefficient as a
function of vimp for a choice of the dissipative parameter
µ (see the dashed curve for γ = 0 and the solid one for
γ = 1/4 in Fig. 12). For both cases, when gravity is no
longer negligible, we observe an increasing energy dissipa-
tion with decreasing velocity, a trend identical to the one
observed experimentally.

7.2 Theoretical viscoelastic model (γ = 1/2)

Although the previous model with γ = 1/4 is in fair agree-
ment with the experimental results both at high and low
velocities, the dissipative force (29) with γ = 1/4 has been
inserted in a phenomenologic way in equation (28). As said
above, the generalization of Hertz’s theory of elastic con-
tact leads

F = −k|x|3/2 − µẋ|x|1/2 (32)

where k is the coefficient of the Hertz’s law for a sphere–
plane contact (see Eq. (9)) and µ the dissipation coeffi-
cient such as µ = 3

2kD. D is a function of the elastic
coefficients of the sphere (Es and νs) and the plane (Ep
and νp) materials as well as of the viscous coefficients, as-
sociated respectively with volume deformation and shear,
of the sphere (respectively ξs and ηs) and the plane (re-
spectively ξp and ηp) materials [38,52,53].

The values of ξ and η, representing viscosities in a
solid, can be obtained experimentally from the measure-
ments of the velocities and the attenuation constants of
the longitudinal and transverse acoustic waves [38,39].
However, the values of those parameters at a frequency
of the order of 10 kHz, corresponding to the duration of
the collision, are not available in the literature [38]. We
will thus take D as an adjustable parameter.

Notice that the expression of the contact force in equa-
tion (32) is derived in the quasi–static regime, i.e., when
the characteristic velocity vimp of the problem is much less
than the speed of sound in both the sphere and plane ma-
terials [53]. This quasi–static approximation is valid since
the maximum impact velocity is vimp = 0.2 m/s whereas
the speeds of sound in tungsten carbide and stainless steel

4 This impact time is the smallest time scale appearing in the
system, since equation (28) makes sense in the quasi–static
limit where acoustic wave propagation within a bead is ne-
glected.
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Fig. 12. Coefficient of restitution ε as a function of vimp.
Crosses correspond to experimental points. Lines correspond
to numerical simulations: γ = 0 with µ/m = 530 s−1 (dashed
line); γ = 1/2 with µ/m = 1.3 × 106 m−1/2s−1 (dot–dashed
line) and γ = 1/4 with µ/m = 2.7× 104 m−1/4s−1 (solid line).
For all simulations: k/m = kexp/m = 2.092 × 1012 m1/2s−2

and vimp varies from 2.3 × 10−2 to 5 × 10−4 m/s with a
2.5× 10−4 m/s step.

are respectively about 6000 and 5000 m/s [44]. When grav-
ity is negligible during the interaction, and for ε close to
one, the restitution coefficient depends on the power 1/5 of
the impact velocity as shown in equations (30) and (31)
with γ = 1/2. This velocity dependence of the restitu-
tion coefficient is in fair agreement with a collision ex-
periment [38] between two identical spheres, for different
materials and impact velocities (0.5 < vimp < 5 m/s).
These velocities are small enough to avoid any dissipa-
tion due to fully plastic deformations but great enough
to cause plastic deformations (see Sect. 6). A set of ex-
periments [11–13] deals with the collision of a water–ice
sphere with a stationary flat ice brick, at very low impact
velocities (0.015 < vimp < 5.1 cm/s). For this range of
velocity, the restitution coefficient tends towards 1 when
the impact velocity tends towards zero. These experiments
are fairly well described by the viscoelastic theory with
γ = 1/2 for frost covered ice spheres [52,53]. However,
in these experiments, collisions between a disk pendulum
and a flat surface are studied [11–13]. Because of this ge-
ometry, gravity effects are negligible during the interaction
even at very low impact velocities but problems associated
with effective mass arise [56].

When gravity effects are no longer negligible, i.e., when
the impact velocity becomes very small, the evolution of
ε given by equation (30) with γ = 1/2 is no longer valid.
The evolution in presence of gravity is then determined nu-
merically. Using a dissipative force (29) with γ = 1/2, we
integrate numerically the equation (28) proceeding in the
same way as in Section 7.1. The evolution of the restitu-
tion coefficient is then plotted as a function of the impact
velocity for a choice of the dissipation coefficient µ (see
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the curve in dot–dashed line in Fig. 12). The restitution
coefficient decreases in a significant way at very low im-
pact velocity. This means that the system dissipates more
energy since the bead’s weight is taken into account during
the interaction.

In conclusion, at fairly low impact velocity, the en-
ergy dissipated by the bead is almost due to a viscoelastic
mechanism and a small part to elastic waves emission and
flexural vibrations. At lower impact velocity, the strong
decrease of the restitution coefficient when vimp → 0 does
not come from a new mechanism of dissipation, but from
the fact that the system dissipates the energy in a dif-
ferent way. Indeed, when the gravity force is prominent
compared to the elastic force, the system dissipates more
energy than when the gravity force is negligible during
the interaction. This is clear from Figure 12 whatever the
choice of the dissipative viscoelastic force.

8 Conclusion

An experimental study of the behavior of one bead bounc-
ing repeatedly off a stationary flat surface has been done.
We have observed that when the duration of a collision
becomes of the order of the flight time between two suc-
cessive bounces, the bead no longer bounces but oscillates
on the surface with a characteristic period. An analytical
expression of this period has been derived and is consis-
tent with the experimental results. We have also measured
the duration of impact and the restitution coefficient for
each bounce. The restitution coefficient has been found
to be essentially constant and close to 1 during almost
all bounces before decreasing to zero when the impact ve-
locity tends towards zero. Moreover, at these very small
impact velocities, the value of the duration of impact has
been found to be longer than the prediction of Hertz’s the-
ory [39]. An integral expression of the duration of impact
has been also derived.

A non–dissipative model, based on Hertz’s interaction
between the bead and the plane, gives results in fair agree-
ment with the experiments when gravity is taken into ac-
count during the interaction. This model describes both
the contact dynamic of all bounces and the bead oscilla-
tions on the plane.

The different mechanisms of energy loss occurring dur-
ing impact have been discussed. We have emphasized that
at low impact velocity, these energy losses are essentially
due to viscoelastic dissipation. A dissipative numerical
model, based on a viscoelastic mechanism, leads to an evo-
lution of the restitution coefficient identical to the exper-
imental one. Besides, we have underlined that the strong
decrease of the restitution coefficient as vimp → 0 did not
come from a new dissipative mechanism, but from the
fact that the system dissipates energy in a different way:
When the gravity force is prominent compared to the elas-
tic force, the system dissipates more energy than when the
gravity force is negligible during the interaction.

This phenomenon does not allow to answer the ques-
tion about the limit of the restitution coefficient, ε, in
the limit of zero impact velocity. The measurement of the

behavior of ε, when vimp → 0, is in preparation in low–
gravity environment. We hope that this latter will allow
to know if the collision between two spheres becomes per-
fectly elastic, i.e., ε → 1, in the limit of zero velocity, or
if a finite dissipation subsists in this limit, due to the sin-
gularity at the very beginning of the collision (high speed
initial deformation even at low impact velocity [57]).

Finally, this work also shows that the collisional sin-
gularity is smoothed before leading to a new regime at
the end of the bouncing process. Similarly, one might ex-
pect no measurable signature of the numerically observed
inelastic collapse in any experiment.
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