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Collision of a 1–D column of beads with a wall
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Abstract. An experimental study of the collision of a column of N beads (N ≤ 40) with a fixed wall is
presented. For a fixed height of fall and a rigid wall, we show that the maximum force felt by the wall is
independent of the number of beads N . The duration of impact, the velocity of the deformation wave in
the column and an effective restitution coefficient of the column are also measured as a function of N . For
a soft wall, we show that the maximum force depends on N . A non-dissipative numerical model, based on
a nonlinear interaction law between nearest neighbours, gives results in agreement with the experimental
data. Moreover, we show that, after the compression phase, the beads of the top of the column separate one
after the other from the column with a velocity greater than the initial one. The beads at the bottom then
bounce upwards in block, with a velocity smaller than the initial one. We emphasize that this detachment
effect results from the energy redistribution within the whole system during the collision and not from any
dissipative effect.

PACS. 46.10.+z Mechanics of discrete systems – 83.70.Fn Granular solids – 83.50.Tq Wave propagation,
shocks, fracture, and crack healing

1 Introduction

In recent years, the study of granular materials have
known a substantial increase of interest (for an overview
see Refs. [1,2]). The considered problems mostly deal
with the statics (e.g., geometry and compacity of pack-
ing, static stresses [3,4]) or the flows (e.g., convection
[5,6], fluidization [7–10], surface excitations [11–13]) of
granular materials. Other studies tackle an intermediate
level and deal with the propagation of deformation in
granular media [14–22].

The role of contacts between grains is crucial either
to static or dynamic processes. The stresses, in statics, or
the compression waves in dynamics transmit only through
the network of contacts. In the same way, energy dissi-
pation mostly takes place at the contacts between two
grains or between a grain and a wall. In this respect, one–
dimensional models may facilitate the understanding of
such contact’s properties, and are a first step toward more
realistic 3–D media. For instance, experimental works have
dealt with the propagation of linear or nonlinear waves in
a chain of beads [18–21], the behavior of one inelastic ball
bouncing repeatedly off the ground [23,24] and the be-
haviors of one single bead [25,26] or a column of beads [8]
undergoing vertical vibrations.

One–dimensional experiments of collision with N bod-
ies (N ≥ 2) generally lead to surprising results. A sin-
gle ball, dropped without initial velocity from a height h
above a plane, will never bounce back higher than h. But,
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when a large ball and a small one placed on its top are
dropped together, the small ball rebounds much higher
than its original height. This effect is known as the su-
perball effect [27–30]. In the same way, a horizontal chain
of identical beads, each suspended by two threads and
initially in contact, exhibits an exotic behavior when a
certain number of beads, at one end of the chain, are
drawn aside and released. It is a common belief that, after
the collision, the same number of beads as the ones ini-
tially released, moves away at the far end, the remaining
beads being motionless, as a consequence of energy and
momentum conservation. But those conservation laws are
not sufficient to explain the behavior of a chain of more
than 3 beads [31]. Actually, the beads which are generally
described as being motionless, are, in fact, separated from
their neighbors by a small distance and have some small
velocities [32,33].

Theoretical [34] and numerical [35,36] efforts have
been made to describe the bounce of inelastically colliding
beads on a fixed wall. One of these simulations [35] consid-
ers finite duration of a collision and uses ad hoc interaction
laws whereas the other one [36] is based on series of binary
collisions for a column of hard spheres, i.e., for which the
collisions are considered as instantaneous. However, until
now no experimental work has been done and the behav-
iors observed numerically rely on unrealistic interaction
laws [36] or are without clear interpretation [35].

In this paper, we analyse the dynamics of the colli-
sion of a column of N beads with a fixed wall. Initially,
the beads are at rest with no separation between them,
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Fig. 1. Problem statement.

and they are dropped from a height h above the wall. The
problem statement is shown in Figure 1. This system is
well adapted to study, in a simple manner, the detach-
ment effect observed in 1–D simulations [35] with a linear
or nonlinear dissipative interaction law. This effect is dis-
cussed in Section 8 while the experimental and numerical
observations are presented respectively in Sections 3.5 and
6.6. More generally, the low dimensionality of the experi-
ment and the fact that there is no injected energy during
the collision allows a good understanding of elementary
mechanisms which play a role in vibrated granular media
(see Sect. 9). Finally, this problem raises several questions:
how does the force felt by the wall evolve when the num-
ber of beads N increases? Do the beads separate from each
other after the collision? How does the duration of impact
of the whole column scale with N?

This paper is organized as follows. The experimental
setup is presented in Section 2. The experimental results
are discussed in Section 3. For a fixed height of fall, we
show that the maximum force felt by the sensor during
the collision of one single bead is exactly the same as for
a column of 40 beads! We will see that this astonishing
property is linked to the propagation of a deformation
wave through the column, and depends on the softness of
the wall (see Sect. 4). Moreover, in Section 3, we show that
a deformation wave is generated at the beginning of the
impact and propagates through the column in the upward
direction with a velocity which is an order of magnitude
smaller than the speed of sound in the bulk of the bead’s
material. This velocity is independent of the number of
beads. The measurement of the effective restitution co-
efficient of the column then shows that the greater the
number of beads, the greater the energy loss during the
collision.

Section 5 is devoted to the presentation of a non–
dissipative numerical model. The nonlinear Hertz’s law
[37] will be used for the description of the interaction be-
tween two beads. The outcomes of our numerical work
are presented and discussed in Section 6. In Section 7,
we derive an expression of the velocity of the deformation
wave. Finally, in Section 8, we focus on the mechanism of
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Fig. 2. Schematic diagram of the experimental setup (not to
scale).

the bead detachment effect. We emphasize that the de-
tachment effect and also, in a wider sense, the fluidization
of vibrated granular systems result from the energy redis-
tribution within the system during the collision, not from
any dissipative effect. This redistribution is governed by
the intrinsic dispersive nature of compressional wave prop-
agation in the chain. We give our conclusions in Section 9.

2 Experimental setup

A column of N identical stainless steel beads, each one
8 mm in diameter, is put inside a 8.1 mm inner diameter
glass tube. The number of beads may vary from N = 1
up to N = 40. Each bead has a tolerance of ± 4 µm in
diameter and ± 2 µm in sphericity. The column rests on
a PCB 200B02 piezoelectric force sensor screwed on the
top of a duralumin cylinder which is itself fixed on an
electromagnetic vibration exciter (Brüel and Kjær 4809),
as shown in Figure 2. The glass tube is not in contact
with the sensor, but is either clamped to a support, 4 mm
above the latter, for heights of fall h smaller than the ra-
dius R of a bead, or fixed on the duralumin cylinder by
means of an angle bar, for h > R. The exciter is driven
by a square signal of frequency 100 mHz. At first sight,
the use of an exciter appears unsuited to free fall experi-
ments. However, as the acceleration of the exciter’s table
is initially downwards and greater than the acceleration
of gravity, the column of beads no more leans on the sen-
sor and starts its free fall. Thus, during one period of
the excitation signal and under conditions to be discussed
in details in Sections 2.1 and 2.2, the N beads in con-
tact are dropped from a height h above the force sensor.
This is possible since the period of the square signal is
much greater (10 s) than the time of collision (35 µs for
N = 1 and 1.04 ms for N = 40, both for a height of fall
h = 5.1 mm). The sensor is connected to a numerical os-
cilloscope in order to record the collision with the column
of beads.
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2.1 Reproducibility of the measurements

The reproducibility of the measurements is achieved if all
beads are dropped at the same time and are constantly
in mutual contact during their free fall. For those reasons,
it is necessary to minimize the air friction force on the
beads, making holes every 32 mm, along the glass tube,
ensuring then the free circulation of air from the inside
to the outside of the tube. In order to avoid the beads
magnetization caused by the magnetic structure of the ex-
citer, a 5 cm long duralumin cylinder is inserted between
the force sensor and the exciter. Moreover, this cylinder
absorbs partially the waves generated during the impact,
avoiding the reflected waves which could disturb the mea-
surements. In order to check that all beads are constantly
in mutual contact during their free fall, a complementary
experiment has been done in which the exciter hits the
array of beads at rest (see Sect. 3.1). The agreement be-
tween both experiments shows that there is no separation
between the beads during their free fall (see Sect. 3.1).

2.2 Measurement of the height of fall

The height of fall of the column is of the order of a few
millimeters in order to avoid plastic deformation of the
sensor. This height is measured by comparing the output
signals from the force sensor and from an optical position
sensor fixed to the exciter. The position sensor is a pho-
todetector illuminated by a laser diode. The amplitude of
the output signal from the position sensor is proportional
to the displacement of the exciter’s table. Figure 3 shows
both output signals from the photodetector (upper curve)
and from the force sensor (lower curve) during the fall of
40 beads. It is obvious, from the upper curve in Figure 3,
that the shaker does not follow instantaneously the vari-
ations of the square signal; its finite response time rather
leads to an exponential behavior. The output signal from
the force sensor (lower curve in Fig. 3) shows that, dur-
ing one period of the square signal, the sensor undergoes
several collisions. It is clear from this figure that the first
collision between the column of beads and the sensor takes
place before the exciter’s table reaches its minimal posi-
tion. The height of fall is thus not given by the peak to
peak amplitude of the square signal, but by the amplitude
A (see Fig. 3) of the output signal from the position sensor.
In the case of Figure 3, taking the photodetector sensitiv-
ity into account, the value of the height of fall is h = 5 mm.
The fact that the exciter’s table moves downwards during
the collision, is not very important since, first, the table
velocity during the collision is small compared to the one
of the beads, and second, the variation of amplitude ∆A
during the collision (see Fig. 3) corresponds to a variation
of height ∆h smaller than 7 × 10−2 mm, negligible com-
pared to h. This value of ∆h has been established in the
worst case, i.e., for the greatest collision time observed
during our experiments, for a column of 40 beads. With
this experimental setup, it is possible to study the colli-
sion of N beads with the force sensor for various heights
of fall (1 < h < 5.1 m) and for 1 < N < 40.

0 1 2 3 4 5 6 7 8

x 10
4

−100

0

100

200

300

400

500

600

700

v

v
^

A

A
m

pl
itu

de
 (

m
V

)

∆A

Time (µs)

Fig. 3. Output signals from the position sensor (upper curve)
and from the force sensor (lower curve) during the fall of
N = 40 beads. The first peak of the lower curve shows the col-
lision of the column with the sensor whereas the other peaks
show the various bounces of the beads. The time scales are the
same for both signals, the amplitude scales are different. The
upper signal was displaced vertically for clarity. See the text
for details.

When the exciter’s table starts to move down, the force
sensor undergoes a small decompression1 (see the lower
curve of Fig. 3). It means that the column of beads leaves
the sensor and starts its free fall. The change in slope
observed on the signal of the photodetector, at the end of
the collision, reflects the violence of the impact since the
motion of the exciter’s table is modified by the collision.

3 Experimental results

3.1 Force felt by the force sensor during the collision

The output signal from the force sensor during its colli-
sion with a column of N beads is shown in Figure 4 for
various values of N and for two different heights of fall.
For a fixed height of fall, an astonishing phenomenon oc-
curs. The maximum force Fmax felt by the force sensor is
independent of the number of beads (see Figs. 4a to 4d)!
It is also striking that the beginnings of the curves in Fig-
ures 4a to 4d are almost superimposed on one another. If
we considers only Fmax, the impact of 1 bead is equiva-
lent to the impact of a column of 40 beads! Paradoxically,
we would rather expect that Fmax is an increasing func-
tion of N , for two reasons. Firstly, the greater the number
of beads in the column, the greater the impacting mass

1 This decompression comes from the force variation due to
the contact loss, not from the downward acceleration of the
sensor. By construction, the dynamical force sensor behaves
as an accelerometer when it is loaded, but does not feel any
acceleration without load.
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Fig. 4. Output signal from the force sensor during the collision
of a column of N beads for two different heights of fall: (a) N =
1, 2, 3 or 4 beads with h = 3.1 mm; (b) N = 5, 6, 7 or 8 beads
with h = 3.1 mm; (c) N = 5, 6, 7 or 8 beads with h = 5.1 mm
and (d) N = 9, 10, 11 or 12 beads with h = 5.1 mm. The
maximum force Fmax is 506.7 and 674.5 mV, corresponding to
51.8 and 69 N, for h = 3.1 and 5.1 mm respectively.

during the collision. Secondly, Hertz’s theory shows that
the maximum force during the contact between a sphere
of mass m and a plane, scales as m3/5. Thus, for a fixed
height of fall and for beads with the same radius, the col-
lision of a column of N beads each of mass m is different
from the collision of a single bead of mass M = Nm:

Fmax(N) ∼ N0Fmax(1)

for a column of N beads of mass m each,

Fmax(N) ∼ N3/5Fmax(1)

for one bead of mass M = Nm. (1)

The duration of impact increases linearly with N (see
Sect. 3.2). This is consistent since the area under each
curve in Figure 4 is the total momentum transfer occur-
ring during the collision, i.e., the product of a force by a
time. Thus, as the maximum force is independent of N ,
the conservation of momentum requires that the duration
of impact increases linearly with N . However, as it will be
shown later (see Sect. 3.3), the fact that Fmax is indepen-
dent of the number of beads is linked to the propagation of
a deformation wave in the column generated at the begin-
ning of the impact, and also to the rigidity of the wall. For
h = 5.1 mm, the experimental values of Fmax are plotted
in Figure 5 as a function of N . Fmax is actually indepen-
dent of N since the experimental fluctuations around the
mean value Fmax = 69 N appear randomly distributed,
lower than 5% of the mean value and of the same order
as the fluctuations for different trials with a fixed N . The
maximum force is reached after a time interval τmax from
the beginning of the impact. τmax is also independent of
N (see Fig. 4) and τmax = 17.8± 0.5 µs for h = 5.1 mm.

The second interesting phenomenon displayed by all
the curves in Figure 4 is the oscillatory nature of the
force: the force increases up to Fmax, then oscillates with
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Fig. 5. Maximum force Fmax, in Newton, as a function of N
for h = 5.1 mm. Crosses correspond to experimental points and
the solid line is the mean value of Fmax over all measurements.

a period P before decreasing down to zero. This period
is independent of N and seems to depend weakly of the
height of fall: P = 32.4 ± 1 µs for h = 3.1 mm whereas
P = 31.2±1 µs for h = 5.1 mm. Moreover, the oscillations
are damped around a mean value which seems to decrease
very slowly in time (see Fig. 4d). The comparison between
the force profile in Figure 4 and the one achieved by non–
dissipative numerical simulations (see Fig. 20) shows that
this decrease results from the dissipation of energy that
occurs during the collision (see Sect. 6.2).

A complementary experiment has been done in order
to check that all beads are constantly in mutual contact
during their free fall. The force felt by the force sensor
should be the same2 in the case of the free fall of N beads
in contact, and in the case of a collision between the sensor
and the same chain of beads at rest, i.e., in the reference
frame associated to the beads. The experimental setup
used to verify this fact is almost identical to the one de-
scribed in Section 2. The column is now held in a fixed
position by means of a diaphragm stuck on the bottom of
the glass tube which is clamped to a support. The posi-
tive part of the square voltage, generated by the waveform
generator, allows then the force sensor to hit the column
of beads initially at rest. Figure 6 shows the force profile
felt by the force sensor during this collision. The agree-
ment between both experiments (see Fig. 6 and Figs. 4c
to 4d) shows that, during their free fall, all beads are con-
stantly in mutual contact. Thus, the force oscillations in
Figure 4 are not due to some experimental imperfection
leading to a small separation between neighboring beads
during their free fall.

3.2 Duration of impact of a column of N beads

The contact time τ1 between a bead dropped from a height
h, and a plane, assumed of infinite mass, is derived from

2 Before its collision with the chain of beads, no force is ex-
erted on the sensor (see Sect. 2.2).
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Fig. 6. Output signal from the force sensor during the collision
between the sensor and a column of N beads initially at rest
when N ranges between 5 and 12.

Hertz’s theory [37] and reads

τ1 = 2.94

(
5m

4K

)2/5

v
−1/5
imp , (2)

where m is the mass of the bead, vimp =
√

2gh its velocity
just before the collision, g = 9.81 m/s2 the acceleration of
gravity and K the coefficient of the Hertz’s interaction for
a sphere–plane contact. The value of K depends only on
the sphere radius R and on intrinsic characteristics (the
Young modulus Ei, the Poisson ratio νi) of the sphere
(i = s) and the plane (i = p), and reads

K =
4
√
R

3

(
1− ν2

s

Es
+

1− ν2
p

Ep

)−1

· (3)

For a stainless steel bead (Es = 21.6× 1010 N/m2; νs =
0.276) with a radius R = 4 mm and for a sensor with a
stainless steel impact cap (Ep = Es; νp = νs), the value of
the parameter K is then, from equation (3), K = 9.858×
109 N/m3/2.

Let τN be the duration of impact (i.e., the contact
time) between the column of N beads and the sensor. The
measurement of τN is extracted3 from the force profile
given by the sensor during the collision. The evolution of
τN as a function of N , for a height of fall h = 5.1 mm,
is shown in Figure 7. This latter shows that the duration
of impact increases linearly with the number of beads.
However, the contact time of a column of N beads is not
equal to N times the contact time of one single bead, since
the equation of the linear fit displayed in Figure 7 is rather

τN = (N − 1)Tq + τ1 , (4)

where Tq = 25.5 µs is the slope of the solid line and
τ1 = 35.5 µs the duration of impact of one single bead.

3 The value of τN is the duration between F (t = 0) and
F (τN) = 0.
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Fig. 7. Duration of impact of a column of N beads, τN , as
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The experimental value τ1 is in agreement with the the-
oretical value τ1theo = 34.2 µs coming from equation (2)
with h = 5.1 mm, m = 2.05×10−3 kg and K = 9.858×109

N/m3/2. Besides, as we will see in Section 6.4, the fact that
τN is not equal to Nτ1 is not due to the fact that during
the collision, there are two types of contact (i.e., all of
them are between spheres except one, between a plane
and a sphere).

Let ∆τN be the difference between τN+1, the duration
of impact of a column of N + 1 beads, and τN

∆τN ≡ τN+1 − τN . (5)

As we can see in Figure 8, within the experimental fluctua-
tions, ∆τN is independent of N and is equal on average to
Tq. Indeed, those fluctuations are of the same order as the
ones for different trials with a fixed N . All the dynamics
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of the collision of N beads seems to be governed by this
parameter Tq. Its physical meaning will be explained in
Section 3.3.

3.3 Velocity of the deformation wave in the column

During the impact between the column of beads and the
sensor, a small part of the incident energy is always lost,
in particular into vibrational energy radiated in the sen-
sor from the impact point, in the form of acoustic waves.
Those waves, although always present after the initial im-
pact, convert only 1% [38–40] of the incident energy for our
range of impact velocities4. The greatest fraction of the in-
cident energy is transformed into elastic potential energy
stored into the beads during their deformation. This elas-
tic potential energy will be restored during their dilation,
corresponding to the bounce of the column. In order to
know why and how the column bounces, we must really
understand how the presence of the ground disturbs the
motion of each bead of the column, i.e., how the deforma-
tion, occurring initially between the lower bead and the
ground, is transmitted from one bead to another during
the collision. Figure 9 shows schematically the direction
of propagation of the deformation wave along the col-
umn. The initial impact generates a perturbation (com-
pressional wave in the column) which is propagated up-
wards, then reflected on the top of the column, turned
into a dilational wave that propagates downwards. When
the wave reaches the bottom of the column, the column
leaves the sensor and bounces. Therefore, the duration of
impact of the column is the time spent by the wave to
travel twice the length of the column. In order to know
the velocity of this wave, we have to plot the distance of
propagation 4RN , as a function of the time of propagation
τN . It is clear from Figure 7 that the velocity of the defor-
mation wave is independent of the number of beads. This

4 The Reed’s theory [40] applied to an impact of a sphere
onto a plane both in stainless steel at an impact velocity of
0.3 m/s leads to a dissipated energy in the form of elastic
waves equal to 0.65% of the kinetic energy of the bead before
the impact.

velocity is therefore constant along the column. Dividing
4R by the slope Tq of the solid line in Figure 7 (see also
Eq. (4)) gives the velocity v = 628 m/s of the deformation
wave in the column for h = 5.1 mm. This velocity is an
order of magnitude smaller than the speed of sound in a
stainless steel rod which is about 5000 m/s. Such a low ve-
locity is also observed in several experiments [18,19,21,32]
and simulations [17] dealing with wave propagation in a
chain of beads. This results from the discrete nature of the
chain which acts like a set of coupled nonlinear oscillators.
Indeed, Hertz’s works [37] show that, during the compres-
sion of a bead, the stress is much greater in the immediate
neighborhood of the contact region than throughout the
rest of the bead (see also Ref. [41]). The bulk of the bead
then acts as an undeformable massive body whereas the
material in the neighborhood of the contact region acts as
a nonlinear spring.

For identical beads with a radius R, the velocity v of
the deformation wave of the column is then given by

v =
4R

Tq
· (6)

Consequently, Tq defined as 〈∆TN 〉, represents the time
spent by the momentum transfer, from one bead to an-
other, to come and go in one diameter of the bead. This
time Tq also corresponds to the time to add to the du-
ration of impact τN of a column of N beads in order to
obtain the duration of impact τN+1 of a column of N + 1
beads.

The velocity v of the deformation wave, propagating
through the column, was measured experimentally, for
various heights of fall h. The results are summarized in
Table 1. The velocity increases with the height of fall, i.e.,
with the impact velocity of the column. As it is shown in
Table 1, these results are in fair agreement with the nu-
merical simulations in Section 6.5 and with the analytical
expression of the velocity of the deformation wave which
is derived in Section 7.

Table 1. Velocity v of the deformation wave for various heights
of fall h.

Velocity v (m/s)

h (mm) Experiment Theory Simulation

1.9 557 586 583

3.1 586 616 613

5.1 628 647 644

Let us now explain why the maximum force felt by the
sensor is independent of the number of beads in the col-
umn. As we have seen in Section 3.1, for a height of fall
h = 5.1 mm and whatever the value of N , the maximum
force is reached after a time interval τmax = 17.8 µs from
the beginning of the impact. This time is half the colli-
sion time τ1 = 35.5 µs of one single bead for the same
height of fall (see Sect. 3.2). Furthermore, for a column
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Fig. 10. Sum of the incident and restored momentum as a
function of N during the collision of N beads dropped from a
height h = 5.1 mm. Crosses correspond to experimental points.
The solid line corresponds to twice the incident momentum
2mvimpN , which should be conserved during the collision, if
the impact were perfectly elastic. The dot–dashed line cor-
responds to mvimpN , the case where the collision should be
perfectly inelastic.

of N beads, the sensor feels the presence of the second
bead when the deformation wave reaches the second bead
and returns to the sensor, i.e., after a time Tq = 25.5 µs
from the beginning of the impact. Consequently, the sen-
sor feels only one bead for times 0 < t < Tq, whatever the
number of beads in the column. Since the maximum of
the loading cycle of this bead is reached at τmax and since
τmax < Tq, the maximum force is therefore independent
of the number of beads in the column. This behavior cor-
responds to the case of a collision with a rigid wall. Here-
after, a collision with a rigid wall will be defined as a colli-
sion such that τmax(N = 1) < Tq whereas a collision with
a soft wall will correspond to the opposite inequality, i.e.,
τmax(N = 1) ≥ Tq. As it will be shown experimentally
in Section 4 and numerically in Section 6.7, in the case of
a collision with a soft wall, the maximum force depends
on N .

3.4 Effective restitution coefficient

The total momentum transfered during the collision of a
column of N beads with the sensor is given by the area
under the curve displaying the temporal evolution of the
force. Indeed, in the ideal case of a dissipationless elas-
tic collision, the area under the curve corresponds to the
sum of the incident momentum (loading cycle) and the
restored momentum (unloading cycle), i.e., twice the in-
cident momentum. In the case of an inelastic collision, a
part of the incident energy is dissipated and the area un-
der the curve is therefore smaller. Figure 10 shows that
the collision of N beads dissipates more and more energy
as N increases. This explains why the mean value of the
force in the oscillatory regime decreases slowly in time (see
Fig. 4d).
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Fig. 11. Restitution coefficient of the whole column (see
Eq. (7)) as a function of N during the collision of N beads
dropped from a height h = 5.1 mm. Crosses correspond to
experimental points. Circles correspond to event–driven sim-
ulations of Luding [42] for initial velocities vimp = 0.31 m/s
of each particle, the particle–particle coefficient of restitution
and the particle–wall one being respectively 0.96 and 0.92.

For a collision between one bead and a plane at rest,
the coefficient of restitution is usually defined as the ratio
of the bead’s velocity after and before the collision. For N
beads, we introduce the effective restitution coefficient of
the whole column

εeff ≡ −

N∑
i=1

vf
i

N∑
i=1

vi
i

= −
1

Nvimp

N∑
i=1

vf
i , (7)

where vf
i and vi

i denotes the velocity of the i-th bead re-
spectively after and before the collision. This definition of
εeff is choose because experimentally we only have access
to the total momentum of the system. When N = 1, equa-
tion (7) is identical to the usual definition of the restitu-
tion coefficient. In Figure 11 we display εeff as a function
of N . Those experimental values of εeff are extracted,
for each N , from the total momentum of the column (see
crosses in Fig. 10) and the incident momentum Nmvimp.
We find that εeff decreases with N , in our range of N .
This means that the momentum loss of the column of
N beads during the collision increases with increasing N .
Using equation (7) as the definition of the effective resti-
tution coefficient, Luding [42] shows in event–driven sim-
ulations, that εeff decreases with N (see (◦) symbols in
Fig. 11). We can extend this result for the momentum loss
to the energy loss. However, using molecular–dynamics
simulations, Luding et al. [35] show with a linear dissipa-
tive interaction law, that the energy loss decreases with
increasing N and is almost independent of N , with a non-
linear dissipative interaction. This apparent discrepancy
may be due to the fact that these authors use a different
definition for the effective coefficient of restitution of the
whole column (see Eq. (30) in Sect. 8 and also Ref. [35]) or
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Fig. 12. Example of temporal evolution of the output signal
from the force sensor for N = 5 and h = 2.7 mm. The first
peak is the first collision between the whole column and the
sensor. The other peaks are the various bounces of beads. The
sensitivity of the oscilloscope is 7 µs/pt ; 80 000 points have
been recorded and each peak is made of 7 points at least.

to the fact that molecular dynamics or event-driven meth-
ods lead to completely different evolutions of the effective
restitution coefficient as a function of N [45].

3.5 Detachment of the beads from the column

In order to know how the column of beads bounces af-
ter the collision, we have to record the output signal from
the force sensor over a time much longer than the dura-
tion of impact of the column. Figure 12 shows the tem-
poral evolution of such a signal. The first peak, on the
left side in Figure 12, corresponds to the first collision of
the whole column with the sensor. The other peaks are
the various bounces of beads. Figure 12 shows that the
column does not bounce as a whole. In that case, the dis-
sipation would impose a slow monotonous decrease of the
peak amplitudes. The appearance of peaks with high am-
plitude among the peaks with decreasing amplitude proves
the opposite. Therefore, the beads are no longer in con-
tact after the collision between the column and the sensor.
This detachment of the beads is consistent with the one
found numerically in Sections 6.1 and 6.6, and is discussed
in detail in Section 8.

4 Collision with a soft wall

Let us now consider the collision of a column of N beads
with a soft wall. Both definitions of a soft wall and a rigid
wall have been given in Section 3.3. The experimental
setup is as in Section 2 except that the force sensor is
covered with a sheet either in brass, adhesive tape, PVC,
PMMA, cardboard, rubber or beech. Two different sorts
of cardboard are used and are called afterwards cardboard
I and cardboard II. The thickness of each material sheet is
about 1 mm (see Tab. 2). For all experiments discussed in

Table 2. Experimental results during the collision between N
stainless steel beads and a force sensor covered with various
material sheets, for a fixed height of fall h = 2.9 mm.

Material Thickness Nd τmax(N = 1) τmax(N = Nd)

(mm) (µs) (µs)

none - 1 17 17

brass 1.2 2 47.5 46

adhesive tape 0.3 4 47.5 112

PVC 1 6± 1 67.5 171± 19

PMMA 1 8± 1 69 228± 11

cardboard II 0.5 11± 1 191 396± 21

beech 2 15± 1 127.5 468± 26

cardboard I 0.8 22± 2 227 743± 23

rubber 1 28± 4 221 950± 57

this section, the value of the height of fall is h = 2.9 mm.
Consequently, the impact velocity of the column is fixed
whatever the choice of the material sheet stuck on the
sensor.

The output signal from the force sensor during the col-
lision of the column of N beads is shown in Figure 13 for
different values of N and for various material sheets stuck
on the sensor. Except for Figure 13a, the maximum force
felt by the sensor now depends on the number of beads
(see Figs. 13b to 13f). The maximum force increases with
N at low values of N , until it becomes independent of N .
When the sensor is not covered with any material sheet
(see Fig. 13a), the experimental results are the same as the
ones in Section 3: Independence of the maximum force felt
by the sensor as N increases and oscillatory nature of the
force. Notice that this latter property is never observed
when a soft material sheet is stuck on the sensor. For each
material, the experimental values of Fmax are plotted in
Figure 14 as a function of N . For a given material, let
us denote Nd the critical number of beads above which
Fmax becomes independent of N . It is clear from Figure 14
that as the material becomes softer, the critical number
of bead Nd increases. For each material, the difference
∆τN between τN+1, the duration of impact of a column of
N+1 beads, and τN is shown in Figure 15 as a function of
N . Figure 15a shows that within the experimental errors,
∆τN is independent of N and of the material sheet stuck
on the sensor. This is in agreement with the experimental
results in Section 3.2 and the interpretation of ∆τN given
in Section 3.3: ∆τN is equal on average to Tq which de-
pends only on the contact between adjacent beads. The
experimental value of Tq = 〈∆τN 〉 = 28.6 µs is then ex-
tracted from Figure 15a. However, for the softer materials,
at low values of N , ∆τN is both dependent of N and of the
nature of the material stuck on the sensor (see Fig. 15b),
this boundary effect vanishing at higher values of N .

Let us now explain why, according to the rigidity of the
wall, the maximum force felt by the sensor is either depen-
dent or independent of the beads number in the column.
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Fig. 13. Output signal from the force sensor during the colli-
sion of a column of N beads for different material sheets stuck
on the sensor: (a) none; (b) brass; (c) adhesive tape; (d) PVC;
(e) PMMA; (f) beech. In all cases, N varies from 1 to 16 and
h = 2.9 mm.

For a column of N beads, the maximum force Fmax(N) is
reached after a time interval τmax(N) from the beginning
of the impact and is independent of the number of beads
for N ≥ Nd. As we have seen in Section 3.3 for a rigid
wall, the independence of Fmax from N is linked to the
propagation of the deformation wave through the column
and is due to the fact that τmax(N = 1) < Tq, τmax being
in this case independent of N since Nd = 1. In the case
where τmax(N = 1) ≥ Tq, the sensor feels the presence of
several beads before the first bead reaches the maximum
of its loading cycle. Consequently, the maximum force
Fmax(N) increases with N . The critical number of beads
Nd above which the maximum force becomes independent
of N is then reached since the deformation wave propa-
gated through a distance 4RNd during a time τmax(Nd).
The velocity of the deformation wave being given by equa-
tion (6), the critical number of bead Nd reads

Nd =

⌈
τmax(Nd)

Tq

⌉
, (8)

where dxe is the least integer not smaller than x.
Experimentally, for each material sheet stuck on the

sensor, the value of Nd is extracted from Figure 14 and
the values of τmax(N = 1) and τmax(N = Nd) are mea-
sured from the temporal evolution of the maximum force.
Those results are summarized in Table 2. The above in-
terpretation is in agreement with these results since when
τmax(N = 1) < Tq (resp. ≥ Tq), Nd = 1 (resp. Nd > 1).
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Fig. 14. Maximum force Fmax, in Newton, as a function of
N for h = 2.9 mm for different material sheets stuck on the
sensor: (a) (×) none; (+) brass; (∗) adhesive tape; (◦) PVC;
(•) PMMA; (◦) cardboard II. (b) (+) beech; (∗) cardboard I;
(◦) rubber.

Nd is plotted in Figure 16 as a function of τmax(Nd).
Each cross corresponds to a set of experiments for one
given material. The solid line corresponds to the value of
Nd extracted from equation (8) with Tq = 28.6 µs. The
agreement between the experimental data and the predic-
tion is very good except for the softer materials (rubber,
beech, cardboard I and II). The reason is that, for each
of these materials, the value of ∆τN is not independent
of N (see Fig. 15b) and consequently Tq is not defined.
This means that the emission of the deformation wave is
strongly modified by the presence of a very soft impact
pad. Indeed, instead of creating a deformation wave with
a steep front, as it is assumed in Section 7, such an impact
generates a wave with a smoothed–out step front. As the
chain of beads is a dispersive medium (see Sect. 8), the
velocity of such waves then may be considerably modi-
fied. Finally, in Section 6.7, we will see that the numerical
results are consistent with these experimental results.
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Fig. 15. Evolution of ∆τN = τN+1−τN as a function of N for
different material sheets stuck on the sensor: (a) (×) none; (+)
brass; (∗) adhesive tape; (◦) PVC; (•) PMMA. (b) (◦) rubber;
(+) beech; (∗) cardboard I; (◦) cardboard II. In all cases, the
height of fall is h = 2.9 mm. The solid line is the mean value
of ∆τN over all measurements in figure (a): 〈∆τN〉 = 28.6 µs.
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Fig. 16. Evolution of Nd as a function of τmax(Nd). Each cross
corresponds to each set of experiments made with one given
material (see data in Tab. 2). Solid line corresponds to the
values of Nd deduced from equation (8) with Tq = 28.6 µs.

5 Non–dissipative numerical model

Our purpose in this section is to present a simple nu-
merical model which reproduces the experimental results
reported in Section 3 for a rigid wall: independence of
the maximum force felt by the sensor as N increases
(Sect. 3.1), velocity of the deformation wave (Sect. 3.3),
bead detachment effect from the column (Sect. 3.5) and
the ones in Section 4 for a soft wall: dependence of the
maximum force on N .

In this model, we neglect all dissipative mechanisms.
Moreover, as we have demonstrated experimentally in a
recent study [23], we can disregard the gravity force with
respect to the elastic force, during the interaction, for
heights of fall of the order of magnitude of the millimeter.
Thus, in the following model, only the Hertz’s law of con-
tact will be taken into account. All the typical times in the
problem are greater than the travel time of a bulk acous-
tic wave across the bead. For a stainless steel sphere with
radius R = 4 mm, the period associated with the lowest
eigenfrequency of radial vibrations of the elastic sphere is
2 µs [37]. The smallest time in the problem is the dura-
tion of collision of one single bead which is experimentally
35.5 µs for the maximum height of fall h = 5.1 mm. Conse-
quently, the column can be treated as a chain of N mass
points of mass m, each one interacting with its nearest
neighbors through the Hertz’s law, i.e.,

Fi =

{
k(xi+1 − xi)3/2 if xi+1 − xi > 0
0 otherwise

∀ 1 ≤ i ≤ N − 1 , (9)

where Fi is the interaction force between the ith and the
i + 1th mass, xi the displacement of the ith masspoint
from its initial position x0i without deformation, and k is
a constant given in equation (12). With the convention on
the positive direction of displacements xi (see Fig. 17), the
ith mass interacts with the i + 1th, through the Hertz’s
law, if xi+1 − xi > 0 (see Fig. 17b) whereas they separate
from each other if xi+1 − xi < 0.

At t = 0 (see Fig. 17a), all the nonlinear springs are
uncompressed, and an identical velocity vimp is imposed
to each bead. The initial conditions of the problem are
thus {

xi(t = 0) = 0
ẋi(t = 0) = vimp

∀ 1 ≤ i ≤ N . (10)

The sensor is represented by a nonlinear spring of con-
stant K linked to an infinite mass. The parameter K of
this spring is different from k, proper to all the other
springs, in order to be close to the experimental condi-
tions, since the Hertz’s law coefficient for a sphere–plane
contact is different from the one for a sphere–sphere con-
tact.

With this supplementary condition and the interaction
forces given by equation (9), the system is described by
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Fig. 17. Schematic diagram of the numerical model: (a) initial conditions: all masses i are in their initial position x0i without
deformation; (b) interaction between the ith and the i + 1th bead: xi+1 − xi > 0 corresponds to an interpenetration between
the two beads (or a compression of the nonlinear spring) whereas xi+1 − xi < 0 means that the beads are no more in contact
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the following set of N coupled differential equations

∀t 6= 0,


mẍN = −FN−1 ,
mẍi = Fi − Fi−1 for 2 ≤ i ≤ N − 1 ,

mẍ1 = F1 − F0 where F0 =

{
Kx

3/2
1 if x1 > 0 ,

0 otherwise.

(11)

A fourth order Runge–Kutta method is used for numeri-
cally solving the system of nonlinear equations (11). Dur-
ing the calculation the total energy is conserved with an
accurary better than 10−4 %. The integration time step
used is much lower than the typical impact time5 of two
spheres: the impact time is about 40 µs and the time step
0.25 µs.

The force felt by the sensor is Kx
3/2
1 (t) where K is

the coefficient of the Hertz’s law for a sphere–plane contact
(see Eq. (3)). The value of parameter k is derived from the
Hertz’s law for a sphere–sphere contact. It depends only on
the sphere radius R and on intrinsic characteristics (the
Young modulus Es, the Poisson ratio νs) of the sphere
material, and reads

k =

√
2R

3

Es

1− ν2
s

· (12)

In order to compare quantitatively the experimental re-
sults for a rigid wall with those of the simulations, k is
calculated for a contact between two stainless steel spheres
(Es = 21.6×1010 N/m2, νs = 0.276), of radius R = 4 mm.
K is calculated for a contact between a sphere and a plane
both in stainless steel. Thus, from equations (3) and (12),

5 This impact time is the smallest time scale appearing in
the system, since equations (11) are defined in the quasi–static
limit where acoustic wave propagation within a bead is ne-
glected.

k = 6.9716× 109 N/m3/2 and K = 9.858× 109 N/m3/2.
For most simulations, the choice for the impact velocity of
the column, vimp = 0.3 m/s, will correspond to a height
of fall of 4.6 mm.

6 Numerical results

6.1 Displacement and velocity of each bead during
the collision

Figure 18 shows the temporal evolution of displacements
xi(t), compared to their initial position, of each bead i dur-
ing the collision of a column of N = 7 beads with a wall.
With the conventions in Figure 17, a compression of the
ith bead corresponds to a positive displacement xi. The
seventh bead (i.e., the one at the top of the column) em-
beds itself linearly during the loading cycle (x7 increases),
then performs its unloading cycle (x7 decreases), before
separating from the sixth bead (x7 − x6 < 0) and going
away upwards indefinitely with a constant velocity since
the gravity is neglected. The bead at the bottom of the col-
umn (bead 1) embeds itself, then oscillates around a con-
stant displacement, during all the collision, before doing
its unloading cycle and leaving the wall (x1 < 0). When
the bead 1 has finished its loading cycle (t = 16 µs), it has
stored elastic energy which allows it to start its unloading
cycle before the bead 2 forces it to embed itself once again
since the loading elastic energy stored by bead 2 is greater
than the unloading elastic energy stored by bead 1. The
beads i, with i ≥ 2, have an influence on the motion of
the bead 1 and this seems to be the reason for the oscilla-
tions of the displacement x1. As shown in Figure 18, the
seventh bead separates from the sixth (x7−x6 < 0) while
the other beads are still in interaction, then the sixth sep-
arates from the fifth (x6 − x5 < 0), etc. Therefore, the
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Fig. 18. Result of numerical simulations: temporal evolution
of displacements xi(t) from their initial positions x0i , of each
bead i during the collision of a column of N = 7 beads with
a wall. This displacement xi(t) becomes positive since the ith
bead is compressed. The dashed line corresponds to the zero de-
formation, i.e., when all the beads are in their initial position.
From this dashed line, the successive solid lines correspond re-
spectively to the displacements xi(t) from i = 1 to 7. The sim-
ulation has been done for vimp = 0.3 m/s; m = 2.05×10−3 kg;
k = 6.9716 × 109 N/m3/2 and K = 9.858 × 109 N/m3/2 and
has been stopped at T = 220 µs.
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Fig. 19. Result of numerical simulations: temporal evolution
of velocities ẋi(t) of each bead i during the collision of a column
of N = 7 beads with a wall, for vimp = 0.3 m/s. The dashed
line at −0.3 m/s corresponds to the limit beyond which the
beads 1 to 3 separate from the column with a velocity smaller
than their initial one vimp. Below this limit, the beads 4 to 7
separate from the column with a velocity greater than vimp.
The parameters of the simulation are as in Figure 18.

beads of the top of the column seem to separate one after
the other before the end of the collision.

Figure 19 shows the evolution of the velocities ẋi(t) of
each bead i for N = 7 and vimp = 0.3 m/s. During the
collision, the permanent exchange of momentum between
all beads generates the velocity oscillations observed in
this figure. When a bead is no longer in contact with its
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Fig. 20. Result of numerical simulations: temporal evolution
of the force felt by the wall for a collision of N = 7 beads
(solid line); N = 15 beads (dot-dashed line) or N = 30 beads
(dashed line). The parameters of the simulation, N excepted,
are as in Figure 18. Fmax is the maximum force felt by the
wall. This figure should be compared with the experimental
results in Figure 4.

neighbors, it has, from equations (11) a constant velocity.
Thus, before the end of the collision (v1 = const.), the
bead 7 separates from the column (v7 = const.), then
the sixth, the fifth, the fourth before the last three beads
bounce together almost at the same time. Moreover, the
beads of the top of the column, 7 to 4, separate from
the column with a greater velocity than their initial one,
whereas the beads at the bottom bounce upwards with a
smaller velocity than their initial one. For instance, at the
end of the collision, the velocity of the bead 7 is about
150% of its initial velocity (see Fig. 19).

6.2 Force felt by the wall during the collision

Figure 20 shows the temporal evolution of the force F0, felt
by the wall, for a collision with N = 7, 15 or 30 beads.
The force profile is in agreement with the experimental
results for a rigid wall: the force increases till a value Fmax,
independent of N , then oscillates about a constant value
with a period P independent of N . Those force oscillations
are connected with the oscillating motion of the bead 1
(see Fig. 18). Unlike the experimental results, simulations
show that the mean value of the force is constant during
all the collision. This is due to the non–dissipative nature
of the numerical model.

The maximum force Fmax(N) is independent of N ,
and equal to the maximum force Fmax(1) felt by the wall
during the fall of one single bead. Consequently, we may
assume that the expression of Fmax(N) is independent of
the parameter k which is characteristic of a contact be-
tween two beads (see Eq. (12)). Using dimensional analy-
sis, we obtain easily the expression of the maximum force

Fmax(N) = N0Fmax(1) = C1m
3/5v

6/5
impK

2/5 , (13)
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Fmax, in Newton, as a function of m3/5v
6/5
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values of the numerical parameters: N , k, K, m and vimp; (+)
correspond to m = 2.05 × 10−3 kg, k = 6.9716 × 109 N/m3/2

and K = 9.858×109 N/m3/2 when vimp varies from 0.05, 0.075,
0.1, 0.15, 0.3 to 0.5 m/s. For each value of vimp, Fmax is iden-
tical when N varies from 3 to 10; (∗) correspond to N = 8,
vimp = 0.3 m/s, k = 6.9716×109 N/m3/2 and K = 9.858×109

N/m3/2 whenm varies from 1.025×10−3 , 2.05×10−3 , 4.1×10−3

to 8.2×10−3 kg; (◦) correspond to N = 8, m = 2.05×10−3 kg,
vimp = 0.3 m/s and k = 6.9716 × 109 N/m3/2 when K varies
from 4.929 × 109, 9.858 × 109, 1.971 × 1010 to 2.957 × 1010

N/m3/2; (×) correspond to N = 8, m = 2.05 × 10−3 kg,
vimp = 0.3 m/s and K = 9.858 × 109 N/m3/2 when k varies
from 3.486 × 109, 6.9716 × 109, 1.394 × 1010 to 2.091 × 1010

N/m3/2; (•) correspond to N = 7, m = 2.05 × 10−3 kg,
vimp = 0.3 m/s when K = k varies from 2 × 109, 4 × 109,
6.9716×109 to 9.858×109 N/m3/2. The solid line corresponds

to C1m
3/5v

6/5
impK

2/5 with C1 = 1.143.

where K is defined in equation (3) and C1 is a numeri-
cal constant. Figure 21 shows the values of Fmax(N) as

a function of m3/5v
6/5
impK

2/5 when the numerical param-

eters (i.e., N , k, K, m and vimp) are varied. These nu-
merical calculations confirm that Fmax is independent of
k (see (×) mark in Fig. 21). The slope of the solid line in
Figure 21 corresponds to C1 = 1.143. The expression of
Fmax(1) derived from Hertz’s theory reads [37]

Fmax(1) =

(
5

6

)2/5

 5m3v6
impR(

1−ν2
s

Es
+

1−ν2
p

Ep

)2


1/5

. (14)

Substituting equation (3) into equation (14), the theoret-
ical value for C1 is (5/6)2/5(45/16)1/5 ' 1.143, in agree-
ment with the simulation.

The numerical value of the maximum force in Fig-
ure 20 is found to be Fnummax = 66.2 N. This value is in
fair agreement with the experimental’s one F expmax = 69 N
(see Sect. 3.1) and with the theoretical’s one F theomax =
65.3 N calculated by equation (14) for vimp = 0.3 m/s;
m = 2.05 × 10−3 kg; R = 4 mm; νs = νp = 0.276 and
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Fig. 22. Result of numerical simulations: period P , in µs,

of the force oscillations as a function of v
−1/5
imp m

2/5k−2/5 for
various values of the numerical parameters: N , k, K, m and
vimp; (+) correspond to m = 2.05× 10−3 kg, k = 6.9716× 109

N/m3/2 and K = 9.858 × 109 N/m3/2 when vimp varies from
0.075, 0.15, 0.3 to 0.5 m/s. For each value of vimp, P is identical
when N varies from 3 to 10; (∗) correspond to N = 7, m =
2.05 × 10−3 kg, vimp = 0.3 m/s when K = k varies from
2× 109, 4× 109, 6.9716× 109 to 9.858× 109 N/m3/2. The solid

line corresponds to C2v
−1/5
imp m

2/5k−2/5 with C2 = 2.53.

Es = Ep = 21.6× 1010 N/m2. The experimental value is
slightly greater than the theoretical and numerical ones
since the experimental impact velocity is slightly greater
than 0.3 m/s.

6.3 Period of the force oscillations during the collision

The period P of the force oscillations in Figure 20 is inde-
pendent of N . In this figure, the period of oscillations is
P = 31.5 µs. This value is in fair agreement with the ex-
perimental result Pexp = 31.2 µs (see Sect. 3.1). If the in-
terpretation of these force oscillations, given in Section 6.1,
is valid, the period P must be independent of K. Then,
using dimensional analysis, we easily obtain

P = C2

(m
k

)2/5

v
−1/5
imp , (15)

where C2 is a numerical constant. The numerical simula-
tions agree with equation (15) and consequently confirm
the interpretation given in Section 6.1. Figure 22 shows

the values of P as a function of v
−1/5
imp m

2/5k−2/5 when the

numerical parameters (i.e., N , k, K, m and vimp) are var-
ied. The slope of the solid line corresponds to C2 = 2.53.

6.4 Duration of impact of a column of N beads

The duration of impact τN is shown in Figure 23 as a
function of N . τN is a linearly increasing function of N ,
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Fig. 23. Result of numerical simulations: duration of impact
τN as a function of N . The parameters of the simulation, ex-
cepted N , are as in Figure 18. Crosses correspond to numerical
points. The solid line corresponds to τN = (N −1)Tq + τ1 with
Tq = 25.4 µs and τ1 = 40.6 µs. This figure may be compared
with the experimental results in Figure 7.

such that τN = (N − 1)Tq + τ1, where Tq = 25.4 µs is
given by the slope of the solid line and τ1 = 40.6 µs from
the intercept of the solid line and the vertical N = 1. The
physical meaning of Tq has been explained in Section 3.3
(see also the next section). The numerical value of τ1 is
in agreement both with the value τ theo1 = 34.2 µs de-
rived from Hertz’s theory for a sphere–plane contact (see
Eq. (2)) and with the experimental one τexp1 = 35.5 µs
(see Sect. 3.2).

Moreover, the evolution of τN is governed by the same
equation as equation (4) found experimentally. However,
this equation differs from the one obtained by Luding et al.
[35,43] in molecular–dynamics simulations. Using a dissi-
pative linear interaction law, they find that the duration
of impact τN is proportional to the number of beads and
to the duration of impact of one single bead τ1; hence
τN ∝ Nτ1. Moreover, although the duration of impact for
a sphere–sphere contact differs from a sphere–plane con-
tact, the single sphere–plane contact occurring during the
collision among all the sphere–sphere contacts does not
imply that τN 6= Nτ1. Indeed, equation (4) is valid for
simulations with a sensor represented by a plane with a
stiffness K 6= k as well as with a sensor represented by a
portion of a sphere with a stiffness K = k. During these
simulations, the value of τ1 changes whereas the value of
Tq is identical. This is in agreement with the interpreta-
tion of Tq given in Section 3.3.

6.5 Velocity of the deformation wave in the column

At the beginning of the impact of the column with the
wall, a deformation wave is generated from the contact
point. During the collision, this wave propagates upwards,
then is reflected and comes back to where it started at the
end of the collision, i.e., when the column separates from
the wall. At a fixed impact velocity and varying the num-
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Fig. 24. Result of numerical simulations: (a) length covered
by the deformation wave (i.e., twice the length of the column
4×R×N) as a function of the time spent by the wave to cover
this length (i.e., the duration of impact) for different impact
velocities vimp of the column: (+) 0.075; (∗) 0.15; (×) 0.3 and
(◦) 0.5 m/s. The slopes of the solid lines give the wave velocities
v = 480.2; 550.6; 630.5 and 706.3 m/s for vimp = 0.075; 0.15;
0.3 and 0.5 m/s respectively. (b) Velocity v of the deformation

wave as a function of v
1/5
imp. In both cases, the parameters of

the simulation, vimp excepted, are as in Figure 18.

ber of beads, we find that the numerical results are con-
sistent with the experimental ones (see Sect. 3.3) and the
theoretical one (see Sect. 7): the velocity v of the defor-
mation wave is independent of N , and v can be expressed
as a ratio of the length to come and go in one bead to
the time Tq to cover this distance, i.e., v = 4R/Tq. For
vimp = 0.3 m/s, Tq is given by the slope of the solid line
in Figure 23. Substituting this value into equation (6), R
being equal to 4 mm for the calculation of k and K, the
velocity then is v = 630.7 m/s. This value is in agreement
with the slope v = 630.5 m/s of the solid line in Figure 24a
for vimp = 0.3 m/s.

Figure 24a shows that, at a fixed impact velocity, the
wave velocity is independent of the number of beads N .
Plotting the wave velocity v as a function of the impact
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velocity vimp, as in Figure 24b, we see that v scales as v
1/5
imp.

Thus, the faster the column hits the wall, the greater the
velocity of the deformation wave. In Table 1, the numerical
results are compared to the experimental ones for three
different values of impact velocity vimp = 0.191; 0.246
and 0.316 m/s corresponding respectively to three heights
of fall h = 1.9; 3.1 and 5.1 mm.

The interpretation of Tq in Section 3.3 implies that it
is independent of K. Thus, from equation (6), the velocity
v is also independent of K. Using these assumption and a
dimensional argument, we obtain easily

v = C3

(
k

m

)2/5

Rv
1/5
imp , (16)

where C3 is a numerical constant. When the numerical
parameters k, m and vimp are varied, we found numeri-
cally the constant C3 = 2. Substituting equation (16) into
equation (6), Tq has the following expression

Tq = C3

(m
k

)2/5

v
−1/5
imp . (17)

6.6 Detachment of the beads from the column

At the end of the collision, knowing the individual motion
of each bead, we are able to decide whether the column
bounces as a whole, or whether the beads separate one
after the other from the column. We define the end of the
column–wall collision as the time at which the bead at
the bottom leaves the wall (x1 < 0). For a column of N
beads, the distribution of velocities of each bead, at the
end of the collision, is the set of values |ẋi(t = τN )| for
i = 1, . . . , N . Figure 25 shows the velocity distribution
for different values of N . Two sorts of velocity distribu-
tions appear distinctly in this figure: the upper beads of
the column go away with velocities greater than vimp while
the lower beads have velocities smaller than vimp. For in-
stance, for a column of N = 7 beads, the bead 7 go away
with 150% of its initial velocity whereas the bead 1 dis-
poses only of 30% of its initial velocity. We will see below
that those two sorts of velocity distributions correspond
to two sorts of beads separation. Moreover, considering
only the upper beads with velocities greater than vimp,
Figure 25 shows that these beads have a velocity which
tends asymptotically to vimp when N decreases.

Let us define the time of detachment of the ith bead
as the time, from the beginning of the impact, where the
ith bead separates from the i+1th one or from the i−1th
one. The times of detachment of the N beads of the col-
umn are plotted in Figure 26 for various values of N . For
N < 5, the beads separate one after the other from the top
of the column. For N ≥ 5, two regimes arise: the beads of
the top separate one after the other from the top of the
column, as in the previous case, till the beads at the bot-
tom bounce upwards as a whole (i.e., till the first bead
leaves the wall taking the remaining beads off with it).
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Fig. 25. Result of numerical simulations: velocity of the ith
bead, at the end of the collision, as a function of the bead’s
number i, for different values of N : (·) 3; (+) 4; (∗) 5; (×)
7; (+) 10; (∗) 12; (◦) 15; (×) 20. For all curves, the parameters
of the simulation are as in Figure 18.
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Fig. 26. Result of numerical simulations: time of detachment
of the ith bead as a function of the bead’s number i, for various
values of N : (·) 3; (+) 4; (∗) 5; (×) 7; (+) 10; (∗) 12; (◦)
15; (×) 20. For each value of N ≥ 5, each dashed line corre-
sponds to the time beyond which the beads at the bottom of
the column bounce upwards as a cluster (i.e., when the first
bead leaves the wall taking the remaining beads with it). For
all curves, the parameters of the simulation are as in Figure 18.

The beads in the cluster that leaves the wall, still interact
with each other, after the end of the collision, and sepa-
rate from each other starting, this time, by the lower bead
(see Fig. 26). If we compare Figures 25 and 26, we note
that the upper beads which separate one after the other,
are the beads which go away with velocities greater than
the initial ones whereas the beads at the bottom which
separate as a whole, correspond to the beads which have
lower velocities than vimp.

Let us now define the number of beads Ns which sep-
arate one after the other from the column. The N − Ns
other ones then are the number of beads in the cluster.
For each value of N , Ns is given by the number of data
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Fig. 27. Result of numerical simulations: evolution of Ns as a
function of N . For N < 5, the solid line corresponds to Ns = N
whereas for N ≥ 5, the linear fit leads to a slope of 0.55.

being below each dashed–line in Figure 26. Figure 27
shows the evolution of Ns as a function of N . As it has
been noticed above, for N < 5, Ns = N . For N ≥ 5, Ns
is well described by a linear fit with a slope greater than
1/2. This means that for a fixed value of N , the num-
ber of beads which separate one after the other from the
column is always greater than the one in the cluster. To
look for the scaling behavior of both the velocities distri-
bution at the end of the collision in Figure 25 and the
times of detachment distribution in Figure 26, we rescale
the abscissa–axis in both figures by Ns. The ordinate–axis
in Figure 25 is nondimensionalized with the impact veloc-
ity vimp and the one in Figure 26 with the duration of the
impact τN . The results are shown in Figures 28 and 29.
Both figures show that all results (except data for N < 5)
lie on a single curve.

Since the total energy is conserved in our model, the
energy of the system is redistributed during the collision,
leading to the bead detachment effect. As shown by Fig-
ure 30 for a collision of a column of N = 5 beads, the
interaction forces between the upper beads are stronger,
but occur over a shorter time interval, than between the
lower beads of the column. The energy redistribution oc-
curs during the interactions between the beads, mostly
from the regions where the interactions are weak but oc-
cur over a long time interval to the regions where the in-
teractions are strong but occur over a small time interval.

The kinetic energy of the column is defined, relatively
to its center of mass, as

Erel(t) =
m

2

N∑
i=1

(ẋi(t)− vg)
2 , (18)

where vg is the velocity of the center of mass of the column,
defined as

vg =
1

N

N∑
i=1

ẋi(t) . (19)
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Fig. 28. Result of numerical simulations: velocity of the ith
bead, at the end of the collision, divided by the impact velocity
vimp as a function of the bead’s number i divided by Ns, for
different values of N . All symbols used are as in Figure 25
except for N = 30 (•). The results of Figure 25 all lie on the
same curve except for N = 3 (·) and 4 (+). Beads with final
velocities greater then their initial ones vimp are above the
dashed–line whereas beads with final velocities smaller than
vimp are below this dashed–line.
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Fig. 29. Result of numerical simulations: time of detachment
of the ith bead divided by the duration of impact τN as a
function of the bead’s number i divided by Ns, for various
values of N . All symbols used are as in Figure 26 except for
N = 30 (•). The results of Figure 26 all lie on the same curve
except for N = 3 (·) and 4 (+).

Erel is also called granular temperature when N � 1. At
the end of the collision (t = τN ), Erel gives a measure
of the typical separation of the beads, since the contribu-
tions in the sum in equation (18) are significant only for
ẋi � vg or ẋi � vg. Previously, we have established that
the greater the number of beads N , the greater the ex-
cess velocity of the upper beads from their initial velocity,
vimp. Thus, Erel must increase with N . However, when
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Fig. 30. Result of numerical simulations: interaction force Fi
between the ith and the i + 1th bead as a function of time,
during the collision of a column of N = 5 beads and the wall:
(−) F0 bead 1 with a wall; (·) F1 beads 1 and 2; (−·) F2 beads
2 and 3; (•) F3 beads 3 and 4; (−−) F4 beads 4 and 5. For all
curves, the parameters of the simulation are as in Figure 18.
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Fig. 31. Result of numerical simulations: evolution of Erel/EK
as a function of the number of beads N . Crosses are the nu-
merical points. For all numerical points, the parameters of the
simulation are as in Figure 18.

the number of beads N increases, so does the total energy
of the system. The interesting quantity is then the ratio of
the relative kinetic energy Erel at the end of the collision,
to the total kinetic energy EK , i.e.,

Erel

EK
=

N∑
i=1

(ẋi
∣∣
t=τN

− vg
∣∣
t=τN

)2

N∑
i=1

ẋ2
i

∣∣
t=τN

· (20)

The evolution of this ratio is represented in Figure 31 as a
function of N . At the end of the collision, the typical sep-
aration between each bead increases with N . Obviously,
this result is no longer valid in the case of a dissipative
model, with a linear interaction law, since the typical sep-
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Fig. 32. Result of numerical simulations: temporal evolution
of the force felt by a soft wall for a collision of N = 3 (•);
5 (−); 7 (−−); 10 (−·) and 15 (·) beads.

aration passes through a maximum, at a small value of
N , then decreases at higher values of N (see Fig. 2c in
Ref. [35]).

6.7 Collision with a soft wall

Let us now consider the case of a collision with a soft wall.
Such a collision have been defined in Section 3.3 when
τmax(N = 1) ≥ Tq whereas a collision with a rigid wall
correspond to τmax(N = 1) < Tq. Since dissipation is
not taken into account, the maximum force of the loading
cycle of a single bead, i.e., N = 1, is reached at half the
duration of a collision, i.e., when

τmax(N = 1) =
τ1

2
· (21)

The substitution of equations (2), (17) and (21) into the
two above inequations then leads to a critical coefficient
Kc of the sphere–plane contact,

Kc =

(
2.94

4

)5/2
5k

4
, (22)

such that for K > Kc the collision is defined as a rigid
wall collision and for K ≤ Kc as a soft wall one.

In almost all simulations of Section 6, the value of the
Hertz’s coefficient for a sphere–sphere contact is the one
between two stainless steel spheres, i.e., k = 6.9716× 109

N/m3/2. Consequently, with equation (22) and for a col-
umn of stainless steel spheres, the critical value is Kc =
4×109 N/m3/2. In Section 6.2, we have shown that the evo-
lution of the maximum force Fmax, felt by the wall, is inde-
pendent of N . This behavior is consistent with the above
remarks since the value of the parameter K = 9.858× 109

N/m3/2 was such that K > Kc. Figure 32 shows the tem-
poral evolution of the force F0 for a collision with N = 3,
5, 7, 10 or 15 beads with K < Kc. The parameters of the
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simulations are K = 1 × 109 N/m3/2; k = 6.9716 × 109

N/m3/2; vimp = 0.3 m/s and m = 2.05 × 10−3 kg. As
expected, the force profile is in agreement with the ex-
perimental results for a soft wall: the force increases till a
value Fmax which depends on N , at low values of N , and
is independent of N at higher values. Unlike the experi-
mental results (see for example Fig. 13d), simulations in
Figure 32 show that the mean value of the force is con-
stant during all the collision. This results of the absence
of dissipative effects in the numerical simulation.

7 Analytical expression of the velocity
of the deformation wave

In the absence of gravity, it is equivalent to consider a
column of beads of velocity vimp bouncing on a wall or a
column which would be pushed away by a wall moving at
constant velocity vw = −vimp. The analytical expression
of the velocity v of the deformation wave can be derived in
analogy with the derivation of the velocity of longitudinal
waves in a uniform bar of semi-infinite length, subjected
to a force step6. At t = 0, consider a compression force
suddenly applied to a end of the chain of beads in con-
tact, each with a radius R. A compression wave begins
to propagate through the chain with velocity v. After a
time t > 0, the wave has covered a distance L = vt while
the application point of the force has covered a distance
∆L = vimpt. The number Nf of beads in motion, at time
t, is7

Nf =
vt

2R
· (23)

The conservation of momentum, at the same instant, im-
plies

Ft = Nfmvimp , (24)

m being the mass of one bead. The Hertz interaction law
links the interpenetration δ of two beads to the force F
which compress them one to another, as [37]

δ =

(
F

k

)2/3

, (25)

where k is the coefficient of the Hertz’s law for a sphere–
sphere contact (see Eq. (12)). At time t, the application
point of the force will have covered a length8 ∆L = Nfδ =

6 This elementary derivation of the formula for the velocity of
longitudinal waves in uniform bars is originally due to Babinet;
see reference [44].

7 In practice, as a chain of beads is dispersive (see Sect. 8),
the front of the deformation wave changes of shape while prop-
agating through the chain. Equation (23) is thus only approx-
imate.

8 Actually, there are Nf − 1 contacts and thus ∆L = (Nf −
1)δ, but we assume Nf � 1.

vimpt. Substituting equation (25) into the expression of
∆L, we find

vt

2R

(
F

k

)2/3

= vimpt . (26)

Eliminating F from equations (24) and (26), and using
equation (23), the velocity v of the deformation wave
through the beads chain is then

v = 2

(
k

m

)2/5

Rv
1/5
imp . (27)

This equation has the same expression as equation (16)
found numerically, with the same numerical coefficient.

Moreover, in contrast with the homogeneous bar case,
the interaction between the beads is nonlinear. As a con-
sequence, the velocity of the deformation wave depends
on the impact velocity vimp in the nonlinear case whereas
sound velocity in a bar is independent of vimp.

Besides, we note that equation (27) can be linked to
the velocity of a soliton: in a horizontal chain of beads,
if the initial impact velocity, at one side of the chain, is
great (vimp = 5 m/s), Nesterenko and Lazaridi [21,22]
show numerically that it is possible to propagate a soliton,
through the chain of beads, with a typical size of the order
of 5 beads and with a front velocity vsol smaller than the
velocity v of the deformation wave

vsol =

(
4

5

)2/5

v . (28)

Substituting equation (27) into equation (6), the time Tq
spent for the transfer of momentum from one bead to an-
other is then

Tq = 2
(m
k

)2/5

v
−1/5
imp . (29)

This equation has the same expression as equation (17)
found numerically, with the same numerical coefficient.
With Es = 21.6 × 1010 N/m2; νs = 0.276; ρs =
7850 kg/m3; and using equations (12), (27) and m =
4πR3ρs/3, the velocity of the deformation wave is calcu-
lated for three different values of impact velocity vimp =
0.191; 0.246 and 0.316 m/s corresponding respectively to
three heights of fall h = 1.9; 3.1 and 5.1 mm. These results
are listed in Table 1 and are in agreement both with the
velocities measured experimentally in Section 3.3 and the
ones deduced from the simulation in Section 6.5.

8 Mechanism of the bead detachment effect

Consider now a one–dimensional column of N identical
beads, all at a distance d0 apart and having an initial
velocity vi

i = vimp along their common axis. Neglecting
the gravity effects, let this column hit a static wall. Af-
ter the collision, the beads move away from the wall with
a velocity vf

i . Luding et al. [35,43,45] have studied this
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problem (see also Ref. [46] for a brief description), with
molecular–dynamics simulations, using a dissipative lin-
ear or nonlinear interaction law between beads in contact.
They have measured the effective restitution coefficient
εcol of the whole column defined as

εcol ≡

√√√√√√√√
N∑
i=1

vf
i

2

N∑
i=1

vi
i
2

=
1

Nvimp

√√√√ N∑
i=1

vf
i

2
. (30)

They have shown that εcol depends on the ratio t0/τN ,
where t0 = d0/vimp is the time needed for a bead to catch
up with the bead in front of it when the latter is sud-
denly stopped (e.g., by impact on a wall) and τN the du-
ration of collision of the whole column. In the limiting case
t0/τN � 1/N , the collision between the column and the
wall leads to a large number of binary collisions between
beads. The effective restitution coefficient εcol is thus con-
siderably smaller than the coefficient of restitution for a
binary impact. On the other hand, in the limiting case
t0/τN � 1/N , the collision between the column and the
wall leads to all beads in mutual contact at the same time.
Thus, the beads interact with the wall as a chain of cou-
pled damped oscillators rather than as N distinct beads.
The effective restitution coefficient εcol is close to one in
this case, and the beads separates from each other with
large fluctuations in the interbead distances: this behav-
ior was called the detachment effect [35], but has no clear
interpretation.

In our problem d0 = 0 since all beads are in mutual
contact during the free fall of the column, and we find
again the detachment effect predicted by Luding et al.
We have shown experimentally in Section 3.5, although in
an indirect way, that the beads are no longer in contact
after the collision. Besides, we have shown numerically
in Sections 6.1 and 6.6, that after the compressive cycle,
two sorts of detachment effects arise according to whether
the number of beads in the column is greater or smaller
than a critical number. In both cases, the beads separate
from each other with large fluctuations in the interbead
separations (see Fig. 18) and with large fluctuations in
velocities (see Figs. 19 and 25).

The detachment effect is essentially due to the elas-
tic properties of the beads material since simulations [35]
for d0 = 0, in the limit of very hard interaction (i.e., the
duration of impact is zero), shows that this effect almost
vanishes (i.e., the separation between each bead is con-
stant and very small compared to soft–sphere interaction,
see Figs. 1a and 1d in Ref. [35]). Moreover, for a dissipative
linear model and d0 = 0, Luding et al. showed that the
detachment effect is the result of model–dependent dissi-
pative properties [35]. Indeed, it seems reasonable that
a column of steel beads have to disperse more than a
column of aluminium beads (the collision of the whole
column of steel beads is less dissipative than the alu-
minium one) since a binary collision between steel beads
is weakly dissipative whereas the one between aluminium
beads is strongly dissipative. However, the dissipation is

not the cause of this effect since the Hertz nonlinear in-
teraction model, presented in Sections 5 and 6, which is
non–dissipative, exhibits the bead detachment effect from
the column.

The cause of this detachment effect is the redistribu-
tion of energy within the whole system during the col-
lision. This redistribution takes place because the energy
propagation through the column of beads is dispersive (see
also Ref. [17]).

To understand this, consider now the case of an hor-
izontal chain of N identical elastic beads, each one sus-
pended by two threads, which is hit by n incident beads.
During the collision, the incident energy of impacting
beads is distributed through the whole chain, this lat-
ter being slightly dispersive. The energy and momentum
transfers are called dispersive because, at the end of the
collision, each bead has a fraction of the incident energy.
Thus, at the end of the collision, the N −n beads, usually
looked upon as being motionless and in mutual contact
(see Sect. 1), are in motion and are separated from their
neighbors by a small distance. On the contrary, a system
exhibits dispersion–free [32] or perfect transmission [33] if
the perturbation generated during the impact propagates
through the chain without changing its shape and, then,
transfers its momentum and energy to the n beads at the
far end of the chain. Such systems are made of different
beads, with different masses interacting through springs
of different stiffness, either linear or nonlinear [32,33]. For
linear interaction (Hooke’s law), Reinsch [33] found ana-
lytically the mass of each beads and the stiffness of each
spring for perfect transmission whatever N and n. In the
continuum limit, this perfect transmission chain is related
to a dispersion–free wave equation. For nonlinear inter-
action (Hertz’s law), numerical simulations for N = 3,
n = 1 [33] and N = 4, n = 1 [32] show that, for inden-
tical beads, the chain is dispersive. However, for Hertz’s
interaction and different beads, perfect transmission chain
may be obtained [33]. In the well-known commercial ex-
periment with n = 1 and N ' 5 identical beads, after
the first collision, one single bead moves away at the far
end, the others being now separated from their neighbors
by small distances. In the following collisions, the chain
is a dispersion–free system since only binary collisions
occur. This interpretation is originally due to Herrmann
et al. [32].

Let us now return to our problem, neglecting dissipa-
tive effects. It is the same problem as above with n = 1,
N identical elastic beads and realistic interaction between
them, i.e., Hertz’s law. Therefore, the perfect transmis-
sion of the column (i.e., no bead detachment effect) can-
not rise, whatever the value of N . Moreover, Luding et al.
[35,43,45] have noted that the detachment effect is weaker
for nonlinear interactions (Hertz’s law) than for linear
interactions (Hooke’s law). This is reasonable since a
chain of identical beads with Hertz’s interaction is, by na-
ture, less dispersive than the one with Hooke’s interaction
[32,33]. Thus, it seems normal that in the limit of hard
spheres, i.e., strongly nonlinear interactions, the detach-
ment effect nearly vanishes, since the system becomes
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non–dispersive. During the collision of a column of beads
with a wall, the slight energy dispersion is responsible for
the energy redistribution within the whole column and
therefore for the bead detachment effect. Consequently,
this mechanism is essentially non–dissipative, but obvi-
ously may be dependent on dissipation in a realistic col-
umn.

9 Conclusion

An experimental study of the collision of a column of N
beads with a fixed wall has been presented. For a fixed
height of fall and a rigid wall, we have shown that the max-
imum force felt by the wall do not depend on the number
of beads. We have also measured the duration of impact,
the velocity of the deformation wave in the column and an
effective restitution coefficient of the column as functions
of N . Besides, we have emphasized that the independence
of the maximum force on N is linked to the propagation
of the deformation wave through the column and depends
on the rigidity of the wall. Moreover, we are able to give a
quantitative definition for this notion of rigidity. An ana-
lytical expression of the velocity of the deformation wave
has been derived and is consistent with the experimental
results.

A non-dissipative numerical model, based on the
Hertz’s interaction, gives results in fair agreement with the
experiments. Moreover, we have shown numerically that,
after the compression phase between the column and the
wall, the beads separate from each other with large fluc-
tuations in velocity and in the interbead distances. Two
sorts of such bead detachment effect have been observed
numerically: one below the critical number of beads N = 5
and one for N ≥ 5. For N ≥ 5, the beads at the top of the
column separate one after the other from the column with
a velocity greater than their initial one. The beads at the
bottom then bounce upwards as a whole, with a velocity
smaller than their initial one.

An interpretation of the bead detachment effect has
been given. We have emphasized that this bead detach-
ment effect results from the energy redistribution within
the system during the collision, not from any dissipative
effects. This redistribution takes place because of the en-
ergy propagation through the column of beads is disper-
sive.

Our work also shows that the collision of N inelastic
beads with a fixed wall (i.e., no energy source during the
collision) is governed by two basic mechanisms: the energy
dispersion through the whole column and the energy dissi-
pation due to the inelastic collision. The role of the energy
dispersion is to redistribute the energy through the whole
system during the collisions. This redistribution depends
essentially on the intrinsic nature of the interaction law
between two beads (i.e., the Hertz’s law for realistic inter-
actions). The energy dispersion through the system then
leads to the bead detachment effect from the column and
to a typical separation between each bead. We have seen
numerically that this typical separation increases with N .
On the other hand, since some energy is lost during the

collision, the dissipation tends to reduce this typical sep-
aration between each beads. The dissipation and the dis-
persion are thus antagonistic effects. Moreover, the dissi-
pated energy increases with N (see Fig. 11). Therefore,
if the dissipative effects balance the dispersive ones, i.e.,
when N is very large, we think that the column will not
bounce.

Finally, these mechanisms are not specific to one–
dimensional experiments and must be very important for
more realistic experiments in two or three dimensions: the
purely dispersive effect (i.e., the bead detachment effect)
is probably a precursor mechanism for the fluidization of
the vibrated granular media [9,10] whereas the prepon-
derance of the dissipative effects may result to the con-
densed (or clustered) phase of the vibrated granular media
[10,35].
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are taken from reference [42]. We gratefully acknowledge finan-
cial support from the MENESR trough the french laboratories
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