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Abstract – We report an experimental study of a dilute “gas” of magnetic particles subjected
to a vertical alternating magnetic field in a 3D container. Due to the torque exerted by the field
on the magnetic moment of each particle, a spatially homogeneous and chaotic forcing is reached
where only rotational motions are driven. This forcing differs significantly from boundary-driven
systems used in most previous experimental studies on non-equilibrium dissipative granular gases.
Here, no cluster formation occurs, and the equation of state displays a strong analogy with the
usual gas one apart from a geometric factor. Collision statistics is also measured and shows an
exponential tail for the particle velocity distribution. Most of these observations are well explained
by a simple model which uncovers out-of-equilibrium systems undergoing uniform “heating”.

Copyright c© EPLA, 2013

Introduction. – Granular gases display striking prop-
erties compared to molecular gases: cluster formation
at high enough density [1–3], anomalous scaling of pres-
sure [2,3] and collision frequency [4], non-Gaussian dis-
tribution of particle velocity [5]. These differences are
mainly ascribed to dissipation occurring during inelastic
collisions between particles. A continuous input of en-
ergy is thus required to reach a non-equilibrium steady
state for a granular gas. This is usually performed ex-
perimentally by vibrating a container wall or the whole
container. For such vibration-fluidized systems, the role
of the boundary condition affects the shape of the particle
velocity distribution [5], as well as the extent of energy
non-equipartition [6]. A spatially homogeneous forcing,
driving each particles stochastically, is thus needed to ex-
plore the validity domain of granular-gas theories. How-
ever, it is hardly reachable in experiments [7]. Here, we
study experimentally the equation of state and the colli-
sion statistics of a spatially homogeneous driven granular
gas in a 3D container. Magnetic particles subjected to
a magnetic field oscillating in time are used to homoge-
neously and stochastically drive the system by injecting
rotational energy into each particle. Rotational motion is
transferred to translational motion by the collisions with
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boundaries or other particles. To our knowledge, this type
of forcing has been only used to study magnetic parti-
cles in pattern formation, in suspensions on liquid sur-
face [8], or to measure their velocity distribution in 2D
cells [9]. Beyond direct interest in out-of-equilibrium sta-
tistical physics, granular medium physics, and geophysics
(such as dust clouds or planetary rings [10]), our study
provides an insight into applied problems such as magnetic
hyperthermia for medical therapy [11] or electromagnetic
grinders in steel mills [12], where particle dynamics are
controlled by an alternating magnetic field.

Experimental setup. – The experimental setup is
shown in fig. 1. A cylindrical glass container, 10 cm in
diameter and 14 cm in height, is filled with N magnetic
particles, with 2 ≤ N ≤ 60 corresponding to less than 1
layer of particles at rest. Magnetic particles are consti-
tuted of a disc permanent magnet in neodymium (NdFeB,
N52, 0.5 cm in diameter and 0.2 cm in thickness) encased
and axially aligned in a homemade plexiglass cylinder
(d = 1 cm in outer diameter, 0.25 cm in thickness, and
L = 1 cm long) —see fig. 1 (right insets). The aim of this
casing is to strongly reduce by a factor of 38 the dipole-
dipole interaction between two particles compared to the
case of magnets without casing. The magnetic induction
of this dipolar particle, µ0M = 250G, was measured by
a Hall probe at the top of the cylinder, where M is the
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Fig. 1: (Color online) Experimental setup. The right insets
show pictures of a magnetic particle (1 cm scale).

magnetization of the particle, and µ0 = 4π10−7H/m. Its
magnetic moment is m ≡ MVp with Vp = πd2L/4 =
0.78 cm3 the volume of a particle. The container is aligned
between two coaxial coils, 18 cm (40 cm) in inner (outer)
diameter, 12.5 cm apart, as shown in fig. 1. A 50Hz al-
ternating current is supplied to the coils in series by a
variable autotransformer (Variac 260V/20 A). A vertical
alternating magnetic induction B is thus generated in the
range 0 ≤ B ≤ 225G with a frequency f = 50Hz. The
Helmholtz configuration of the coils ensures a spatially
homogeneous B within the container volume with a 3%
accuracy. The motion of particles are visualized with a
fast camera (Photron Fastcam SA1.1) at 250 fps or 500 fps.
An accelerometer attached to the lid records the particle
collisions with the lid for 500 s to extract the collision fre-
quency and the impact amplitude on the lid. The sam-
pling frequency was fixed at 100 kHz to resolve collisions
(∼ 60µs). We focus here on the dilute regime with volume
fractions of 0.2% ≤ Φ ≤ 8%, with Φ = NVp/V and V the
volume of the container.

Forcing mechanism. – Assume that θ is the angle
between the vertical field B(t) = B sinωt and that m is
the magnetic moment of a particle. A torque m × B is
thus exerted by the field on the magnetic moment of each
particle. The angular-momentum theorem reads

Id2θ(t)/dt2 = mB sinωt sin θ,

where I = m(3d2/4 + L2)/12 = 0.14 g cm2 is the mo-
ment of inertia of the particle, and m = 1 g, the particle
mass. This equation is known to display periodic mo-
tions, period doubling, and chaotic motions [13]. The ra-
tio between the magnetic dipolar energy, Ed = mB, and

Fig. 2: Snapshots of magnetic granular gas. N = 20. (a) Ini-
tial conditions: B = 0, a plexiglass lid lies on the particles.
When B is increased from (b) to (d), a gas-like regime de-
velops and the lid is pushed up by the collisions of magnetic
particles on it. For the full time evolution, see supplementary
movie N20onset.mp4.

the rotation energy at the field frequency, Erot = Iω2/2
controls the stochasticity degree. The synchronization be-
tween the angular frequency of the particles and the mag-
netic field one, ω, is predicted to occur when Ed ≪ Erot,
that is B ≪ Iω2/(2m) = 493G. When this condition is
violated, as it is for our magnetic-field range, chaotic rota-
tional motion occurs [13] as shown in the supplementary
movie N1.mp4 for a single particle. The external mag-
netic field thus generates a chaotic rotational driving of
each particle. A spatially homogeneous forcing is thus ob-
tained where only the rotational degrees of freedom of each
particle are stochastically driven in time.

Gas-like regime. – N particles are placed at the bot-
tom of the container, their axes lying on the horizontal
plane, normal to B (see fig. 2(a)). A plexiglass lid lies
on the particles, and its mass is balanced by a counter-
weight. When B is increased, a transition occurs at a
critical Bc: particles begin to jump lifting up the lid. We
found that Bc = 75 ± 5G regardless of N . When B is
further increased a stationary gas-like regime is observed
with particles rotating and translating erratically —see
fig. 2(b)–(d) and the supplementary movie N20onset.mp4.
We observe that the axis of rotation of most particles is
normal to the particle axis so their magnetic moments
align with the vertical oscillating magnetic field. The fre-
quency and direction of the particle rotation are erratic,
showing unpredictably reversals. Their angular frequen-
cies are thus not synchronized with the forcing frequency,
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Fig. 3: (Color online) Hysteretic evolution of 〈h〉 for in-
creasing (•) and decreasing (�) magnetic field B. N = 10,
M = 4.7 g. The dashed line is 〈h〉 ∼ B1/2. Inset: typical tem-
poral evolution of h(t) for B = 101G, N = 10 and M = 4.7 g.
The dashed line is 〈h〉 = 3.3 cm.

ω = 2πf . The stationary gas-like regime at fixed B is
illustrated for N = 10 and N = 20 in the supplementary
movies N10.mp4 and N20.mp4 (slowed down 100 times and
12.5 times, respectively).

Method. – Measurements are performed as follows. A
mass M is added on the lid (0.82 ≤ M ≤ 10 g with a
0.82 g step). The lid then stabilizes due to the collisions of
particles at a height that depends on B (constant-pressure
experiment). The height reached by the lid h(t) exhibits
fluctuations in time around a mean height 〈h〉 as shown in
the inset of fig. 3. h(t) is measured by an angular position
transducer (12.3mm/V sensitivity) at a 200Hz sampling
frequency during 200 s. The sensor output voltage is linear
with the angle, and the height h. Note that the results
reported below are unaffected when performing constant-
volume experiments (the lid height is kept constant by
adding a mass on the lid that depends on B).

Fluidization onset. – The mean height reached by
the lid 〈h〉 is shown in fig. 3 as a function of B for fixed N
and M . For increasing B, a steep jump occurs at the onset
Bc, whereas a smoother behavior is observed for decreas-
ing B. The onset of the particle fluidization is hysteretic,
occurring at Bi

c for increasing B, and at Bd
c < Bi

c for de-
creasing B. One finds Bd

c = 56 ± 1G and Bi
c = 75 ± 5G

regardless of N . The thresholds come from the balance
between the particle magnetic energy, Em, and its gravita-
tional energy, Eg = mgd, required to lift the particle over
one diameter d (g is the acceleration of gravity). When
B is decreased, Em corresponds to the particle dipolar
energy, Ed = mB, and one finds Bd

c = mgd/m ≃ 63G.
When B is increased, particles are initially in contact, and
Em is the sum of the dipole-dipole interaction energy of
two particles in contact, Edd = µ0m

2/(12Vp) [14], and
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Fig. 4: (Color online) 〈h〉 vs. increasing B for different particle
numbers N = 4, 10, 15, 20, 30 and 40 (from bottom to top).
M = 6.9 g. Inset: best rescaling 〈h〉/N1/2 vs. B1/2. The
dashed line has a slope of 0.08 cm/G1/2.

the dipolar energy of a single particle Ed. By balancing
Edd − Ed with Eg, one has Bi

c − Bd
c = µ0M/12 ≃ 21G

which matches the experimental value. The hysteresis is
thus due to the additional dipole-dipole interaction needed
to separate two particles initially in contact. The ratio of
the dipolar-dipolar interaction energy, Edd, to the dipolar
one, Ed, reads Edd/Ed = µ0M/(12B). Thus, Edd ≪ Ed

for B ≫ Bc, whereas Edd ≃ Ed/3 ≃ Eg/3 at the onset of
fluidization (B = Bd

c ). Consequently, the role of dipole-
dipole interactions is only limited to the vicinity of the
hysteresis.

Equation of state. – Here, we will investigate an em-
pirical equation of state of our system where dipole-dipole
interactions are negligible, that is for B ≫ Bc. Far from
the onset, the height reached by the lid is found to scale
as 〈h〉 ∼ Bx with x = 0.45 ± 0.05 (see fig. 3). It means
that the gaseous regime expands more and more when B
increases. Note that a power-law scaling with the onset
distance, 〈h〉 ∼ (B −Bc)

0.3 can be also fitted for decreas-
ing B. For fixed M , 〈h〉 is shown in fig. 4 as a function
of B for different particle numbers N . The larger N , the
higher the height reached by the lid for a fixed B. The
best rescaling is displayed in the inset of fig. 4, and shows
that 〈h〉/N1/2 ∼ B1/2. For fixed N , 〈h〉 is shown in fig. 5
as a function of B for different added mass M on the lid.
The larger M , the smaller the height reached by the lid
for a fixed B. The best rescaling is displayed in the inset
of fig. 5, and shows that 〈h〉M1/2 ∼ B1/2. To sum up,
one finds an experimental state equation for the magnetic
granular gas,

M〈h〉2 = kNB, (1)

where k = 0.05 g cm2/G is a constant.

Model. – Due to the stochastic forcing, a fraction
of the magnetic energy is continuously injected into
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Fig. 5: (Color online) 〈h〉 vs. increasing B for different masses
added M = 2.3, 3.1, 3.9, 4.7, 5.3, 6.9, 8.6 and 10 g (from top
to bottom). N = 15. Inset: best rescaling 〈h〉/M1/2 vs. B1/2.
The dashed line has a slope of 0.97 cmg1/2/G1/2.

rotational energy of each particle. Since the out-of-
equilibrium system is in a stationary state, the injected
energy should be dissipated on average by collisions. A
constant exchange of energy occurs during collisions be-
tween rotational and translational degrees of freedom as
shown in numerical simulations [15]. Thus, the balance
between magnetic energy and translational kinetic energy
dissipated during collisions leads to v2 ∼ mB. Accord-
ingly, the typical particle velocity, scales as

v(B) ∼
√
B. (2)

More precisely, if we assume simple collision rules (i.e.
with no rotation) for the sake of simplicity, the energy
loss by a particle of mass m during a collision with the lid

of mass M is mv2

2 (1 − ǫ2) M
m+M , where ǫ is the particle-

boundary restitution coefficient. The energy balance fi-

nally leads to v ∼
√

mB m+M
mM(1−ǫ2) .

Let us now model the fact that the lid motion under
gravity is stabilized at an altitude h due to particle col-
lisions. One thus balances τl, the time of flight under
gravity of the lid subjected to particle collisions, and τ ,
the particle time of flight between 2 collisions with the lid

at the height h. One has τl = vl/g with vl the lid velocity,
and τ = 2h/v for N = 1. For N particles, τ is given by
the experimental results of the next section,

τ ∼ h2

LNv(B)
, (3)

where L has the dimension of a length, and is experimen-
tally found to be independent of N and h (see below). L
is thus the particle size.
Balancing τl with τ then leads to h2 ∼ NvvlL/g. The

lid velocity is vl = v(1 + ǫ) m
m+M from simple inelastic
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Fig. 6: (Color online) Bottom inset: temporal signal of the ac-
celerometer showing 27 collisions in 1 s (N = 10, h = 5 cm, B =
157G). Main panel: τ vs. h2/(N

√
B) for: (•) 1 ≤ N ≤

60 (B = 180G, h = 5 cm), (�) 90 ≤ B ≤ 222G (N = 10, h =
5 cm), and (�) 2 ≤ h ≤ 11 cm (N = 15, B = 180G). The
dot-dashed line has a unit slope. Top inset: PDF(A/A) for
90 ≤ B ≤ 222G (N = 15, h = 5 cm).

collision rules. Thus, using the expressions for h2, vl and
v, the theoretical state equation reads

Mgh2 ∼ NBL, (4)

which is in good agreement with the experimental one of
eq. (1). For a more accurate description, complex inelastic
collision rules should be included [15,16] since linear and
angular particle velocities are coupled.

Collision statistics. – Additional experiments have
been performed with the lid fixed to a height h. Using an
accelerometer attached to the lid, particle collisions with
the lid are recorded for T = 500 s. A typical accelera-
tion time series is shown in the bottom inset of fig. 6.
Each peak corresponds to the acceleration undergone by
a particle during its collision on the lid. The acceleration
peak amplitude, A, and the time lag, τ , between two suc-
cessive collisions on the lid are randomly distributed. A
thresholding technique is applied to the signal to detect
the collisions [4]. Figure 6 shows that the mean time lag
scales as τ = κh2/

(

NB1/2
)

with κ = 0.18 sG1/2/cm2 over
2 decades when varying one single parameter h, B or N
while keeping the other two fixed. An experimental ver-
ification of eq. (2) is as follows. The mean amplitude of
the acceleration peaks is experimentally found to scale as
A ∼ h0N0B1/2 as shown in fig. 7. For an impulse response
of the accelerometer to a single collision, the product of
the acceleration peak amplitude, A, times the duration of
the collision, δt, is equal to the magnitude of the parti-
cle velocity v, and thus v = Aδt (δt ≃ 60µs is roughly
constant). Hence, one has v ∼ B1/2 in agreement with
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Fig. 7: (Color online) Experimental scaling of the mean parti-
cle velocity near the wall obtained from the accelerometer mea-
surements. Main panel: A vs.

√
B for N = 15, and h = 6 cm.

Top inset: A vs. N for B = 180G, and h = 6 cm. Bottom
inset: A vs. h for B = 180G, and N = 15.

eq. (2). The translational granular temperature near the
wall thus scales as Tw ∼ h0N0B1.
The number of lid-particle collisions is Ncoll = T /τ .

Typically, 1.5 · 103 ≤ Ncoll ≤ 9 · 104 for 1 ≤ N ≤ 60 (T =
500 s, h = 5 cm and B = 180G). Although the number of
the particle-particle collisions is not measured, it should
be much lower than the particle-wall ones. Indeed, an
estimation of the Knudsen number leads to Kn ≡ l/h � 1
with l ≡ d/Φ � 0.1m the mean free path, and Φ the
volume fraction.
For various B at fixed N , the probability density func-

tions (PDF) of A show exponential tails that collapse on
a single curve when rescaled by A (see top inset of fig. 6).
Similar results are found at fixed B regardless of N . More-
over, since A = v/δt, the tail of the velocity’s PDF is thus
found to scale as exp(−c v/v) independently of the vol-
ume fraction since v ∼ h0N0B1/2. Consistently, the time
lag distribution is found to scale as exp(−c′τ/τ ), c and c′

being dimensionless constants.

Discussion. – We have obtained the equation of state
of a dissipative granular gas driven stochastically by in-
jecting rotational energy into each particle. With usual
notations (the pressure P on the lid ∼ Mg/S, and the
container volume V = Sh), the equation of state of eq. (4)
thus reads

PV ∼ NEc
L

h
, (5)

with Ec ∼ 〈v2〉 ∼ B the mean translational kinetic energy
per particle of velocity v. Surprisingly, this equation is
close of the equation of state of a perfect gas (PV = NEc)
with a geometric correction: the particle-container length
ratio. This can be partially ascribed to particle-wall inter-
actions since the Knudsen number Kn � 1. Moreover, it

differs from the equation of state of a dissipative granular
gas driven by a vibrating wall PV ∼ Ec with Ec ∼ Vθ(N)

with V the forcing velocity of the wall, and θ(N) a decreas-
ing function from θ = 2 at low N to θ ≃ 0 at large N when
the clustering phenomenon occurs [3]. Here, no clustering
is observed even when the volume fraction is increased up
to 40%. To our knowledge, no clustering instability has
been also observed in numerical simulations of dissipative
granular gases that are only driven by rotational degrees
of freedom [7]. We also show that the magnetic field B
in our experiment is the analogous of the thermodynamic
temperature for molecular gases, or the analogous of the
granular temperature for dissipative granular gases since
〈v2〉 ∼ B. The distribution of particle velocity near the
top wall displays an exponential tail and is independent of
the particle density. It is thus not Gaussian as for an ideal
gas, or stretched exponential and density dependent as for
a boundary-forced granular gas [5]. Finally, the collision
frequency ∼ 1/〈τ〉 is found to scale as N

√
B. This result

is consistent with the collision frequency of ideal gases
∼ N

√

〈v2〉, but not with the one of vibro-fluidized dissi-
pative granular gases in dilute regime ∼ N1/2V [4]. This
difference is related to the spatially homogeneous nature
of forcing.

Conclusion. – We have experimentally studied for the
first time a 3D granular gas driven stochastically by in-
jecting rotational energy into each particle. This dif-
fers from previous experimental studies of granular gas
where the energy was injected by vibrations at a bound-
ary. The equation of state is experimentally identified
and the collision statistics measured (distribution of ve-
locity, scalings of the particle rms velocity and mean col-
lision frequency with the forcing). Several differences are
reported with respect to thermodynamic-like gas and/or
non-equilibrium vibro-fluidized dissipative granular gas:
i) the gas-like state equation has a geometric correction
(particle-container length ratio), ii) no cluster formation
occurs at high density, and iii) the particle velocity distri-
bution displays an exponential tail. The use of this new
type of forcing will be of primary interest to test experi-
mentally the hypothetical equipartition of rotational and
translational energy, a feature not guaranteed for out-of-
equilibrium systems [17].
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