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Abstract – A two-dimensional system of particles with tunable repulsive interactions is exper-
imentally investigated. Soft ferromagnetic particles are placed on a vibrating rough plate and
vertically confined, so that they perform a horizontal Brownian motion in a cell. When immersed
in an external vertical magnetic field, the particles become magnetised and thus interact according
to a dipolar repulsive law. As the amplitude of the magnetic field is increased, magnetic repulsion
raises and the rate of inelastic collisions decreases. Studying notably the pair correlation function
and the particle velocity distributions, we show that the typical properties of such a dissipative
out-of-equilibrium granular gas are progressively lost, to approach those expected for a usual gas
at thermodynamic equilibrium. For stronger interaction strengths, the system gradually solidifies
towards a hexagonal crystal. This new setup could consequently be used as a model experimental
system for out-of-equilibrium statistical physics, in which the distance to the quasi-elastic limit
can be accurately controlled.

editor’s  choice Copyright c© EPLA, 2014

Introduction. – Statistical mechanics provides, with
the assumption of thermodynamic equilibrium, a precise
description of molecular gases composed of thermally agi-
tated microscopic particles. In contrast, in granular gases
macroscopic particles are mechanically driven. Since the
collisions between these particles are dissipative, energy
must be continuously provided into the system from out-
side to reach a stationary out-of-equilibrium state. In
consequence, granular gases have been extensively stud-
ied as a model system for out-of-equilibrium statistical
physics [1] theoretically [2,3], numerically [4] and exper-
imentally [5–7]. Two-dimensional granular gases, i.e.,
particles lying on a horizontal plate vertically vibrated,
were especially studied because particle trajectories can
be reconstructed using fast imaging and tracking algo-
rithms [5–9]. Nevertheless, few studies investigated the
case in which non-contact interactions between particles
compete with kinetic agitation and thus introduce spatial
correlations differing from those observed for an inelastic
hard-sphere gas. In a granular gas composed of parti-
cles owing a permanent magnetic dipole, the anisotropic
dipole-dipole interactions lead to dipole alignment, then
attraction and clustering [10–12]. In contrast, physics dif-
fers strongly using ferromagnetic particles with a low rem-
nant magnetic field. When immersed in an external static

magnetic field, such particles acquire an induced magneti-
sation so that inter-particle dipolar interactions become
tunable by the operator. Applying this protocol to a gran-
ular packing, a first-order fluid-solid transition [13] and a
surface instability due to competition between gravity and
magnetic forces [14], are observed. If such particles are
confined in a two-dimensional plane and immersed in an
external perpendicular magnetic field, the magnetic inter-
actions between particles are purely repulsive, since their
dipoles are all aligned in the vertical field direction. At low
packing fraction, low agitation and high magnetic field,
the system forms a hexagonal lattice [15]. As mechani-
cal agitation is increased crystal melting is observed, that
is, translational and orientational orders disappear, as in
some other 2D systems of interacting particles [16–20].

In this letter, we study a 2D granular gas with such
tunable repulsive magnetic interactions. To our knowl-
edge, the influence of dipolar interactions on the particle
velocity distributions has only been studied in a case dom-
inated by attractive interactions [21]. Free-cooling of 3D
granular gases with electrostatic repulsions has also been
investigated theoretically and numerically [22,23]. In our
experiment, we start from the well-studied case of a two-
dimensional granular gas [8,9] where mechanical agitation
is provided to the particles by the vibration of a horizontal
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Fig. 1: (Color online) (a) Experimental setup (see text).
(b) Snapshots in the inelastic regime for B0 = 0G (ε = 0),
(c) the quasi-elastic regime for B0 = 127 G (ε = 16.2), and
(d) the hexagonal crystal-like regime for B0 = 436 G (ε = 283).
Snapshots size is 3.5 cm × 3.5 cm, and Γ = 3.32. For the full
time evolution, see the supplementary video movie1.m4v. For
the stationary state of each of the three regimes, see sup-
plementary slow-down videos movie2.m4v, movie3.m4v and
movie4.m4v. (e) Area fraction of balls φ in the area S vs.

B0 for Γ = 2.45 and 3.32. The dashed line corresponds
to the area fraction for a homogeneous particle distribution
φth = N0πσ2/S0 ≈ 0.194.

rough bottom plate. Additionally, a vertical magnetic field
is then applied, leading to repulsive dipolar interactions
between particles. Using particle tracking techniques, we
analyse quantitatively the structural changes within the
granular gas and its dynamical properties. The rate of
inelastic collisions between particles can be easily tuned.
Indeed, increasing the amplitude of the magnetic field en-
hances magnetic repulsion and thus decreases the number
of inelastic collisions. As the dissipation rate due to inelas-
tic collisions is proportional to the number of collisions,
the total dissipation in the system is reduced. We thus
show that the system undergoes a transition from a dissi-
pative to a quasi-elastic system when the magnetic field is
increased.

Experimental setup. – The experimental cell is de-
picted in fig. 1(a). It consists of a horizontal, square du-
raluminium bottom plate of area S0 = 9 cm × 9 cm and
covered by a sandpaper sheet in order to provide rough-
ness (RMS amplitude of 20 µm). The cell is filled with

N0 = 2000 chrome steel (AISI 52100) spherical particles
with a diameter a = 2 σ = 1 mm ± 2.5 µm and a mass
m = 4.07 × 10−6 kg. These balls are confined by rigid
aluminium walls and by a rigid, smooth, antistatic coated
polycarbonate lid placed 1.5a above the bottom plate. In
order to reach a non-equilibrium steady state, this cell is
driven sinusoidally in the vertical direction by means of
an electromagnetic shaker. The dimensionless accelera-
tion is Γ ≡ (2πf)2A/g with f = 300 Hz the frequency
and A the amplitude of the sinusoidal forcing, g being
the gravitational acceleration. Γ is measured using an
accelerometer screwed on the cell. Two coils generate a
vertical magnetic field B0 which is perpendicular to the
cell plane and is spatially homogeneous within the cell
volume with a 2% accuracy. A high-speed camera (Phan-
tom V10) is located above the centre of the cell. A diffu-
sive LED ring encircling the cell illuminates from the top
the particles that appear as bright rings on a dark back-
ground. The camera acquisition rate is fixed to 779 frames
per second in order to detect the collisions between parti-
cles. Video recordings are performed once the stationary
state is reached (waiting time of 60 s) and last at least
3.85 s. To avoid measurement issues at the boundaries,
we choose a region of interest S of 5.7 cm× 5.7 cm around
the cell centre. The particle diameter then corresponds
to 20 pixels. We performed individual detection of par-
ticles from the video recordings using first a convolution-
based least-squares fitting particle detection routine [8,24]
completed by an intensity-weighted centre detection al-
gorithm. This provides particle centre positions with a
resolution of less than 0.3 pixel ∼ 0.015a [9]. Finally, in-
dividual trajectories were reconstructed using a tracking
algorithm [25,26]. Hence, from highly resolved particle po-
sition data, we compute their velocity distributions, pair
correlation functions, mean square displacements as well
as collision rate estimations.

Experimental parameters. – Let us now describe
the influence of the external magnetic field B0 on the
chrome steel particles. These balls are soft ferromag-
netic, i.e., with a low remnant magnetic field and a high
magnetic permeability. When placed in a vertical mag-
netic field of amplitude B0, each particle is uniformly
magnetised. It behaves as an induced magnetic dipole
of magnetic moment 4

3
πσ3 χm

µ0

B0 ez, with χm the volume
magnetic susceptibility, µ0 the vacuum permeability, and
ez the upward unit vector along the vertical axis. For a
purely 2D system of two identical spheres i and j with B0

perpendicular to rij (the horizontal vector between the
particle centres), the potential energy of magnetic inter-
action reads [27]:

Em,〈i,j〉 =
4π

µ0

B0
2 σ6

|rij |3
(1)

in the limit of high intrinsic magnetic permeability. We
point out that without taking into account the geometry of
the magnetisation and the demagnetising magnetic field,
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an effective susceptibility χ can be defined [15,18], yield-
ing an expression of the magnetic energy proportional to
eq. (1). The repulsive force between these two particles,

Fm,〈i,j〉 = −∇ Em,〈i,j〉, decreases with |rij |−4 and is di-
rected along rij . Therefore the repulsion between particles
can be tuned by the amplitude of the magnetic field B0.
If particles are not exactly in the same horizontal plane
between the two confining plates, the horizontal repulsive
force is reduced due to 3D effects. Nevertheless, further
results in this letter show that a 2D analysis is relevant
to describe the system behaviour, by considering Em,〈i,j〉

from eq. (1) as a scale of the actual magnetic energy of
two interacting particles.

In addition to parameters Γ and B0, the last important
parameter is the dimensionless area fraction φ ≡ N πσ2/S,
with N the number of particles detected in the region of in-
terest S. As can be expected for a system of particles with
increased repulsive interactions, we observe (fig. 1(e)) an
expansion of the system when B0 is increased. φ is found
to be a decreasing function of B0, which differs from the
expected value φth = N0 πσ2/S0 ≈ 0.194 computed for
the full cell area. Indeed, φ ≈ 0.27 for B0 ≈ 0 G due to
clustering [3,5,28–30] in the cell central region. As B0 is in-
creased, the horizontal magnetic repulsive forces cause the
granular gas to expand and to reach a state of smaller and
homogeneous area fraction in the region of interest S. It is
well known that a higher particle density near the bound-
aries is induced by non-repulsive boundary conditions [22]
and a weak magnetic field radial gradient. Nevertheless,
we point out that φ is found to be homogeneous in the re-
gion of interest S whatever B0 > 0 G, the inhomogeneity
of φ being confined within the area outside S.

Competition between kinetic and magnetic

energies. – From the parameters B0, Γ and φ, we de-
fine now the relevant physical quantities, that we use to
describe the behaviour of our system. Considering a 2D as-
sembly of N particles mechanically agitated and immersed
in B0 inside the region of interest S, we compute its
kinetic energy per particle from velocity measurements,
namely Ec = 1

2
m 〈vx

2 + vy
2〉, where vx (respectively

vy) denotes the horizontal velocities in the x-direction
(y-direction), 〈·〉 an ensemble average and · the tempo-
ral average. Note that Ec is directly proportional to the
granular temperature usually defined as Tg = Ec

m
[8,9].

We also compute the magnetic energy per particle

Em = 1

N

∑N

i=1

∑N

j=i+1
Em, 〈i,j〉, with 〈i, j〉 a pair of parti-

cles within S and Em, 〈i,j〉 its potential energy from eq. (1).
The magnetic potential energy depends on the local config-
uration of the particles, and therefore it fluctuates in time.
Finally, a dimensionless interaction parameter is defined
by the ratio ε ≡ Em/Ec between the magnetic and kinetic
energies [15,18]. When ε is increased, the system under-
goes a continuous transition from an inelastic granular gas
(fig. 1(b)) to a quasi-elastic granular gas (fig. 1(c)) since
inelastic collisions between particles are progressively re-
placed by elastic magnetic interactions. At higher ε, the

0

1

2

3

x 10
−4

E
c
 (

J
)

 

 

Γ= 2.45

Γ= 3.32

10
−4

10
−3

10
−2

E
m

 (
J
)

10
1

10
2

10
3

10
0

10
1

10
2

B
0
 (G)

ε

10
0

10
1

0

5

10

ε

ν
c
 (

H
z
)

(a)

slope=2

(b)

(c)(d)

Fig. 2: (Color online) (a) Particle kinetic energy Ec as a func-
tion of the magnetic field B0 for accelerations Γ = 2.45 and
3.32. (b) Particle magnetic potential energy Em vs. B0. (c) Ra-
tio of the energies ε = Em/Ec vs. B0. (d) Collision rate νc

(number of collision per particle and time unit) vs. ε.

system self-organises in a condensed-like phase showing a
2D-hexagonal crystal lattice (fig. 1(d)) as particle displace-
ments become constrained due to magnetic repulsions.
This evolution of the system is also shown in the sup-
plementary video movie1.m4v for a continuous increase of
B0 at fixed Γ.

We present now experimental results obtained for in-
creasing B0 and for fixed Γ (2.45 or 3.32). These values
correspond to the bounds of the range of Γ where Ec in-
creases linearly [8]. The evolutions of Ec, Em and ε with
B0 are depicted in fig. 2(a)–(c). Note that ε is larger
than 1 for B0 > 20 G, meaning that regimes dominated
by magnetic repulsions are reached for moderate values
of B0. We also notice a non-monotonous evolution of Ec,
which reaches a maximum for B0 ≈ 70 G (ε ≈ 5). The
rate of inelastic collisions between particles νc is indeed
strongly reduced for increasing values of ε as depicted in
fig. 2(d). Due to the magnetic energy barrier, only parti-
cles with sufficient kinetic energy can collide [22]. The av-
erage number of collisions per particle and per time unit,
νc, is evaluated using an algorithm detecting individual
collisions through a distance criterion selective process.
νc decreases with ε, vanishes below 0.1 Hz for ε > 10 and
is strictly zero for ε > 30. For greater ε, particle displace-
ments become bounded [15]. Indeed, in fig. 2(b) Em is
found to be proportional to B0

2 for B0 > 150 G (ε > 30),
because particle geometrical arrangement becomes a fixed
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Fig. 3: (Color online) Pair correlation function g(r) for
Γ = 3.32 and ε = 0, 2.89, 16.2 and 283. For the last value,
peak positions for a hexagonal crystal are shown in dashed
lines as multiples of the lattice distance r1st/a = 2.28, for fac-
tors 1,

√
3, 2,

√
7, and 3. Inset: position of the first peak r1st/a

vs. ε and compared with d0/a expected for a hexagonal crystal
(see text).

parameter in the calculation of Em, once they are mag-
netically confined.

Radial pair correlation function. – This en-
ergetic description is also associated with impor-
tant structural changes, which can be enlightened
by computing the radial pair correlation function

g(r) ≡
[

∑N

i=1

∑

j �=i δ(r − rij)
]

S/(2πrN2), with rij the

distance between the particles i and j. This function gives
the probability to find two particle centres separated by
a distance r. g(r) is shown in fig. 3 for characteristic val-
ues of ε and at fixed Γ. At ε = 0, g(r) displays a sharp
peak at the contact value r = a, as in usual granular
gases [5,6]. This confirms that most collisions occur in
horizontal planes and validates the 2D description. Col-
lisions happening out of horizontal planes, when viewed
from the top, produce indeed a partial overlapping, lead-
ing to non-vanishing values of g(r) for r < a. When ε
is slightly increased, the amplitude of the first peak de-
creases to almost 1, giving a nearly flat g(r) (see the curve
for ε = 2.89). This shows that radial correlations are then
quasi-absent as for a non-dissipative perfect gas whose g(r)
is zero for r < a and 1 elsewhere in the vanishing density
limit. When ε is further increased, this feature is gradu-
ally lost. Due to magnetic repulsions, g(r = a) decreases
towards zero and a first peak appears at r > a, indicating
the appearance of a preferential distance between parti-
cles. A similar transition of g(r) has been observed nu-
merically for a 3D repulsive granular gas with a Coulomb
interaction potential [22]. For high enough values of ε, the
system structure approaches the one of a hexagonal crys-
tal [15]. In this case, once the lattice cell size is set to the
first-peak position, theoretical secondary-peak positions

can be predicted from geometrical calculations and are in-
deed found to be close to the measured values (see the
vertical dashed lines in fig. 3). The dimensionless position
of the first peak of the pair correlation function r1st/a vs.
ε (fig. 3(inset)) can be used to discriminate the different
regimes. Indeed, for ε < 2.89 (Γ = 3.32), r1st/a = 1,
which corresponds to a gas-like state becoming more and
more elastic as ε increases. Then, for higher values of ε,
r1st/a > 1 means that a fluid-like phase with a negligible
collision rate is reached. A system solidification progres-
sively occurs: r1st/a grows slowly with ε and gradually
approaches the value expected for the hexagonal lattice

d0/a =
√

π/(2
√

3φ), which depends on φ since measured

in S. A distance to the hexagonal crystal is thus provided
by the calculation of d0/a − r1st/a.

Recently, such a crystal formation has also been ob-
served in a 2D granular system of repulsive particles [15],
and this crystal was found to melt through a hexatic phase
in good agreement with the Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) scenario [31]. In our experi-
ments, the computations of the pair correlation function
and of the orientational correlation function (not shown
here) lead to qualitatively similar results as in [15]. Fi-
nally, the behaviour of the collisionless nearly crystalline
state at strong enough ε can be understood as follows.
We can consider our non-contact repulsive particles as ef-
fective larger particles in a close packing of disks. Their
effective diameter would be given by r1st, the first-peak
position of g(r), leading to an effective area fraction
φeff = (r1st/a)2 φ, varying roughly between 0.44 and 0.90.
Therefore, when the system is collisionless, increasing ε
can be understood as rising the effective density φeff. This
explains why a transition similar to the one occurring in
2D close-packed particle systems [32] might be found in
our study where non-contact interactions between parti-
cles are involved.

Mean square displacements. – Another way to
characterise structural and dynamical changes consists in
measuring the mean square displacements (MSD) of the
particles 〈|R(t + t0) − R(t0)|2〉, where R(t) is the parti-
cle position at time t, t0 being an arbitrary time origin.
For particles experiencing a Brownian motion in two di-
mensions, the MSD equals 4Dbt, where Db is the diffusion
coefficient. MSD normalised by the particle diameter are
plotted in fig. 4. For ε < 30, at short times a ballistic
regime occurs (MSD ∝ t2), followed by a normal diffu-
sive regime at longer times (MSD ∝ t). Therefore, in this
regime, particles perform a horizontal quasi-Brownian mo-
tion in the experimental cell. For ε > 30, the diffusion
becomes anomalous: a fit of the MSD by a power law tα

would provide α < 1, showing that particles undergo a
sub-diffusive motion. We point out that simultaneously,
the collision rate becomes zero, marking a change of be-
haviour of the particles as magnetic interactions become
stronger. Moreover, the derivative of the MSD vanishes at
finite times as the MSD locally saturates, shedding light
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Fig. 4: (Color online) Mean square displacements (MSD) for
Γ = 3.32 and ε = 0, 2.89, 16.2, 38.1 and 283. The thin dashed
lines indicating slopes of values 1 and 2 are guides to the eye.
The thick dashed lines superimposed on MSD data from t = 1 s
to the end of the recordings are linear fits performed in the
normal diffusive regime. Inset: slopes of the linear fits divided
by 4, D, which can be identified with a diffusion coefficient.

onto the existence of magnetic confinement. This becomes
very clear for ε > 102, as particles are strongly confined
and move around equilibrium positions corresponding to
the nodes of the hexagonal lattice.

For ε ≤ 30 and after waiting long enough to define a
normal diffusive regime, we extract from the MSD the
particle diffusion coefficient D, computed as one fourth of
the slope of the MSD (evaluated from t+ t0 = 1 s until the
end of the measurement). The corresponding fits are plot-
ted as thick dashed lines in fig. 4, and the obtained values
of D are shown in fig. 4(inset). Like Ec (fig. 2(a)), D as
a function of ε is non-monotonous and decreases strongly
for ε � 5 (i.e., B0 � 70 G), showing that magnetic re-
pulsions oppose the displacements. It can also be noticed
that D and Ec reach their respective maximum for val-
ues of ε of the same order of magnitude, when repulsive
interactions are of the same order as kinetic agitation. In-
deed, D can be roughly evaluated as the product of the
root mean square velocity, which is directly related to Ec,
by the mean free path, which should decrease with φ and
ε as the magnetic confinement opposes the particle dis-
placements. The evolutions of D and Ec are thus deeply
connected.

Velocity statistics. – Structural modifications imply
important changes on dynamics, especially on the parti-
cle trajectories and velocity distributions. In the inset
of fig. 5, the probability density functions (PDF) of ve-
locities (x-component) normalised by their standard de-
viation, vx/σx with σx ≡

√

〈vx
2〉, are plotted at fixed

Γ for different values of ε. They are compared to the
Gaussian distribution expected for a perfect gas at ther-
mal equilibrium. Identical results are found for vy due
to system isotropy in the central region. As predicted
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for an infinite system [2] and reported in other experi-
ments [6–9], at ε = 0 the velocity distribution presents
a deviation from the Gaussian. In fact, this behaviour is
expected for out-of-equilibrium systems, as Gaussian dis-
tribution is predicted for equilibrium gases. The reported
overpopulation of the high-velocity tails is characteristic
of granular gases, although there is no simple argument to
justify it [1]. As ε is increased, the PDF become progres-
sively closer to the Gaussian until ε ≈ 10 but then depart
for higher values.

This behaviour is better depicted by plotting the
flatness of the velocity distributions, defined as
F ≡ 〈(vx − 〈vx〉)4〉/σ4

x and shown in fig. 5. For a purely
Gaussian distribution F equals 3 and is larger for more
spread distributions. A range of significantly low values
of F can be defined for 4 < ε < 30, where the granu-
lar gas can be considered as quasi-elastic. Indeed, energy
exchanges between particles should occur mainly through
magnetic repulsive interactions, which are dissipationless.
Note that the lower bound in ε is fairly consistent with the
value ε = 2.89 separating the usual granular gas regime
and the one with negligible collisions (see fig. 3). For
ε > 30, displacements become progressively constrained
by magnetic repelling and the system can be seen as an
assembly of confined particles [15]. F then increases with
ε, highlighting a heterogeneity of velocities, as particles
are individually more or less confined.

Conclusion. – We have studied the effect of tunable
repulsive dipolar interactions on a quasi–two-dimensional
granular gas. For fixed dimensionless accelerations Γ and
in a low density regime (φ ≈ 0.2), we increased the mag-
netic field B0. The rise of the ratio ε between magnetic in-
teraction and kinetic agitation leads to a continuous phase
transition from a dissipative granular gas state at ε = 0, to
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a collisionless hexagonal nearly crystalline state at high ε.
More interesting, in the intermediate range of ε, struc-
tural and dynamical properties of the magnetic granular
gas display similar features to those expected for a molec-
ular gas at thermal equilibrium (quasi-Gaussian velocity
distributions and nearly flat pair correlation functions).
This transition from a dissipative to a quasi-elastic gran-
ular gas, when B0 is increased, comes from the decrease
of the dissipative collision rate, which leads to the reduc-
tion of the total dissipation. Hence, the 2D granular gas
is then closer to the quasi-elastic limit. We were thus able
to produce a macroscopic system whose distance to the
quasi-elastic limit could be precisely controlled through
the applied magnetic field. We may also wonder how
the results found here with repulsive dipolar interactions
can be generalised for other interaction potentials, like the
Coulombian one [22,23].

Future studies on this new system could be useful to
validate theoretical works about out-of-equilibrium dis-
sipative gases, by investigating velocity correlations and
coupling with the forcing viewed as a thermal bath [9,33].
Another perspective is to apply a magnetic quench to the
system, in order to try to solidify it into a disordered state,
which could be analogous to a colloidal glass [34]. More-
over, for denser regimes and for high ε, we observe other
complex disordered states. Our experimental system could
indeed be used to mimic, at the macroscopic scale, geo-
metric frustration [35,36] or topological defects [37] arising
in various physical systems.
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