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Abstract – We experimentally study gravity-capillary wave turbulence on the interface between
two immiscible fluids of close density with free upper surface. We locally measure the wave height
at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We
show that the inertial range of the capillary wave turbulence regime is significantly extended when
the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave
turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum
is found to increase. We explain these observations by the progressive decoupling between waves
propagating at the interface and the ones at the free surface, using the full dispersion relation
of gravity-capillary waves in a two-layer fluid of finite depths. The cut-off evolution is due to
the disappearance of parasitic capillaries responsible for the main wave dissipation for a single
fluid.

Copyright c© EPLA, 2016

Introduction. – Stratified fluids are ubiquitous in Na-
ture such as in oceans or in the atmosphere. The density
stratification is usually due to a temperature or salinity
gradient with the depth in oceans, or a temperature or
humidity gradient with altitude in the atmosphere. The
simplest stratified fluid consists in two superimposed ho-
mogeneous fluids, the fluid with higher density being be-
low the fluid with lower density. In this situation, waves
can propagate at the interface between the two fluid lay-
ers but also at the free surface of the top one. Under
certain conditions, surface and interface waves interact
together [1,2]. An astonishing manifestation of this phe-
nomenon is the dead-water effect first observed in 1904
on the sea surface [3], and recently reproduced in experi-
ments [4,5]. Indeed, ships evolving on a calm sea can slow
or even stop sailing in a two-layer fluid due to the extra-
drag generated by large interface waves. The coupling be-
tween the surface and interface waves in a two-layer fluid
also generates narrow nested V-shaped wakes observed be-
hind ships [6,7], as well as the damping of ocean surface
waves over a layer of fluid mud [8]. Such a coupling is also
involved in Faraday instability of floating droplets on a liq-
uid bath [9,10], or during the long-wave instabilities in thin

two-layer liquid films (< 100 nm) in chemical physics [11].
In industrial applications like metal refining, such inter-
actions can also have an influence on the ripples created
during dewetting [12]. Finally, the coupling between the
surface and interface waves of large amplitudes occur in
many physical and biological situations (involving or not
elasticity), and lead to numerous challenging studies in ap-
plied mathematics such as the predictions of new solitary
waves [13,14].

When a set of stochastic waves, propagating on a free
surface, has large enough amplitudes, interactions between
nonlinear waves can generate a wave turbulence regime.
These interactions transfer the wave energy from the large
scales, where it is injected, to the small scales where it
is dissipated. This generic phenomenon concerns various
domains at different scales: Surface and internal waves
in oceans, elastic waves on plates, spin waves in solids,
magnetohydrodynamic waves in astrophysical plasma (for
reviews, see [15–18]). The weak turbulence theory devel-
oped in the 1960s [19–21] leads to predictions on the wave
turbulence regime in almost all domains of physics involv-
ing waves [16,17]. The past decade has seen an important
experimental effort to test the validity domain of the weak
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Fig. 1: (Color online) Experimental setup. Free surface and
interfacial waves are generated by a wave maker. Lower fluid:
water (depth at rest h1). Upper fluid: silicon oil (depth at rest
h2). Dashed lines: interface and free surface at rest. A laser
vibrometer locally measures the height of the interface, the
water being dyed with white paint. Inset: typical evolution of
the interfacial wave height ηI(t) as a function of time. h2 =
0.9 cm.

turbulence theory on different wave systems (e.g., hydro-
dynamics, optics, hydro-elastic or elastic waves) [22].

In this paper, we study gravity-capillary wave turbu-
lence on the interface of a two-layer fluid with free upper
surface. Waves propagate both at the interface and at the
free surface (either in phase or in antiphase), and this cou-
pling depends strongly on the upper fluid depth. When
this depth increases, we show that these two modes be-
come progressively uncoupled explaining thus most of the
observations on the wave turbulence spectra. When the
upper fluid is deep enough, the two modes are then fully
uncoupled, leading to the observation of a spectrum of
purely capillary interfacial wave turbulence on two decades
in frequency, fluids being of almost the same density. The
article is organized as follows. We will first describe the
experimental setup, then the experimental results and
the model, before comparing them to each other.

Experimental setup. – The experimental setup is
sketched in fig. 1. Two fluids are placed in a circular
22 cm diameter plastic vessel. The lower fluid is water,
and the upper fluid is a silicon oil (PDMS Dow Corning
200) [23]. Their depths at rest are, respectively, h1 and h2.
h1 = 4.3 cm is fixed, whereas h2 is varied between 0 and
0.9 cm, thus 0 ≤ h2/h1 < 21%. Their kinematic viscosi-
ties are, respectively, ν1 = 10−6 m2/s and ν2 = 10−5 m2/s.
Their densities are, respectively, ρ1 = 1000 kg/m3 and
ρ2 = 935 kg/m3 [24] leading to a small Atwood number
A = (ρ1 − ρ2)/(ρ1 + ρ2) = 0.033. The surface tension of
silicon oil/air is γS = 20mN/m [25]. The interfacial ten-
sion between water and silicon oil is γI = 25mN/m [26].

An electromagnetic shaker (LDS V406/PA 100E) vi-
brates horizontally a plexiglas blade that generates
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Fig. 2: Standard deviation of the interface wave height vs. the
upper fluid depth at rest, h2. Solid line is from eq. (5) with
f = 4.5 Hz, ηS = 1.9 mm, mode +. Top inset: typical vertical
velocity of surface waves, h2 = 0. Bottom inset: same for
interface waves, h2 = 2 mm. Wave steepness: 0.08.

gravity-capillary waves at the interface between both flu-
ids and at the free surface. The immersed part of the
blade is fixed to 2 cm regardless of h2. The shaker is
driven with a random forcing in amplitude and frequency
between 1Hz and 6Hz. The rms amplitude and velocity
of the blade is fixed to, respectively, 5mm and 5 cm/s, re-
gardless of the experiment presented here. A homemade
velocity sensor [27] is fixed to the shaker axis to measure
the instantaneous blade velocity V (t). The interface wave
steepness ranges from 0.11 to 0.04 when h2 is decreased.

A laser Doppler vibrometer (Polytec OFV506) placed
above the setup measures the vertical velocity of the in-
terface deformation at one point given by the position of
the vertical laser beam (see fig. 1). To wit, a white liq-
uid dye (TiO2 particles plus a binding agent)1 is added
to the water bulk to make it slightly diffusing (typically
1% in volume). The surface tension of dyed water/air is
γw = 32mN/m [28]. The velocity is extracted from the
interference between the incident beam and the light back-
scattered by the diffusing fluid. After temporal integra-
tion, one thus obtains the interface height ηI(t). The laser
Doppler vibrometer has a sensitivity of order of 10µm.
The free surface motions being dynamics, the angle of re-
fraction of the laser within the upper fluid will change
with respect to a free surface at rest. For our weak sur-
face wave steepnesses (< 0.13), these changes correspond
to horizontal displacements of the laser on the diffuse
interface less than the beam diameter on the interface
(0.5mm). To avoid direct transmitted vibration from the
shaker to the vibrometer, the latter is mechanically uncou-
pled from the shaker. Signals are then high-pass filtered
(> 0.5Hz) to avoid possible residual low-frequency vibra-
tions. They are acquired for T = 5 minutes (or 30 minutes
to converge statistics to compute the probability density

1Richard Colorants SA, Color 2000 + Blanc.
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Fig. 3: Solid line: probability density function (PDF) of the
rescaled interfacial wave height, ηI/σηI

. Dashed line: Gaus-
sian with zero mean and unit standard deviation. h2 = 4 mm.
σηI

= 1.32 mm. Inset: frequency-power law exponents of the
capillary spectrum as a function of h2. Dashed line: theoretical
value −17/6 for capillary wave turbulence.

function (PDF) of the wave height). Surface tensions in-
volved here are of close values: oil/air γS = 20mN/m [25],
water/oil γI = 25mN/m [26], and dyed water/air γw =
32mN/m [28]. No significative change is thus expected in
the model below when using water/oil interfacial tension
instead of the unknown dyed water/oil one.

Experimental results. – A temporal recording of the
interfacial wave height ηI(t) is shown in the inset of fig. 1.
It displays an erratic behavior in response to the stochas-
tic forcing. As shown in fig. 2, the standard deviation
of the temporal recording of the interface wave height
σηI

≡
√

〈η2
I (t)〉 is found to decrease strongly when the

depth of the upper fluid, h2, is increased. Temporal av-
erage is denoted by 〈·〉. This experimental decrease is
well described theoretically by the model presented below
(solid line in fig. 2). We observe no perforation of the top
layer regardless its depth. No break slope on the verti-
cal velocity of the interfacial waves occurs that would be
related on a change of index of refraction if perforation oc-
curred. The vertical velocity is shown in the insets of fig. 2.
For a single fluid (h2 = 0), capillary wave generations are
observed near the crests of steep gravity-capillary waves,
whereas this effect is absent for a two-layer fluid (h2 �= 0).
The probability density function of the rescaled interface
wave height, ηI/σηI

, is close to a Gaussian (see fig. 3), and
is found to be independent of h2 (not shown).

From the temporal recording of the interface wave
height, ηI(t) (see inset of fig. 1), one computes its
power spectrum density as the square modulus of the
Fourier transform of ηI(t) over a duration T : SηI

(f) ≡

|
∫ T

0
ηI(t)e

iωtdt|2/(2πT ), where ω = 2πf . Figure 4 shows
the power spectra of the interface wave height when
the upper fluid depth increases. For h2 = 0mm (bot-
tom curve), the usual gravity-capillary wave turbulence
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Fig. 4: (Color online) Power spectrum density of the inter-
face wave height, SηI

(f), for increasing upper fluid depths
h2 = 0, 4, 5, 7, 8 and 9 mm (from bottom to top, shifted verti-
cally for clarity). The dashed (respectively, dash-dotted) lines
are the best power-law fits of the capillary (respectively, grav-
ity) wave turbulence regime. Forcing frequencies ≤ 6 Hz (rep-
resented by the shaded area). Inset: experimental crossover
frequency ft between gravity and capillary regimes vs. h2

(symbols). Dashed line: theoretical crossover frequency fc+S

(see text). Solid line: frequency fun for which the interface
and free surface waves of the mode + become uncoupled (i.e.,
ηI/ηS = 1/10 —see fig. 7).

spectrum is observed as previously found in several re-
cent studies [29–33]. Up to a cutoff frequency at ≈
100Hz, related to dissipation, this spectrum is consis-
tent with two different power-law regimes for frequen-
cies above ft ≈ 20Hz (capillary regime) and below ft

(gravity regime) as expected by the weak turbulence the-
ory [16,17] and already observed experimentally [29–33].
Note that the exponent of the capillary regime is slightly
lower than its predicted value −17/6 (inset of fig. 3).
The crossover frequency ft between gravity and capillary
wave turbulent regimes is linked to the capillary length
lcw =

√

γw/ρ1g [29]. When h2 is increased, the capillary
regime is found to hold down to lower and lower frequen-
cies (see curves from h2 = 4 to 7mm in fig. 4), until no
transition is clearly visible before reaching the forcing fre-
quencies (see curves for h2 ≥ 8mm). This crossover fre-
quency ft is found to decrease up to a factor 2.5 (from
20 to 8Hz, see inset of fig. 4) when h2 is increased. More-
over, the cut-off frequency increases of a factor 7 (roughly
from 100 to 700Hz) when h2 is increased. This leads to a
significative extension of the inertial range of the capillary
spectrum by more than one order of magnitude. A fre-
quency power-law spectrum is then clearly observed on
almost two decades. In the next part, we will explain the
widening of the spectrum inertial range and the depen-
dence of the crossover frequency on the upper fluid depth.

Theoretical description. – To interprete our exper-
imental results, we consider gravity-capillary waves prop-
agating at both the interface and the free surface of two
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Fig. 5: Sinusoidal gravity-capillary waves propagating at the
interface and at the free surface of two fluids of finite depths
(h1 and h2 at rest). The upper surface is free. Case of in-phase
deformations (mode +).

immiscible fluids of finite depths, the upper surface be-
ing free (fig. 5). The lower fluid is assumed to never
emerge from the upper one. The dispersion relation of
theses waves can be found in text-books [34,35] but only
when the capillary effects are neglected. To our knowl-
edge, the theoretical derivation of the dispersion relation
taking into account both the gravity and capillary effects
for a two-layer fluid of finite depths with free upper surface
were obtained only recently [1,13], as well as the one tak-
ing also into account the fluid viscosity effects [10]. In the
following, we will use the inviscid dispersion relation. The
experimental validity of this hypothesis will be checked
a posteriori (see below).

Let a sinusoidal wave propagate along the x-axis with
angular frequency ω and wave vector k at the interface
between both fluids, denoted 1 and 2, of finite depths
(fig. 5). Fluid 1 is limited at the bottom by a rigid wall
and fluid 2 is free at its surface. Experimentally, one has
6 ≤ kh1 ≤ 500 and 0.2 ≤ kh2 ≤ 103. Let ηI be the
wave height at the interface and ηS be the wave height at
the free surface. The system is assumed invariant along
the y-axis, and the flows incompressible and inviscid. The
interface at rest is located at z = 0. The corresponding
dispersion relation reads [1,13]

aω4 + bω2 + c = 0 (1)

with
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

a = ρ2 [ρ1 + ρ2 tanh(kh1) tanh(kh2)] ,
b = −ρ1(ρ2gk + γSk3) tanh(kh2)

+ ρ2

(

−ρ1gk − (γI + γS)k3
)

tanh(kh1),

c =
[

γIγSk6 + g (ρ2(γI − γS) + ρ1γS) k4

−ρ2(ρ2 − ρ1)g
2k2

]

tanh(kh1) tanh(kh2).

(2)

Note that for h1 = h2 = ∞, eqs. (1) and (2) are well
reduced to the usual gravity-capillary dispersion relation
between two infinite fluids with no free surface [35],

ω2(k) =
ρ1 − ρ2

ρ1 + ρ2
gk +

γIk
3

ρ1 + ρ2
. (3)

For ρ2 = 0 and h2 = ∞, eqs. (1) and (2) lead to the
usual gravity-capillary dispersion relation at the free sur-
face of a single fluid of finite depth [34],

ω2(k) = tanh(kh1)(gk + γIk
3/ρ1). (4)

The dispersion relation in the general case, eqs. (1)

and (2), has 4 solutions ω2(k) = −b±
√

b2−4ac
2a among which

only 2 are real, that are plotted in solid lines (blue and red)
in fig. 6. We will call these solutions “mode +” and “mode
−” according to the sign in the above expression of ω2(k).
Note that the mode + has a higher phase velocity than the
mode − (semilog-y plot in fig. 6). Figure 6 also shows that
even for a thin enough upper fluid layer (as small as 2mm),
the wave dispersion relation is constituted of two branches
corresponding to the two propagating modes. This differs
strongly from the dispersion relation for interfacial waves
between two infinite fluids (see dashed line) or for surface
waves on the surface of a single infinite fluid (see dash-
dotted line). The interfacial and free surface waves are
indeed not independent but are coupled to each other by
those two propagative modes. Both modes propagate at
both interface and free surface. The ratio between the
wave heights at the free surface (S) and the interface (I)
reads [1]

ηS

ηI
=

sinh(kh2)

ρ2
×

[

ρ2 coth(kh2) + ρ1 coth(kh1)

−
[(ρ1 − ρ2)g + γIk

2]k

ω2(k)

]

. (5)

If ηS/ηI > 0, the waves at the interface and the ones at
the free surface propagate in phase, corresponding to the
mode + (also called barotropic [9] or zigzag [10] mode) as
illustrated in fig. 5. For ηS/ηI < 0, they propagate in an-
tiphase corresponding to the mode − (also called varicose
mode [10]).

The modulus of the wave height ratio |ηI/ηS | is plotted
in fig. 7 as a function of the wave frequency for differ-
ent depths h2, for both modes. We first note that the
surface wave height is higher than that of the interfacial
wave height for the mode +, regardless of h2. On the
other hand, for the mode −, the interfacial wave height
is higher than that of the surface wave height, regard-
less of h2. Second, within our experimental inertial range
(f ≥ 6Hz) and for small h2, wave heights at the interface
and at the free surface are found to be of the same order
for both modes, and are thus coupled (see insets of fig. 7).
For large h2, waves are uncoupled since the interface wave
height is much smaller (respectively, much higher) than
that of the surface wave height for mode + (respectively,
mode −): waves can be thus considered to propagate only
at the free surface for the mode + and only at the interface
for the mode −. Note that this decoupling is as strong as
the wave frequency is large. These features are shown in
insets of fig. 7 for a fixed frequency. Experimentally, the
paddle forces both interfaces in phase at large scales, thus
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Fig. 6: (Color online) Theoretical dispersion relation ω/k vs. k
for gravity-capillary waves in a two-layer fluid of finite depths
from eqs. (1) and (2). Red line: in-phase mode (mode +). Blue
line: antiphase mode (mode −). h2 = 2 mm. Black dashed
line: dispersion relation at the interface between the same two
fluids but for infinite depths (eq. (3)). Black dash-dotted line:
dispersion relation at the free surface of a single fluid (2) of
infinite depth (eq. (4) with h1 = ∞, replacing ρ1 and γI by
ρ2 and γS , respectively). Inset: solid (respectively, dashed)
line: crossover frequencies between capillary and gravity wave
regimes at the interface (respectively, at the free surface) for
both modes as a function of h2. Mode +: red. Mode −: blue.

favoring the in-phase mode. However, a mixing between
the two eigenmodes occurs in practice due to the random
feature of the forcing.

Interpretation. – Let us introduce the typical cap-
illary lengths of the interface, lcI

, and of the free sur-
face, lcS

. The corresponding wave numbers are kcI
≡

1/lcI
=

√

(ρ1 − ρ2)g/γI and kcS
≡ 1/lcS

=
√

ρ2g/γS

(λcI
≡ 2π/kcI

≃ 3.9 cm; λcS
≡ 2π/kcS

≃ 0.9 cm). Using
the dispersion relation ω(k), those typical lengths corre-
spond to 2 frequencies per mode: fc−I , fc−S (mode −)
and fc+I , fc+S (mode +) as displayed in fig. 6 in the
phase velocity space (v ≡ ω/k; k) for a fixed depth h2.
Those frequencies correspond to the crossover frequencies
between gravity and capillary wave regimes either at the
interface (I) or at the free surface (S) for both modes
(+ or −). The evolutions of these 4 frequencies with the
upper fluid depth, h2, are plotted in the inset of fig. 6.
They are almost independent of h2 within our experimen-
tal range (h2 ≥ 2mm) and only fc+S and fc−S lie within
our experimental inertial range (f ≥ 6Hz). fc+S corre-
sponds to the minimum of the upper branch of the disper-
sion relation (see fig. 6) except for small h2. Moreover,
the two modes are best studied when the densities of
the two fluids differ slightly [1], as in our study. Indeed,
lcS

/lcI
=

√

(γs/γi)(ρ1 − ρ2)/ρ2. Thus, when the density
difference decreases (or the interfacial tension increases),
the gap between the capillary lengths will increase, but it
does not modify qualitatively the results reported here.

Let us now interpret the experimental evolution of the
crossover frequency ft between gravity and capillary wave

0 5 10 15 20 25
10

−4

10
−2

10
0

10
2

10
4

f (Hz)

|η
I /

 η
S
|

h
2

h
2

Mode −

Mode +

Fig. 7: (Color online) Theoretical ratio from eq. (5) between
the interfacial and surface wave heights as a function of their
frequencies, for different upper fluid depth h2 = 1 to 10 mm
with a step of 1 mm (see arrows). Red lines: mode +. Blue
lines: mode −. Dashed line: |ηI | = | ηS

10
|. Insets show temporal

evolutions of the surface and interfacial wave heights, for a fixed
frequency f = 15 Hz, h2 = 1 or 4 mm, and for both modes.

turbulence regimes when h2 is increased (see inset of
fig. 4). As explained above, for small depths h2, waves at
the interface and at the free surface are coupled for both
propagating modes + or −. The theoretical crossover fre-
quency fc+S at the free surface for the mode + is found
to well describe the data for small enough depths h2 (see
dashed line in the inset of fig. 4). When h2 is increased,
this is no longer the case. Indeed, as also explained
above, when h2 is increased, the waves propagating at
the interface and at the free surface become progressively
uncoupled for both modes: their relative height |ηI/ηS |
decreases strongly for the mode + or strongly increases
for mode − (see fig. 7). We arbitrary decide that waves
become uncoupled when |ηI/ηS | ≤ 1/10 in the mode +,
that is when the interface wave height becomes 10 times
smaller than the free surface wave height. Interfacial
waves can thus only propagate significantly on the other
mode (mode −). This criterion corresponds to the dashed
line in fig. 7. The intercepts of this dashed line and each
solid line in fig. 7, for each depth h2, thus give the frequen-
cies fun for which the interface and free surface waves of
the mode + become uncoupled. fun is then found to de-
crease with h2 in rough agreement with the experimental
crossover frequency ft at large h2 (see solid line in the
inset of fig. 4).

To sum up, for small fluid depths h2, the interface waves
(that we measure) propagate on both modes and are cou-
pled with surface waves. The crossover frequency be-
tween the gravity and capillary wave turbulence regimes
observed on the spectrum, ft, is linked to the value of
fc+S , the capillary length at the free surface of the in-
phase mode (mode +). The dependence of ft on h2 is
thus well described by fc+S(h2) until the interfacial and
surface waves decouple for large enough h2, that is for
fun < fc+S (see inset of fig. 4).
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Wave dissipation. – Let us now explain why the
cut-off frequency of the wave spectrum increases strongly
when an upper fluid is added. For a single fluid (h2 = 0),
there are three distinct mechanisms for the dissipation
of wave energy: wave breaking, viscous damping and
the generation of parasitic capillaries near steep crests of
longer waves. Here, no wave breaking (i.e., multi-valued
interface) occurs since the wave steepnesses are small
enough. Wave energy extraction by generation of high-
frequency parasitic capillaries is indeed observed on the
wavefront face as shown in the top inset of fig. 2, with a
typical frequency ranging from 100 to 200Hz. The latter
comes from a resonance condition, cgc = cc, matching
phase speeds between longer gravity-capillary waves (cgc)
and the shorter parasitic capillary waves (cc) [36]. Using
this condition and the dispersion relation of a single fluid,
one finds a typical frequency of order of 200Hz for ripples
propagating at the same phase speeds as the longer waves
near the forcing scales (f ∼ 5Hz). This typical frequency
gives also the typical dissipative scale which is found to
be in good agreement with the frequency cut-off of the
wave turbulence spectrum (see fig. 4 for h2 = 0). This
dissipative scale depends theoretically slightly on the
wave steepness [36]. In the presence of an upper layer
of fluid (h2 �= 0), the resonance condition with the full
dispersion relation (eqs. (1) and (2)) leads to a parasitic
capillary frequency near 300Hz (for mode +) regardless of
h2 (no solution for the mode −). However, the amplitude
ηI of this parasitic capillaries is predicted to be negligible
(ηI < 10µm) regardless of h2 by using eq. (5) with
f = 300Hz and assuming ηS ∼ 1mm. Indeed, experimen-
tally for a two-layer fluid, we observe no generation of
parasitic capillaries near steep crest waves as shown in the
bottom inset of fig. 2. Note that this absence of parasitic
capillaries should not be confused with the effect of an oil
monolayer on the ocean calming gravity-capillary waves
which is due to the Marangoni dissipation [37]. Thus, the
main wave dissipation in our two-layer fluid system is the
viscous dissipation occurring at higher frequency.

Time-scale separation. – Let us now consider the
typical time scales involved in our experiment. The weak
turbulence theory assumes a time-scale separation τl(f) ≪
τnl(f) ≪ τd(f), between the linear propagation time, τl,
the nonlinear interaction time, τnl, and the dissipation
time, τd. The linear propagation time is τl = 1/ω(k).
The dissipative time scale is linked to the viscous surface
boundary layer, modeled by an inextensible infinitely thin

film on the free surface, reading τd = 2
√

2
k(ω)

√
νω

[35,38].

The kinematic viscosity of the two-layer fluid is ν =
µ1 coth(kh1)+µ2 coth(kh2)
ρ1 coth(kh1)+ρ2 coth(kh2)

with µ1 (respectively, µ2) the dy-

namic viscosity of the fluid beneath (respectively, above)
the interface [39]. We show in fig. 8 that the condition
τl(f) ≪ τd(f) is well satisfied in our experimental fre-
quency range for both modes. It thus validates a posteriori

the use here of an inviscid dispersion relation. Finally, for
the wave turbulence to take place, the typical time scale
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Fig. 8: (Color online) Typical time scales as a function of the
wave frequency. Thick solid line: τl = 1/ω. Thin solid line:
τnl. Dashed line: τd. Mode +. h2 = 4 mm. Shaded areas:
forcing and dissipative scales. Inset: same for mode −.

τnl of nonlinear wave interactions has to satisfy τl(f) ≪
τnl(f) ≪ τd(f). For capillary waves, τnl = ξck

−3/4 [21,40]
while for gravity waves, τnl = ξgk

−3/2 [40]. Since the
constants ξc and ξg are experimentally unknown, τnl is
plotted in fig. 8 assuming τnl to be continuous at the ex-
perimental crossover frequency, ft, between gravity and
capillary regimes, and τnl(fcut) = τd(fcut) at the cut-off
frequency of the experimental capillary power-law spec-
trum (fcut ≃ 200Hz for h2 = 4mm —see fig. 4). Figure 8
shows that the time-scale separation is valid on the whole
inertial range of our experiment (between shaded areas).
This time-scale separation is also valid regardless of the
upper fluid depth h2.

Conclusion. – We studied gravity-capillary wave tur-
bulence on the interface between two immiscible fluids
with free upper surface. Waves propagate both at the in-
terface and at the free surface (either in phase (mode +)
or in antiphase (mode −)), and this coupling depends
strongly on the upper fluid depth. When this depth is
increased, these two modes become progressively uncou-
pled, and we show that this decoupling explains most of
the observations on the wave turbulence spectra. Indeed,
the crossover frequency between the gravity and capillary
wave turbulence regimes is experimentally found to de-
crease by more than a factor 2 when the upper fluid depth
is increased. At small depths, interfacial and surface waves
are coupled, and this crossover is linked to the value of the
capillary length at the free surface of the in-phase mode.
At large enough depth, they become uncoupled when the
interfacial wave heights of this mode become negligible
with respect to the surface wave heights. Interfacial waves
(that we measure) can thus only propagate significantly
on the other mode. The crossover frequency is then well
described by this decoupling criterion depending on the
upper fluid depth. Finally, when the upper fluid is deep
enough, the two modes are then fully uncoupled. This
leads to the observation of a spectrum of purely capillary
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interfacial wave turbulence on two decades in frequency,
fluids being of almost the same density. This frequency
range is comparable to what was previously observed at
the interface between two immiscible deep fluids of almost
equal densities with no upper free surface [41] or during
microgravity experiments with a single fluid [42].

To our knowledge, we report the first experimental
study of wave turbulence in a two-layer fluid system with
free upper surface. The interface wave steepness is weak
enough to reach a weak wave turbulence regime involving
a linear coupling between the two propagative modes. The
linear dispersion relation of this system being only derived
recently, we validated it experimentally (from the depth-
dependence of the crossover frequency between the grav-
ity and capillary wave turbulence regimes). In the future,
we plan to increase the wave steepness to study nonlinear
coupling between modes in the wave turbulence context.
To wit, a simultaneous measurement of the surface and
interface elevations will be also performed. Finally, this
study may be useful to better understand nonlinear wave
dynamics within a two-layer fluid in the presence of sur-
face and interfacial tensions such as oil spilling in oceanog-
raphy and gravity-capillary solitary waves. The reported
phenomenon is more general and should be shown in other
wave turbulence systems involving the coupling between
surface and interfacial waves.
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