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Rapid Note

Parametric stabilization of the Rosensweig instability
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Abstract. We report an experimental study of the inhibition of the instability generated by a magnetic
field applied perpendicularly to the surface of a magnetic fluid (the Rosensweig instability), by vertical
vibrations of the fluid container. Our measurements are in quantitative agreement with a simple analytical
model using the theory of Mathieu functions.

PACS. 47.20.-k Hydrodynamic stability – 75.50.Mm Magnetic liquids – 47.35.+i Hydrodynamics waves
– 47.54.+r Pattern selection; pattern formation

Parametric stabilization is a well known phenomenon
in the theory of the Mathieu oscillator [1]. A canonical
example is the inverted pendulum, whose unstable up-
right position could be stabilized by vertically vibrating
its point of suspension; this physical mechanism has been
used in various devices, for instance the Paul trap that al-
lows the confinement of an electric charge in a quadrupolar
time periodic electric field [2]. Parametric stabilization has
been also observed in fluid dynamics, the most impressive
example being the inhibition of the Rayleigh-Taylor insta-
bility: a horizontal fluid layer could be stabilized above an
other one of smaller density, by vertically vibrating their
container [3]. However, this requires a container with a
rather small horizontal extension because modes with a
large enough wavelength are not parametrically stabilized.
It has been predicted recently that the Rosensweig insta-
bility, i.e. the stationary instability of a layer of ferrofluid
submitted to a normal magnetic field [4], could be inhib-
ited by vertical vibrations with an appropriate choice of
the fluid and vibration parameters [5]. We report the ex-
perimental observation of this effect and determine the
parametric and Rosensweig instability thresholds in pa-
rameter space (acceleration amplitude and frequency and
magnetic induction). We understand most of our observa-
tions with a simple analytical model using the theory of
Mathieu functions.

The experimental setup consists of a vertically vibrat-
ing cylindrical vessel, 8.5 cm in inner diameter and 1 cm
in depth. An electromagnetic vibration exciter (BK4810)

a Present address: Laboratoire de Physique, École Normale
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drives the container sinusoidally in the frequency range
from 30 to 70 Hz. The vertical acceleration amplitude,
A, is measured by means of a piezoelectric accelerom-
eter (BK4393V). The container is filled with 25 ml to
37 ml of magnetic fluid APG512A, Lot. N◦ F5136C
(Ferrofluidics), corresponding to a depth h of ferrofluid
from h = 4.4 mm to h = 6.5 mm. The proper-
ties of the fluid are: density, ρ = 1.26 g/cm3, sur-
face tension, γ = 35 × 10−3 N/m, initial magnetic
susceptibility, χi = 1.4, saturation moment, Msat =
300 gauss, and dynamic viscosity, η = 75 mPa s [6].
The whole setup is placed between a pair of Helmholtz
coils, 16 cm (resp. 36 cm) in inner (resp. outer) diameter,
8.4 cm far apart. A DC current up to 6 A is supplied to the
coils by a generator (KEPCO BOP36-6M). The magnetic
induction is measured by means of a Hall probe (HP1755),
located in the center near the surface of the vessel, and is
found to be a linear function of the applied current with
a 50 gauss/A slope. This slope is independent of the pres-
ence of the ferrofluid and the electromagnetic exciter. Our
control parameters are the applied magnetic induction B,
the driving frequency f , and the dimensionless accelera-
tion amplitude Γ = A/g0 ranging from 0 to 10, where
g0 = 9.81 m/s2 is the acceleration due to gravity. The
motions of the free–surface of the ferrofluid are visualized
with a video camera mounted above the center of the ves-
sel. A typical pattern at large enough vibration amplitude
and magnetic field is displayed in Figure 1. The hexag-
onal pattern is generated by the Rosensweig instability.
The modulation visible on the lines between two adjacent
hexagons correspond to subharmonic waves generated by
the Faraday instability.

Experiments are conducted at a fixed value of the driv-
ing frequency, by increasing or decreasing Γ (resp. B)
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Fig. 1. Photograph of the fluid surface seen from above.

at a fixed value of B (resp. Γ ). Figure 2 shows the
thresholds for the subharmonic Faraday instability and
the Rosensweig instability versus the dimensionless accel-
eration Γ and the magnetic induction B at an excitation
frequency f = 40 Hz. Two measurements of Γ (respec-
tively B) are performed, one just below onset when the
interface is flat, and the other just above onset, when pat-
terns are present. Their difference gives the error bars on
the critical acceleration and magnetic induction measure-
ments, ±1 m/s2, respectively ±2 gauss.

Without parametric excitation, the magnetic induc-
tion threshold for the Rosensweig instability is Bc =
151± 2 gauss in agreement with the theoretical value (see
below). The instability nucleates in the center of the cell
because the magnetic field is slightly larger there, and
generates an hexagonal pattern. It is known to be a sub-
critical instability but our measurements are not precise
enough to study the corresponding hysteresis cycle. It is
clear from Figure 2 that parametric excitation can delay
the Rosensweig instability onset to larger values of the
critical magnetic induction Bc(Γ ), i.e. stabilizes the flat
surface. The instability wavenumber kc stays roughly con-
stant along the marginal curve Bc(Γ ). The increase that
one may expect because of the increase of Bc(Γ ) with Γ
is too small with respect to the quantization imposed by
the lateral boundaries.

In the absence of magnetic field, the flat surface under-
goes the Faraday instability when the vertical vibration,
i.e. Γ , is large enough. At a given excitation frequency,
the critical acceleration ΓF for instability onset increases
when the viscosity and/or the wavenumber increase, be-
cause both terms lead to an increase of the dissipation in
the deep layer limit [9]. The generated pattern takes the
form of a standing plane wave because of the large enough
value of the dissipation [10]. It is clear from Figure 2 that
the onset of the Faraday instability is delayed when a ver-
tical magnetic field is applied. The instability wavenumber
is also an increasing function of the magnetic induction (it
increases roughly by a factor 2 along the marginal curve
ΓF(B)). This results from the modification of the wave
dispersion relation by the magnetic field (see Eq. (1) in
the discussion below). Since bulk dissipation in the fluid
increases proportionally to the square of the wavenumber,
the critical acceleration ΓF(B) increases with B.

Figure 2 shows that the marginal stability curves do
not depend on the fluid volume i.e. on the depth of the
fluid layer because we are in the large depth limit (kh�
1). Thus, the modification of the shape of the meniscus
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Fig. 2. Stability thresholds for the Faraday instability and the
Rosensweig instability as a function of the dimensionless accel-
eration Γ and the magnetic induction B. Excitation frequency
f = 40 Hz; volume of ferrofluid: 25 ml (•), 35 ml (◦). The
solid line corresponds to equation (8) without any adjustable
parameter.

of the ferrofluid under the action of the magnetic field
and the corresponding slight variation of the height of the
layer, cannot contribute to the increase of ΓF(B) with
B. It is not necessary either to invoke the dependence of
the rotational viscosity of the ferrofluid on the magnetic
field [8].

The point where the marginal curves of the Rosensweig
and Faraday instabilities intersect, (Γt, Bt), can be called
a tricritical point using the language of phase transitions.
The Rosensweig instability cannot be stabilized by para-
metric forcing for B > Bt. The phase diagram displayed
in Figure 2 remains qualitatively unchanged (up to a shift
of the marginal curves) when the vibration frequency is
varied in the range 30 < f < 70 Hz. No stabilization
of the Rosensweig instability is observed when the fre-
quency is too low. The high frequency limit is due to
the limited power of our vibration exciter. The linear sta-
bility of a vertically vibrated layer of viscous ferrofluid
submitted to a vertical magnetic field has been recently
studied by Müller [5]. His calculations showed that the
Rosensweig instability can be parametrically stabilized at
high enough shaking frequency, in agreement with our ex-
perimental observations. The threshold of the Faraday in-
stability looks almost not affected by the magnetic field
amplitude (Fig. 7a of his paper) whereas we observe that
it increases because of the change in wavenumber due to
the magnetic field. This is due to the resolution of his plot;
a slight increase does exist [11].

We next consider the dependence of the marginal sta-
bility curves of Figure 2 on the excitation frequency f .
Figure 3 shows that the critical dimensionless acceleration,
Γc(B), for the inhibition of the Rosensweig instability gen-
erated by a fixed magnetic induction B, is a linear function
of f . The frequency dependence of the coordinates of the
tricritical point, (Γt, Bt), is displayed in Figure 4. Both
Γt and Bt are increasing functions of f in our frequency
range.

Most of these experimental results can be understood
in a simple way using the inviscid theory of the Faraday
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Fig. 3. Critical dimensionless acceleration, Γc, for inhibiting
the Rosensweig instability, as a function of the driving fre-
quency, f , for various values of the applied magnetic induction
B = 155 (�), 163 (?), 165 (5) and 175 (◦) gauss. Solid (resp.
dot–dashed) lines from bottom to top correspond to equa-
tion (8) (resp. Eq. (11)) for the same values of B. Dashed
lines are linear fits of the experimental data for B = 165 and
175 gauss. The volume of ferrofluid is 25 ml. The agreement
between experiments and theory is good up to B = 163 gauss.

instability [12], taking into account the modification of
the surface wave dispersion relation due to the applied
magnetic field. We consider the interface between an
horizontally unbounded ferrofluid layer of height h
and air at atmospheric pressure. The fluid is assumed
incompressible, of density ρ and is submitted to a static
magnetic induction B perpendicular to its surface.
We consider the deep layer approximation which is
fulfilled for wavenumbers k such that kh � 1. Neglect-
ing the fluid viscosity leads to the dispersion relation [4,6],

ω2
0(k) =

[
g0k −

χ2

ρµ0(2 + χ)(1 + χ)
B2k2 +

γ

ρ
k3

]
, (1)

where ω0 is the eigenfrequency in the absence of driving,
µ0 = 4π× 10−7 H/m is the magnetic permeability of vac-
uum, and χ is the magnetic susceptibility of the ferrofluid
which depends on the applied magnetic field, H, through
Langevin’s classical theory [6]

χ(H) =
Msat

µ0H

[
coth

(
3µ0Hχi

Msat

)
− Msat

3µ0Hχi

]
, (2)

and therefore on the magnetic induction, B, through an
implicit equation since

B = µ0(1 + χ)H. (3)

In a static normal magnetic induction, the surface of
the magnetic fluid undergoes a stationary instability, the
so–called Rosensweig instability, when ω2

0(k) becomes
negative [4,6]. This condition gives the magnetic induc-
tion threshold, Bc,

B2
c = 2µ0

√
ρgγ

(2 + χ)(1 + χ)
χ2

, (4)

where χ(Hc) is determined by solving equations (2) to-
gether with (3) and (4). Equation (4) yields the critical
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Fig. 4. (a) Dimensionless acceleration, Γt, and (b) magnetic
induction, Bt, at the tricritical point (see Fig. 2) versus the
driving frequency. The volume of ferrofluid is 25 ml.

induction, Bc = 152 gauss, in agreement with our experi-
mental value in the absence of driving.

When the fluid is vertically vibrated, the effective
gravity becomes g(t) = g0 + A cos(2πft), where A and
f are the driving acceleration amplitude and frequency.
Linear stability analysis [12] shows that an eigenmode of
wavenumber k of the surface deformation ζ, obeys the
following Mathieu equation,

∂2ζ

∂t2
+ ω2

0ζ = Akζ cos(2πft) . (5)

Setting τ = πft, α = −Ak/(πf)2 and β = ω2
0/(πf)2,

we transform (5) into the standard form of the Mathieu
equation,

∂2ζ

∂τ2
+ (β + α cos 2τ) ζ = 0 . (6)

Analysis of (6) in the α–β plane yields a set of unstable
and stable regions limited by α(β) curves corresponding
to periodic solutions of (6), called Mathieu functions,
which can be expressed in term of series of trigonometric
functions [1]. In the vicinity of the (α = 0, β = 0) point,
the marginal curves of stability, α(β), reduce to [1]

β ' −α
2

8
+

7α4

2048
, (7)

which corresponds in the (Γ , B) plane to the marginal
stability curve of the Rosensweig instability near (Γ = 0,
B = Bc) (see Fig. 2). Since β is a function of the
wavenumber k, we assume that the minimum, kmin, of
the function β(k), i.e. of ω2

0(k), governs the behavior of
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the interface when the excitation, i.e. α, increases. In
other words, we assume that the Rosensweig instability
is inhibited by parametric forcing when its most unstable
wavenumber in the absence of forcing is inhibited by the
external vibration. Using this assumption and inserting
the expressions of α and β in (7) leads to a critical value
of the driving acceleration amplitude, Ac, for which the
Rosensweig instability is inhibited

Γc ≡
Ac

g
=

√
8
7

(2πf)2

gkmin

√√√√1−

√
1 +

7
8
ω2

0(kmin)
(πf)2

, (8)

with −8π2f2/7 ≤ ω2
0(kmin) ≤ 0,

kmin =
1
3

√
ρg

γ

(
u+

√
u2 − 3

)
, (9)

and
u ≡ χ2

(1 + χ)(2 + χ)
B2

µ0
√
ρgγ
· (10)

The critical dimensionless acceleration, Γc, predicted
by (8) is plotted in Figure 2 (solid line) without any
adjustable parameter. The agreement is perfect up to
B = 163 gauss. More surprisingly, since our approxima-
tion is valid only in the vicinity of (Γ = 0, B = Bc),
the whole marginal stability curve of the Rosensweig
instability in the presence of parametric forcing is
rather well described by (8) up to the tricritical point.
The limited accuracy of (8) when B increases is more
visible in Figure 3. Although the linear dependence of
Γc versus f is displayed by our model, its quantitative
agreement with the experiments is observed only up
to B = 163 gauss. Note that the second order ap-
proximation in our model (Eq. (8), solid lines) is not
much better that the first order one (dot-dashed lines),
which consists of neglecting the term in α4 in (7) and gives

Γc '
√

2
(2πf)
gkmin

|ω0(kmin)|. (11)

We can use this latest expression to get an experi-
mental determination of the magnetic susceptibility of
the ferrofluid, χ, as a function of B (Fig. 5). Substitut-
ing (9) into (11) together with (1) leads to Γc ' Cf where

C2 ≡ 8π2

3

√
γ

ρg3

(
2
√
u2 − 3− u

)
, (12)

where u is given by (10). Identifying the expression of C
to the slope of each Γc vs. f lines (only some of them
have been displayed in Figure 3 for clarity), and solving
this equation, leads to the experimental determination of
the magnetic susceptibility of the ferrofluid, χ(B). These
experimental values (×) are compared to the theoretical
value (solid line) given by Langevin’s classical theory (2).
The agreement is satisfactory at low enough B, i.e. B ≤
163 gauss, for which, as already mentioned, (11) is a good
approximation.

Various aspects of parametric instabilities have been
recently studied using magnetic fluids [13]. We have
shown that a vibrated ferrofluid submitted to a static
normal magnetic field provides one of the simplest
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Fig. 5. Magnetic susceptibility χ as a function of the magnetic
induction B: experimental determination (×), Langevin’s the-
ory equation (2) (solid line).

experimental configuration to study quantitatively the
mechanism of parametric inhibition of an extended
spatial pattern generated by an hydrodynamic instability.
Possible extensions of this work are
• the study of the nonlinear couplings between the

Rosensweig and Faraday instabilities and their influ-
ence on pattern formation in the vicinity of the tricrit-
ical point, in particular the study of the destruction of
the hexagonal order by the Faraday waves when the
vibration amplitude is increased with B > Bt,
• the measurement of the threshold of Faraday waves in

thin layers of ferrofluids submitted to a normal mag-
netic field, in order to try to determine the rotational
viscosity of a ferrofluid and its dependence on the mag-
netic field and the frequency.
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