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R�SUM�
Nous utilisons des mesures de pression et de volume dÕun gaz de particules

sph�riques excit�es par un piston vibrant et interagissant par des collisions
in�lastiques, pour d�terminer une �quation dÕ�tat reliant pression, volume, nombre
de particules, et amplitude et fr�quence de vibration.

Mots-cl� : gaz granulaire, �quation dÕ�tat.

ABSTRACT
From measurements of pressure and volume of a gas of spherical particles

excited by a vibrating piston and undergoing inelastic collisions, we determine a
state equation between pressure, volume, particle number and the vibration
amplitude and frequency.

Keywords: : granular gas, state equation.

INTRODUCTION

We report an experimental study of a ÒgasÓ of inelastically colliding particles,

excited by vertical vibrations. When the vibration is strong enough and the number

of particles is low enough, the particles display ballistic motion between successive

collisions like molecules in a gas [1]. The aim of this study is to try an experimental



determination of the state equation of this dissipative gas. It is known that for a

fixed number n of granular layers at rest, one has in the low density limit PW µ T

[2], where P is the mean pressure, W the volume and T the Ògranular temperatureÓ,

i.e. the mean kinetic energy per particle. However, the dependence of T  on the

vibration amplitude, A , and frequency, f, of the piston and on the number of

particles is still a matter of debate [3-6]. Kinetic theory [6, 7] or hydrodynamic

models [4] show T  µ V2 n-1, whereas numerical simulations [8-11] or experiments

[7, 8] give T  µ Va n-b, with 1.3 £ a £ 2 and 0.3 £ b £ 1, where V=2pfA is the

maximum velocity of the piston. Our previous density measurements [1] showed an

exponential ÒatmosphereÓ far enough the piston from which we extracted a granular

temperature V-dependence of the form T µ Vq (n), with q continuously varying from

q = 2 when n ® 0, as expected from kinetic theory, to q » 0 for large n.

EXPERIMENTAL RESULTS

The experiment consists of a transparent cylindrical tube, 60 mm in inner

diameter, filled from 20 to 2640 stainless steel spheres, 2 mm in diameter. 600

particles correspond to n = 1 particle layer at rest. An electrical motor, with

eccentric transformer from rotational to translational motion, drives the particles

sinusoidally with a 25 mm amplitude, A , in the frequency range 9 £ f £ 20 Hz. A

lid in the upper part of the cylinder, is either fixed at a given height, h (constant-

volume experiment) or is stabilized at a given height hm  due to the bead collisions

(constant-pressure experiment). Heights h and hm  are defined from the lower piston

at full stroke.

Time averaged pressure measurements have been done as follows. Initially, a

counterwheight of mass 46 g balances the lid mass. The piston drives stainless steel

spheres in erratic motions in all directions [1]. Particles are hitting the lid all the

time, so that to keep it at a given height h, we have to hold the lid down by a given

force, Mg, where M is the mass of a weight we place on the lid and g the



acceleration of gravity. At a fixed h, i.e. at a constant-volume, Fig. 1 shows the time

averaged pressure P=Mg/S exerted on the lid as a function of the number n of

layers at rest in the container, for different frequencies of vibration, S being the

area of the tube cross-section. At constant external driving, i.e. at fixed f and A , the

pressure passes through a maximum for 0.8 particle layers at rest. This critical

number is independent on the vibration frequency. A futher increase of the number

of particles leads to a decrease in the mean pressure underlying that more and more

energy is dissipated by inelastic collisions. Note that gravity has a small effect in

these measurements that are performed for V2 È gh. For n < 1, most particles are in

vertical ballistic motion between the piston and the lid. Thus, the mean pressure

increases roughly proportionally to n. When n is increased such that one has more

than one particle layer at rest, interparticle collisions become more frequent. The

energy dissipation is increased and thus the pressure decreases.

 We now consider the bed expansion under the influence of collisions on a

circular wire mesh lid placed on top of the beads leaving a clearance of about 0.5

mm between the edge of the lid and the tube one. Due to the bead collisions, the lid

is stabilized at a given height hm  from the piston at full stroke. Although the lid

mass is roughly 50 times smaller than the total mass of beads, the lid proves to be

quite stable and remains horizontal. The expansion, hm - h0 , of the bed is displayed

in Fig. 2 as a function of n for different vibration frequencies. h0 is the bed height

at rest. At fixed f, the expansion passes through a maximum for 0.6 particle layers

at rest. This critical number is independent on the vibration frequency. When n is

further increased, the expansion decreases showing, as for pressure measurements,

an increase in dissipated energy by inelastic collisions. Note that the height hm of the

granular gas is much larger than for pressure measurements of Fig. 1.

Consequently, gravity is obviously important. Moreover, for a given n, the number

of interparticle collisions is larger than for the pressure measurements.
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Figure 1 : Mean pressure P as a function of n.
From the upper (5) to the lower (hexagrams)
curve, vibration frequency f  varies from 10 to
20 Hz with a 1 Hz step. For all these
experiments, h - h0 = 5 mm. Lines join the data
points.

Figure 2 : Maximal bed expansion, hm- h0, as a
function of n. From the lower (T) to the upper
(P) curve, vibration frequency f  varies from 9
to 20 Hz with a 1 Hz step. Lines join the data
points.
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Figure 3 : Mean pressure P from Fig. 1 rescaled
by f q as a function of  n. q(n) = 1 - tanh(n-nc)
with nc = 3.5.
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Figure 4 : Maximal bed expansion, hm- h0, from
Fig. 2 rescaled by f qas a function of n. q(n)  =
1 - tanh(n-nc) with nc = 2.3.



A STATE EQUATION

In order to use the above measurements to try to determine a state equation, we

have to find the appropriate dependence T = T(V, n) of the granular temperature as

a function of the vibrating velocity V  and the number of particle layers n. Taking

into account the law PW µ T  for small densities and our previous observation   

T µ Vq (n) from density measurements in an exponential atmosphere, we have plotted

Log P and Log (hm - h0) as functions of Log V . On the reported frequency range,

these curves are straight lines, the slopes of which give q(n). The behavior of q(n)

for the experiments at constant volume (resp. constant pressure) is displayed in Fig.

5  with ¨-mark (resp. à-mark) together with the one in ¡-mark extracted from

exponential density profiles of Ref. [1]. The three curves, obtained with different

experimental conditions and independent measurement have the same shape which

could be simply fitted by q = 1 - tanh(n - nc ) where nc = 3.5 (resp. 2.3) and 2.
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Figure 5 : Evolution of the q exponent  as a function of the number of layers, n,
from pressure (¨), bed expansion (à) and density (¡) measurements.

Fits are q(n) = 1 - tanh(n-nc) with nc = 2 (¾), 2.3 (¾ �) and 3.5 (¾ ¾).

We can now use the observed law T  µ Vq(n) to scale the pressure and bed

expansion measurements of Fig. 1 & 2. The results are displayed in Fig. 3 & 4 and

show a rather good collapse of all the data on a single curve. We have thus shown



that the law, PW µ T , together with T  µ Vq(n), provide a correct empirical state

equation for our dissipative granular gas in the kinetic regime. As shown earlier,

this regime is limited at high density by the clustering instability [1, 12, 13] and on

the other side, for a fixed too small number of particles, when the gas suddenly

contracts on the piston below a critical frequency [1, 8, 14, 15].
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