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Nonlinear waves on the surface of a fluid covered
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Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, F-75 013 Paris, France

(Received 5 February 2013; revised 17 May 2013; accepted 17 July 2013)

We experimentally study linear and nonlinear waves on the surface of a fluid covered
by an elastic sheet where both tension and flexural waves occur. An optical method is
used to obtain the full space–time wave field, and the dispersion relation of the waves.
When the forcing is increased, a significant nonlinear shift of the dispersion relation is
observed. We show that this shift is due to an additional tension of the sheet induced
by the transverse motion of a fundamental mode of the sheet. When the system is
subjected to a random-noise forcing at large scales, a regime of hydroelastic wave
turbulence is observed with a power-law spectrum of the scale, in disagreement with
the wave turbulence prediction. We show that the separation between relevant time
scales is well satisfied at each scale of the turbulent cascade as expected theoretically.
The wave field anisotropy, and finite size effects are also quantified and are not at
the origin of the discrepancy. Finally, the dissipation is found to occur at all scales
of the cascade, contrary to the theoretical hypothesis, and could thus explain this
disagreement.
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1. Introduction
Wave turbulence theory, or weak turbulence, concerns the dynamical and statistical

properties of a set of nonlinear interacting waves (Zakharov, Falkovitch & Lv́ov 1992;
Nazarenko 2011; Newell & Rumpf 2011). This theory was developed at the end of
the 1960s, and has been applied to various domains: surface waves in oceanography,
Rossby waves in the atmosphere, spin waves in magnetic materials, Kelvin waves
in superfluid turbulence, and nonlinear optics. It assumes strong hypotheses such as
those addressing weakly nonlinear, isotropic and homogeneous random waves in an
infinite size system with scale separation between injection and dissipation of energy.
It notably predicts analytical solutions for the spectrum of a weakly nonlinear wave
field at equilibrium or in a stationary out-of-equilibrium regime. So far, a few well-
controlled experiments on wave turbulence have been designed to specifically test
the theory and its limitations. They mainly concern capillary–gravity waves on the
surface of a fluid (Wright, Budakian & Putterman 1996; Denissenko, Lukaschuk &
Nazarenko 2007; Falcon, Laroche & Fauve 2007; Kolmakov et al. 2009; Herbert,
Mordant & Falcon 2010; Xia, Shats & Punzmann 2010; Cobelli et al. 2011), elastic
waves on a metallic plate (Boudaoud et al. 2008; Mordant 2008), and nonlinear optics
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(Laurie et al. 2012). Experimental studies of wave turbulence on new systems are thus
of great interest, notably to test the domain of validity of the theory in experiments.

Here, we present a well-controlled experiment to study nonlinear interacting waves
on the surface of an elastic sheet covering the surface of a fluid. Two types of
hydroelastic waves occur: tension waves and flexural (or bending) waves that result
from the coupling of the elastic sheet response to that of the fluid underneath.
The main motivation is to study wave turbulence in this new system that enables
the dispersion relation of waves to be tuned by controlling the elastic sheet tension
applied.

It is noteworthy that the response of a thin elastic sheet covering a fluid to
a dynamical perturbation usually generates hydroelastic surface waves occurring in
various settings: bio-medical applications such as heart valves (Grotberg & Jensen
2004), flapping flags (Shelley & Zhang 2011) and industrial applications like very
large floating structures (Watanabe, Utsunomiya & Wang 2004). In oceanography,
flexural–gravity waves are known to propagate on the surface of lakes or oceans
covered by ice and are involved in various ice floe phenomena (Takizawa 1985; Squire
et al. 1988; Squire, Hosking & Kerr 1996; Dias 2002; Squire 2007). Such waves
are governed by the same wave equation as the one presented here. However, this
analogy is quite limited since the free floating boundary condition in ice floes is not
respected here, and also the orders of magnitude in ice floes lead to the predominance
of flexural–gravity waves instead of the flexural–tension waves here.

The paper is organized as follows. The theoretical background is presented in § 2.
The linear equations and the boundary conditions of an elastic sheet covering a fluid
are recalled. The relation between an applied pressure to the sheet and the induced
static tension is then given. The nonlinearities in the system are discussed as well
as their implications for wave interactions processes. Dimensional analysis of wave
turbulence is then presented for the case of tension and flexural waves on the surface
of a fluid covered by an elastic sheet. In § 3, the experimental setup is presented. The
optical techniques to measure the wave field are introduced, and so is the tuning of
the static tension of the sheet by an applied hydrostatic pressure. Results are presented
in §§ 4 and 5. In § 4, observations of tension and bending waves over two decades in
frequency are described, in good agreement with the theoretical dispersion relation of
linear waves. When the wave amplitude is increased, a shift of the dispersion relation
occurs. We show that this shift is due to the dynamics of slow nonlinear waves
(fundamental eigenmode of the sheet) that induces an additional quasi-static tension to
the sheet. Observations of the wave turbulence regime are then presented in § 5. The
spectrum of the wave transverse velocity is found to scale as a power law of both the
frequency and wavenumber, both power-law exponents being in disagreement with the
ones predicted by wave turbulence theory. We then show that wave anisotropy exists
but is not at the origin of this discrepancy. The dissipation time of the waves, the
nonlinear interaction time and the linear time of wave propagation have been measured
at each scale, and show that the time scale separation hypothesis of wave turbulence
theory is fulfilled. On the other hand, dissipation is found to occur at all scales,
contrary to the theoretical hypothesis, and could thus explain this disagreement for the
spectrum scaling. The conclusions are drawn in § 6.

2. Theoretical background
2.1. Linear dispersion relation

Assume a floating elastic sheet subjected to an uniform and isotropic tension T .
Properties of the sheet are: density ρe, Young modulus E, Poisson modulus ν, and
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thickness h. The fluid density is ρ and its depth beneath the sheet at rest H. The
momentum equation of the thin elastic sheet is then given by (Landau & Lifchitz
1951; Davys, Hosking & Sneyd 1985; Schulkes, Hosking & Sneyd 1987)

D∇4η − T∇2η + ρeh
∂2η

∂t2
= p, (2.1)

with η the vertical sheet deformation, p the pressure due to the liquid on
the elastic sheet, D ≡ Eh3/12(1 − ν2) the bending modulus of the elastic sheet,
∇2 ≡ ∂2/∂x2 + ∂2/∂y2, and ∇4 ≡ ∂4/∂x4 + ∂4/∂y4 + 2∂4/∂x2∂y2 the Laplacian and
bi-Laplacian operators. Considering an irrotational flow of velocity potential
φ(x, y, z, t), the pressure equation on the surface z= η is given by p=−ρ(∂φ/∂t)z=η−
ρgη, with g the acceleration due to gravity. For a plane wave solution, using
the kinematic boundary condition on the sheet surface ∂η/∂t = (∂φ/∂z)z=η =
tanh kH(φ)z=η, and assuming negligible sheet inertia (ρekh/ρ � 1) and infinite depth
(kH� 1), the linear dispersion relation reads (Schulkes et al. 1987)

ω2 = gk + T

ρ
k3 + D

ρ
k5. (2.2)

It involves three terms: a gravity one, and two elastic ones. The second term of
the right-hand side of (2.2) is a tension term structurally analogous to a capillary
term (Lamb 1932), whereas the third term corresponds to bending. Note that the
dispersion relation for pure elastic waves on a plate is ω2 ∼ Tk2 + Dk4 (Landau &
Lifchitz 1951), equation(2.2) coming from the coupling of the sheet elasticity with the
liquid underneath. The cross-over between the various wave regimes in (2.2) can be
evaluated, for typical values of the applied tension T ≈ 4 N m−1 and of the bending
modulus D ≈ 5 × 10−6 N m of the latex sheet used here (see § 3). Balancing the first
and second terms of the right-hand side of (2.2) gives the transition between gravity
and tension waves, λgT = 2π

√
T/(gρ) ' 10 cm; balancing the second and third terms

gives the transition between bending and tension waves, λTD = 2π
√

D/T ' 1 cm. Note
that for ice floes, the bending elastic term prevails over the tension one, and the order
of magnitude of the flexural–gravity transition is λgD = 2π[D?/(gρ)]1/4 ' 100 m for a
typical ice bending modulus D? ≈ 109 N m (Davys et al. 1985; Schulkes et al. 1987).

2.2. Boundary conditions and sheet eigenmodes
Let us consider an elastic sheet clamped over the top of a vertical circular vessel of
radius R. The boundary condition is thus η(R) = 0 (and consequently ∂η(R)/∂t = 0).
In such a circular geometry, the sheet eigenmodes are given by the zeros of the
Bessel functions: Jn(kR) = 0, with Jn a Bessel function of the first kind, n an integer
and k the eigenmode wavenumber (Morse & Ingard 1968). The first symmetric and
antisymmetric eigenvalues are J0(kR) = 0 leading to k0,1R = 2.405, and k0,2R = 5.520
and J1(kR) = 0 leading to k1,1R = 3.832 and k1,2R = 7.016. The corresponding natural
frequencies are then obtained using the dispersion relation (2.2). Note that in the case
of an ice floe, the ice boundary is free to move and free edge boundary conditions
have to be considered, (∂η(R)/∂t = 0 and vanishing of the bending moment, see
Squire et al. (1996)).

2.3. Scaling of tension with pressure: static case
An external pressure Ps applied on an elastic sheet clamped over the top of a circular
vessel generates a static tension Ts of the sheet. Ts is analytically computed as a
function of Ps as follows. When Ps is applied, the sheet deforms, and for large
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enough deformation (maximum deflection ηm � h), the tension term prevails over
the bending one in (2.1) (Landau & Lifchitz 1951). Under the assumption of an
homogeneous and isotropic stress tensor, the static force equilibrium can be written as
Ts∇2η = Ps (Landau & Lifchitz 1951). Using the circular boundary condition η(R)= 0,
the deformed solution for a sheet of radius R is a parabolic surface η(r) (Landau &
Lifchitz 1951)

η(r)= Ps

4Ts
(R2 − r2). (2.3)

The maximum deflection of the parabola is thus

ηm ≡ η(0)= PsR
2/(4Ts). (2.4)

Under the above hypotheses and using Landau & Lifchitz (1951) the dependence
between Ps and Ts can be calculated:

Ts =
[

Eh

32(1− ν)P
2
s R2

]1/3

. (2.5)

2.4. Nonlinear resonant interactions

Nonlinearities involved in the system can be introduced either in the equations of
the elastic plate, or in the ones of the fluid, or in the boundary condition between
the fluid and the plate. A complete discussion of the corresponding equations can
be found in Peake (2001) and Peake & Sorokin (2006). Although the equation for a
single elastic plate involves cubic nonlinearities, the pressure term and the boundary
condition between the fluid and the plate involve quadratic nonlinearities. The pressure
term is

p(x, y, t)= ρgη + ∂φ
∂t
+ ρ v

2

2
, (2.6)

with η(x, y, t) the wave height, and v(x, y, t) = ∂η/∂t the transverse wave velocity.
The importance of the nonlinear term in the pressure will be shown experimentally
in § 4. Thus, the coupling between the fluid and the elastic plate involves a quadratic
nonlinearity of the pressure term.

When considering resonant wave interactions, 3-wave interactions occur when
quadratic nonlinearities are present in the system while 4-wave interactions have to
be considered in the case of cubic nonlinearities (Zakharov et al. 1992; Nazarenko
2011). The dynamics of wave interactions is dominated by the lowest nonlinear order
(Zakharov et al. 1992; Nazarenko 2011). Thus, when 3-wave and 4-wave interactions
occur as in our case, 4-wave interactions are generally neglected. Thus, only 3-
wave interactions need be considered here. The 3-wave interactions also have to be
compatible with the dispersion relation. In our case, the dispersion relation of tensional
and bending waves is of decay type, i.e. ω ∼ kµ with µ > 1 (as for capillary waves),
and thus fulfils the 3-wave resonant conditions on the frequency (ω1±ω2±ω3 = 0) and
on the wavenumbers (k1±k2±k3 = 0). A kinetic equation assuming 3-wave interactions
has been proposed in the case of a floating ice sheet on water (Marchenko & Shrira
1991). Note also that in the case of pure flexural wave turbulence on an elastic plate
(without water), 4-wave interactions are considered since the nonlinearities of the plate
are cubic (Düring, Josserand & Rica 2006). For pure gravity waves, nonlinearities are
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quadratic but 3-wave interactions are not possible since the resonant conditions are
not satisfied due to the geometry of the dispersion relation (µ < 1), and only 4-wave
interactions have to be considered (see McGoldrick et al. 1966 and references therein).

2.5. Dimensional analysis in wave turbulence
One of the main results of wave turbulence theory is the existence of out-of-
equilibrium stationary solutions of the kinetic-like equation for the wave action
spectrum nk = Ek/ω, with Ek the wave energy spectrum in the Fourier space. The
kinetic equation is generally written (Zakharov et al. 1992; Nazarenko 2011; Newell &
Rumpf 2011):

∂nk

∂t
= St(nk)+ Fk − Γknk, (2.7)

where St(nk) is the collision integral which depends on the physical properties of the
propagation medium and on the type of nonlinear wave interaction, Fk is the forcing
term, and Γk the dissipative rate. Energy conservation leads to a stationary solution
in the form of a direct energy cascade from the injection scale ki to the dissipation
scale kd, the cascade inertial range being defined by the scale separation hypothesis
ki� k� kd in a similar way to hydrodynamic turbulence. The other main hypothesis
used to derive the wave turbulence spectrum is an infinite medium, local interactions,
an homogeneous and isotropic wave field, weak nonlinearities and the following time
scale separation: τ � τnl � τd, with τ = 1/ω the linear propagation time, τnl the
nonlinear wave interaction time and τd the dissipation time (Zakharov et al. 1992;
Nazarenko 2011; Newell & Rumpf 2011).

Under the above hypothesis, dimensional analysis can be performed in wave
turbulence as presented by Connaughton, Nazarenko & Newell (2003) in order to
determine stationary solutions of the kinetic equation. For a given dispersion relation
ω = ckµ, the wave energy spectrum of a set of nonlinear waves is supposed to be a
self-similar function of the scale k, the flux of the conserved quantity and the constant
c. Here, a direct cascade of energy is considered and the flux through the scales is
the energy flux per mass density, ε (dimension [L3T−3]). Experimentally, the quantity
of interest here is the power spectrum of wave vertical velocity, Sv(k) (dimension
[L3T−2]) which is assumed to be given by

Sv(k)∼ ε1/(N−1)cβkα, (2.8)

with N the number of interacting waves in the leading process. The dependence
Sv(k) ∼ ε1/(N−1) is given by wave turbulence theory (Zakharov et al. 1992;
Connaughton et al. 2003; Nazarenko 2011). As explained above in § 2.4, N = 3 is
considered in our case. For tensional waves in deep water, one has ω2 = (T/ρ)k3, and
obtains dimensionally

St
v(k)∼ ε1/2

(
T

ρ

)1/4

k−3/4, (2.9)

which is analogous to the case of capillary waves. For bending waves in deep water,
one has ω2 = (D/ρ)k5, and one obtains dimensionally

Sb
v(k)∼ ε1/2

(
D

ρ

)1/4

k−1/4. (2.10)
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Similarly, one obtains the frequency spectra of the wave height (dimension [L2T]) as

St
η(f )∼ ε1/2

(
T

ρ

)1/6

f−17/6 and Sb
η(f )∼ ε1/2

(
D

ρ

)1/10

f−27/10. (2.11)

The scaling of the nonlinear interaction time is determined by balancing the left-hand
side and the collision integral of (2.7), 1/τnl ∼ St(nk)/nk (Newell, Nazarenko & Biven
2001; Connaughton et al. 2003). Using (2.9) and the dimensional structure of the
collision integral for 3-wave interactions for tensional waves, leads to

1/τnl ∼ ε1/2

(
T

ρ

)−1/4

k3/4, (2.12)

while for bending waves:

1/τnl ∼ ε1/2

(
D

ρ

)−1/4

k1/4. (2.13)

3. Experimental setup
The experimental setup is shown in figure 1(a). It consists of a cylindrical vessel

of radius R = 10 cm (or 20 cm) filled with water up to a height H = 43 cm (or
20 cm, respectively). An elastic latex sheet is stuck on the circular top of the container.
We carefully checked that no air bubbles are trapped between the sheet and the
water. Measured physical properties of the latex sheet are: thickness h = 0.35 mm (or
0.5 mm), Young modulus E = 1.05×106 N m−2 (or 1.5×106 N m−2, respectively), and
Poisson modulus ν ≈ 0.5 (industrial latex was provided by Carrat and Eurocatsuits).
Waves on the sheet are generated by the vertical motion of a rectangular wave maker
(75 mm × 10 mm, or 186 mm × 10 mm) driven by an electromagnetic shaker (LDS
V201 or LDS V406) as shown in figure 1(a). The shaker is driven by a sinusoidal
forcing at frequency fp (with fp ∈ [10 : 50] Hz) or by a random-noise forcing band-
pass filtered around fp within a frequency bandwidth fp ± 1f (with fp ∈ [8 : 15] Hz
and 1f = 1.5 Hz). A stationary wave field state is reached after a few seconds and
measurements are done during the steady state. The full three-dimensional space–time
wave field is measured using a fast Fourier profilometry technique (Cobelli et al.
2009), recently used on elastic waves on a metallic plate (Mordant 2010) or for
gravity–capillary waves on a fluid surface (Herbert et al. 2010; Cobelli et al. 2011).
Fringes with inter-fringe distances of 1 mm are projected on the sheet surface by a
high-resolution video-projector (Epson TW3000), and the space–time evolution of the
fringe deformations allows the reconstruction of the velocity normal to the free surface
v(x, y, t) with a fast camera (Phantom V9) recording at 1000 f.p.s. for T = 4 s. The
size of the recorded images, centred in the middle of the sheet, is 10 cm × 8 cm for
the small vessel, and 25 cm× 20 cm for the large one. A typical reconstructed pattern
of v(x, y, t) is shown at a given time in figure 1(b). From the movie of v(x, y, t),
one computes the power spectrum density of transverse velocity Sv(kx, ky, f ) from
multidimensional Fourier transforms. By integrating Sv(k, f ) over all directions of the

wave vector k, we also obtain Sv(k = ‖k‖, f ), with k ≡
√

k2
x + k2

y the wavenumber. The

transverse velocity of the wave at a fixed location was also directly recorded with
a Doppler velocimeter (Polytech OPV 506) for long times, T = 300 s, to measure
the slow response of the system. The wave-maker velocity V(t) is measured by an
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FIGURE 1. (Colour online) (a) Experimental setup. (b) Typical wave transverse velocity
v(x, y) reconstructed by Fourier transform profilometry. (c) Reconstructed height profile
of the sheet for Ps = −130 Pa showing a parabolic static profile. (d) Static tension
Ts as a function of the applied pressure |Ps|. Solid line corresponds to (2.5), Ts =
[(Eh/32(1− ν))P2

s R2]1/3.
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accelerometer (BK 4393) fixed on the wave maker and the force F(t) applied by the
wave maker on the sheet is measured by a piezoelectric sensor (FGP 10 daN). The
mean power I injected into the system is then evaluated by I = ∫ T

0 F(t)V(t) dt/T
(Falcon 2010).

As shown in figure 1(a), the vessel is connected through a small pipe to a vertical
tube that enables the control of the hydrostatic pressure Ps imposed on the elastic
sheet by adding or removing an amount of water from the tube. When the water inside
the vertical tube is at the same height as the sheet, Ps = 0. By filling (or draining) the
tube of water, changing the height by 1H, an external positive (or negative) pressure
is applied since the sheet is stuck on the top of the vessel. As shown in figure 1(c),
the elastic sheet has a parabolic shape well described by (2.3), and its maximum
deflection ηm can be then measured. The hydrostatic pressure is then estimated by
Ps = ρg(1H − ηm), since the pressure difference between the top and the bottom of
the parabola is negligible. Note that this condition is needed to consider a constant
pressure over the whole elastic sheet. For various applied Ps, we measure ηm, and
experimentally deduce the corresponding static tension Ts on the sheet from (2.4). As
shown in figure 1(d), Ts is found to evolve with Ps in good agreement with (2.5) with
no fitting parameter during this comparison. Note that the depression or overpressure
cases are similar since the weight of the sheet is negligible for our range of Ps. Thus
the absolute value of Ps will be given in the following. The initial static tension Ts

on the sheet is thus well controlled by the applied static pressure Ps. This allows us
to study the linear and nonlinear properties of waves on a floating elastic sheet with a
tunable tension.

The pressure only due to the weight of the elastic sheet with no water beneath is
P0

s = ρegh. One can experimentally obtain from (2.4) the static tension T0
s of the elastic

sheet due to its attachment to the vessel without water. One finds T0
s ' 2–4 N m−1

whatever the elastic sheets and container sizes used. This value will correspond to
the minimal value of static tension reached when water is added and no hydrostatic
pressure applied. Thus, one considers Ps = P0

s and Ts = T0
s in this case. As pointed

out in § 2.1, for T0
s ≈ 4 N m−1, the transition between gravity and tensional waves

is λgT ' 10 cm, of the order of the vessel size and the observation window. Thus,
only elastic waves will be observed here. Moreover, bending waves will occur for
wavelengths smaller than λTD ' 1 cm. In a prestressed case, Ts is increased and
these transitions evolve as λgT ∼√Ts and λTD ∼ 1/

√
Ts (see § 2.1). Thus, almost only

tensional waves will be observed in the case of a large initial tension: for instance, if
Ts = 10 N m−1, λgT ' 20 cm and λTD ' 0.4 cm.

4. Dispersion relation of nonlinear waves
Here, we characterize experimentally the dispersion relation of waves when the

system is subjected to either a monochromatic or a filtered random-noise forcing.

4.1. Dispersion relation
The space–time power spectrum Sv(k, f ) of the transverse velocity of waves is shown
figure 2 for two forcing amplitudes, and for Ps = 0. In both cases, the wave energy
injected at low frequencies is transferred through the scales towards high frequencies
by nonlinear interaction between waves. The wave energy is mainly localized on
a single curve in the (ω ≡ 2πf , k ≡ 2π/λ) space that corresponds to the nonlinear
wave dispersion relation. Theoretical dispersion relations of both pure tension waves,
ω2 = (T/ρ)k3, and of tension and bending waves, ω2 = (D/ρ)k5 + (T/ρ)k3, are plotted
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FIGURE 2. (Colour online) Space–time spectrum Sv(k, f ) of the transverse velocity of waves
for: (a) moderate (p = 12 Pa) and (b) strong (p = 33 Pa) forcing amplitudes. Random forcing
bandwidth: 8.5 ± 1.5 Hz in (a). Colours are log scaled. Ps = 0. The + symbols correspond to
the local maxima of Sv(k, f ) for each frequency; dashed lines are ω2 = (T/ρ)k3; solid lines
are ω2 = (D/ρ)k5 + (T/ρ)k3; dash–dot lines are ω2 = (D/ρ)k5 + (T0

s /ρ)k
3. Fitting parameter:

T = (a) 7 and (b) 16 N m−1. f ∗ = 20 Hz and 1/λ∗ = 20 m−1 from (2.2).

in figure 2 with T the single fitting parameter, as well as the dispersion relation for
the tension equal to the static tension T = T0

s . When both elastic terms are taken into
account, the theoretical dispersion relation describes the experimental results well over
the whole frequency range. Tension waves occur mainly at low frequencies whereas
bending waves occur at higher frequencies as expected. When the forcing amplitude
is increased (see figure 2b), wave interactions still redistribute the wave energy on the
dispersion relation up to higher frequencies, but with two main differences. First, the
width of the dispersion relation is broader in the f and k directions. Second, a shift
of the dispersion relation is observed, the fitting value of T being more than doubled
when the forcing is increased by a factor 3. Thus, the observed nonlinear dispersion
relation follows the linear predicted one with a tension that depends on the forcing
amplitude.

4.2. Shift of the dispersion relation
Let us now introduce a dynamical pressure p due to the wave field that will
correspond to a mean ‘dynamical’ tension T on the interface. The dynamical
pressure of the wave field on the interface is given by (2.6) and is estimated as:
p(x, y, t) = ρgση + ρσ 2

v /2, where ση and σv are the r.m.s. values of η(x, y, t) and
v(x, y, t) such that σX ≡

∫ T

0

√
〈(X − 〈X〉)2〉dt/T , where 〈·〉 denotes two-dimensional

spatial averaging on (x, y), and T is the total recording time. Since the system is
stationary, the time-dependent term in (2.6) vanishes. Moreover, we have checked
that p is proportional to the mean power I injected by the wave maker within the
system. We find p= bIfp for our range of forcing frequencies fp, with b a dimensional
constant depending on the forcing shape (sinusoidal or random). Thus, p will control
the forcing amplitude in the following. One can now compare the influence of the
hydrostatic pressure, Ps, and of the dynamical one, p, on the dispersion relation of the
waves.

Figure 3(a) shows the dispersion relation extracted from the maxima of the spectrum
Sv(k, f ) for each scale, for various forcing amplitudes, and for Ps = 0. A significant
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FIGURE 3. (a) Dispersion relations when the forcing amplitude is increased: p goes from
3 (top) to 100 (bottom) Pa, Ps = 0. Dashed lines correspond to ω2 = (D/ρ)k5 + (T/ρ)k3

with T the only fitting parameter: T = 4 to 40 N m−1 (from top to bottom). Inset: same as
main figure but with Ps = 130 Pa (Ts = 22 N m−1), and 10 6 p 6 130 Pa. Dashed line, best
fit: T = 22 N m−1. (b) T/Ts as a function of p/Ps, for various Ps = (red square) P0

s , (blue
square) 7, (green square, circle) 55, (magenta square, circle) 130, (cyan square, circle) 274 Pa
for R = 10 cm, and Ps = P0

s = 4 (red star) Pa for R = 20 cm. These values correspond, from
(2.5), to Ts = 4, 9, 17, 22, 39 N m−1, and Ts = 5 N m−1, respectively. Dashed lines correspond
to T/Ts = 1 for p/Ps < 1 and T/Ts ∼ (p/Ps)

0.4 for p/Ps > 1. Inset: same as main figure but in
dimensional units. For all colours, (square, star) indicate depression and (circle) overpressure.

shift of the dispersion relation is observed when the forcing is increased. The
theoretical dispersion relation ω2 = (D/ρ)k5 + (T/ρ)k3 describes the data well when
the single fitting parameter T varies from T = 4 N m−1 (top curve) at the lowest
forcing amplitude up to T = 40 N m−1 (bottom curve) for the highest forcing one.
This minimum value of T is consistent with the static tension T0

s (with no water) only
due to the attaching of the sheet to the vessel (see estimation in § 3). The shift of
the dispersion relation with the forcing is observed when p > P0

s . For fixed Ps and a
forcing amplitude such that p . Ps, no shift is observed in the dispersion relation (see
inset of figure 3a). We then performed similar experiments for various applied Ps, and
the value of a mean ‘dynamical’ tension T is deduced from the fit of the dispersion
relation as in figure 3(a). T is plotted as a function of p, for various applied pressures
Ps (and thus various Ts, from (2.5)) in the inset of figure 3(b), and in rescaled
variables T/Ts and p/Ps in the main figure 3(b). Figure 3(b) shows the collapse of all
data on a master curve displaying two regimes: for p < Ps, one has T ' Ts, meaning
that the nonlinear effects of the waves are not strong enough to shift the dispersion
relation (as in the inset of figure 3a). On the other hand, when p > Ps, T is found to
increase with p as T ∼ p0.4. The inset of figure 3(b) shows the unrescaled variables.
When the forcing p is increased, T is first constant, equal to the static tension Ts

(horizontal dashed lines), and then follows the nonlinear law T ∼ p0.4 for various Ps.
Note that when Ps is applied, there is no effect of the sheet curvature on the wave
propagation since the wavelengths are small compared to the radius of curvature.

4.3. Sheet tension induced by nonlinear waves
We now explain that the observed shift of the dispersion relation is due to the mean
tension induced by the waves. Let us consider a one-dimensional elastic string, fixed
at both ends, subjected to an initial static force Fs with a Young modulus E′ and a
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FIGURE 4. (Colour online) Frequency spectrum Sη(f ) of the wave height for increasing
forcing amplitudes (bottom to top). Single-point temporal measurement. Forcing bandwidth:
7–10 Hz. Ps = 0 and T0

s = 4 N m−1. The first vessel eigenmode (f0, k0), f0 increases with the
forcing (see vertical dashed lines). Sloping dashed line has a slope −4.1. Dash–dot line has
a slope −17/6. Inset: T extracted from two-dimensional measurements as a function of the
amplitude a0 of the vessel eigenmode at f0. Solid line is the nonlinear model (4.1) with c = 3
the only fitting parameter. 106 p6 40 Pa.

cross-section Σ . When a relatively large transverse displacement of amplitude a0 is
imposed, at wavenumber k0, the string elongates and longitudinal waves are generated
due to a geometrical nonlinearity. The latter modulate the tension force of the string
as F = Fs + Fnl, with Fnl ∼ E′Σ(a0k0)

2 (Morse & Ingard 1968; Legge & Fletcher
1984). Fnl is a nonlinear tension due to the coupling between the longitudinal and the
transverse motions of the string. The nonlinear force ∼(a0k0)

2 is similar to the one
involved in the radiation pressure in acoustics (Morse & Ingard 1968). Let us now
apply this result for a one-dimensional elastic string to a two-dimensional elastic sheet.
The tension stress T of the sheet is thus

T = Ts + cEh(a0k0)
2, (4.1)

with h the sheet thickness, E the Young modulus, and c a geometry-dependent
dimensionless constant. Equation (4.1) is consistent with our above observations of
T increasing with the forcing amplitude, if one single wave mode is experimentally
involved. To identify its wavenumber k0 and determine its amplitude a0, long-time
recording of the wave height η(t) at a single location of the sheet is performed to
resolve the low-frequency response of the system. Figure 4 shows the spectrum of
η(t) for different forcing amplitudes, and for Ps = 0. At low forcing (bottom curve),
the forcing response (7–10 Hz) is observed as well as their harmonics. A peak is
also visible at low frequency f0 near 2 Hz (see vertical dashed black line). When
the forcing is increased, the high-frequency part of the spectrum displays a frequency
power law, whereas the low-frequency part shows that the peak initially at f0 grows
strongly in amplitude, and is slightly increased in frequency (see vertical dashed lines).
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This peak amplitude is found to grow nonlinearly with the forcing, and becomes the
most energetic frequency at high enough forcing (see the top two curves). The peak
frequency f0 corresponds to the first antisymmetric eigenmode, k0, of a circular sheet
determined by the zero of Bessel function of the first kind (Morse & Ingard 1968). We
find k0 = 19 m−1 (i.e. λ0 = 33 cm) for R= 20 cm, and thus f0 ≈ 2 Hz using (2.2) with
T = T0

s .
The frequency shift of the sheet eigenmode with the amplitude is consistent with

the increase of T observed above. The values of T (for the same forcing parameters
as in the one-point measurements) are deduced from two-dimensional space–time
measurements (see above). The amplitude a0 of the mode k0 is extracted from figure 4,
using the relation a2

0(f0) =
∫ f0+δf

f0
Sη(f ) df , with δf = 0.06 Hz the spectrum frequency

resolution. When plotting the tension T as a function of a0 as in the inset of figure 4,
one finds that T = T0

s +c′a2
0, with c′ = c Eh and T0

s = 4 N m−1, in agreement with (4.1).
As the eigenvalue frequency is much less that the elastic wave one (5 . f . 500 Hz),
the eigenmode oscillations are quasi-static with respect to the wave propagation. To
sum up, the nonlinear quasi-static oscillations of the fundamental eigenmode of the
sheet induce a mean additional tension on the whole sheet.

4.4. Scaling of tension with pressure: dynamical case
In § 4.2, we have experimentally shown that T ∼ p0.4. This scaling is explained as
follows. First, assume a tension wave (of wavenumber k and amplitude a) propagating
on a one-dimensional string. The power I due this transverse wave is I ∼ F v, with
F the tension force and v the velocity of the wave. Assuming v = ∂a/∂t ∼ aω,
and F = T∂a/∂x ∼ Tak, one has thus I = Ta2ωk. For a large enough a, only a
dynamical tension T � Ts acts on the string. Using (4.1), that is T ∼ (ak)2, one
has I = T2ω/k. For the dispersion relation of a one-dimensional string ω = √T/ρk,
one finds T ∼ I2/5ρ1/5. Similarly, for the dispersion relation of pure tension waves
on a two-dimensional floating sheet, ω2 = (T/ρ)k3, and one has T ∼ I2/5(ρ/k)1/5.
Finally, using the experimental observation I ∼ p, one obtains T ∼ p2/5(ρ/k)1/5 in good
agreement with our observations of T ∼ p0.4 in figure 3 and § 4.2.

5. Wave turbulence
Here, we study the regime of wave turbulence when the system is subjected to a

random-noise forcing at large scale.

5.1. Wave power spectrum
Figure 4 shows the power spectrum of the wave height Sη(f ) as a function of
frequency for different forcing amplitudes. At low forcing, the spectrum exhibits peaks
at the forcing frequencies and at their harmonics. When the forcing is high enough,
Sη(f ) displays a power law ∼f−4.1 on one order of magnitude in frequency (see the
sloping dashed line), and is thus found to be scale-invariant as expected for a wave
turbulence regime. This power-law exponent is far from the −17/6 ' −2.8 exponent
(see the dot–dash line) predicted by dimensional analysis (see (2.11)).

The spatial spectrum Sv(k = ‖k‖) of the transverse velocity is computed by
integrated the space–time spectrum of Sv(k, f ) over all the directions of k and over
f . Figure 5 shows Sv(k) when the forcing is increased and for two sheet sizes. At
low forcing amplitude, the forcing response is mainly observed to generate a very
steep spectrum. When the forcing is further increased, energy is redistributed to higher
frequencies, leading to a less steep spectrum and a regime roughly corresponding



406 L. Deike, J.-C. Bacri and E. Falcon

Fo
rc

in
g

10–4

10–8
101 102

10–6

FIGURE 5. (Colour online) Spatial spectrum Sv(k) of the wave transverse velocity for
increasing forcing amplitudes (bottom to top). Solid lines: large vessel, forcing bandwidth
7–10 Hz. Dotted line: small vessel, forcing bandwidth 15–20 Hz. Dashed lines have a slope
−3; dash–dot line has a slope −3/4. 106 p6 40 Pa.

to a power law of the spatial scales on less than one decade (1/λ ≈ 20–80 m−1).
This power-law spectrum scales as Sv(k) ∼ k−α, with α = 3 ± 0.2; α is found to be
independent of the sheet size and the forcing bandwidth used, but is far from −3/4
(see dot–dash line), the value predicted by dimensional analysis (see (2.9)). Note that
a power law is only reached when p/PS � 1, i.e. when nonlinear effects become
important. This observation is found whatever the static pressure is. The presence
of bending waves does not explain this discrepancy since bending wave turbulence
is predicted to scale as k−1/4 (see (2.10)). Finally experimental spectrum scalings
in both space and frequency suggest that the change of variable k←→ f using the
linear dispersion relation to estimate Sv(f ) from Sv(k) is consistent. Indeed, using
Sv(ω) = Sv(k)/(dω/dk) and Sv(k) ∼ k−3 found experimentally, we find Sv(f ) ∼ f−7/3,
thus Sη ∼ f−13/3 for pure tension waves (ω(k) ∼ k3/2). This estimated exponent is
consistent with the one found experimentally, Sη ∼ f−4.1.

5.2. Forcing-induced anisotropy
Isotropy of the wave field is assumed by wave turbulence theory (Newell & Rumpf
2011). The spatial spectrum Sv(kx, ky, f ∗) at a given frequency f ∗ is shown in figure 6
for moderate and strong forcing. The wave energy is localized around a ring in
the Fourier space, the radius of which, k∗ = k(f ∗), is given by the linear dispersion
relation (2.2). At low frequency (f ∗ = 20 Hz), energy is spread in all directions (see
figure 6a,c), the maximum of energy being near the forcing direction (y-axis). Thus,
the forcing induces anisotropy at low frequency. At higher frequency (f ∗ = 80 Hz), this
anisotropy is still observed for moderate forcing (see figure 6b), and becomes much
more isotropic at strong forcing (see figure 6d). This is likely to be due to nonlinear
interactions and multiple reflections on the vessel boundary that enables energy
transfers at small scales and redistribution in all directions. Different frequencies or
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FIGURE 6. (Colour online) Space spectrum Sv(kx, ky) at a fixed frequency f ∗ = 20 (a,c) or
80 (b,d) Hz, for a moderate (a,b) and strong forcing (c,d). Energy is localized on a circle of
radius k∗ given by the dispersion relation. At low frequency (a,c), the maximum of energy
is localized is the forcing direction (y-axis). At high forcing and high frequency (d) the
spectrum is more isotropic.

forcing conditions lead to the same conclusions: the forcing induces anisotropy at large
scales, and isotropy is reached at small scales for strong enough forcing.

The spatial spectrum Sv(k) of figure 5 is obtained by integrating Sv(k) over all
directions of k. It thus averages the spectrum components in the forcing direction
(y-axis) and in other directions. By integrating Sv(k) over the y-axis, one gets its
component in the forcing direction Sy

v(k). Similarly, by integrating Sv(k) over the
x-axis, one gets its component in the normal direction to the forcing Sx

v(k). The angle
partial integration is performed with a 0.5 rad tolerance around the direction (x or
y). Figure 7(a) shows Sv(k), Sx

v(k) and Sy
v(k). As the energy maximum is localized in

the y direction (see above), the maximum of Sy
v(k) is almost one order of magnitude

greater than Sx
v(k). Moreover, all spectra display power laws, say Sx

v(k) ∼ k−αx and
Sy
v(k) ∼ k−αy , with αx 6= αy. More precisely, one finds α = 3 ± 0.3, αx = 2.3 ± 0.3 and
αy = 3.5 ± 0.5, each being roughly independent of the forcing, p/Ps, as shown in
figure 7(b), but all far from the −3/4 prediction of (2.9).

Computing Sv(k, f ) either on one quarter or on the whole spatial window leads to
similar results: the wave energy is redistributed on a curve described by the theoretical
dispersion relation with the same value of T . Computing Sv(k, f ) integrated over all
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FIGURE 7. (Colour online) (a) Spatial spectrum Sv(k) of the wave transverse velocity. �−,
Sv(k); ◦−, Sy

v(k); and —, Sx
v(k). Dashed line has a slope −3; dash–dot line has a slope

−3/4; dotted line has a slope −2.3. Large vessel, forcing bandwidth 7–10 Hz, p = 70 Pa. (b)
Power-law exponents. Large vessel: �, α; ◦, αx; and O, αy; Ps = P0

s = 5 Pa. Small vessel: α
for •, Ps = P0

s = 3 Pa; �, Ps = 7 Pa; and H, Ps = 55 Pa. Dashed lines are αy = 3.5, α = 3 and
αx = 2.3 from top to bottom (see text).

directions of k or only for some chosen directions, also gives the same value of
T . Although the wave field is not isotropic at large scales, the sheet tension is thus
isotropic and homogeneous as assumed theoretically in § 2.3.

To summarize, we observe an anisotropy of the wave field at large scales induced
by the forcing. The spectrum computed either in the forcing direction or in the normal
direction leads to different power-law scalings with k, the one in the forcing direction
being the steepest, and both are in disagreement with the prediction of (2.9). When
performing experiments with two wave makers with directions normal to each other,
Sv(k), Sx

v(k) and Sy
v(k) are found to be similar with the same power-law scaling in k−3,

still far from the k−3/4 prediction. Thus, the anisotropy is not the main origin for this
discrepancy between the theoretical and experimental exponents.

5.3. Role of the sheet finite size
When the vessel diameter is reduced by a factor 2, a power-law spectrum, Sv(k)∼ k−α

is still observed as shown in figure 5. Figure 7(b) shows α as a function of p/Ps for
the small and large vessels with α = 3 ± 0.3 whatever the vessel size used. This value
of α is also independent of the sheet tension for 36 Ps 6 60 Pa for which a power-law
spectrum is observed. The regime of wave turbulence is thus independent of the vessel
size and of the static sheet tension whatever the forcing in the range 56 p/Ps 6 30.

5.4. Time scale separation
Let us now consider the typical time scales involved in our experiment. Wave
turbulence theory assumes a time scale separation τl(k)� τnl(k)� τd(k), between the
linear propagation time, τl, the nonlinear interaction time, τnl, and the dissipation time,
τd. The linear propagation time is τl = 1/ω(k), with ω(k) the linear dispersion relation
of (2.2); τd(k) is determined by performing freely decaying experiments (Miquel &
Mordant 2011b); τnl(k) is related to the broadening of the dispersion relation and
can be experimentally estimated by the width of the spatio-temporal spectrum Sv(k, f )
(Nazarenko 2011; Miquel & Mordant 2011a).
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FIGURE 8. (Colour online) Temporal decay of the space–time spectrum for a sinusoidal
forcing at fp = 20 Hz. (a) 〈log Sv(k, t)〉. Inset: space spectrum 〈Sv(k, t∗)〉 at different times
t∗ = 0.1, 0.2, 0.4, 0.6, 0.8 and 1 s (from top to bottom). Dashed lines have a slope −2.8. (b)
◦, Temporal decay of the spectrum Fourier component 〈Sv(k∗, t)〉 at modes k∗ = 116.9, 143.2,
182.2, 246.3, 312.3, and 377.6 m−1 (from top to bottom). Dashed lines are corresponding
exp[−t/τd(k∗)] with τd(k∗) fitted from the data. Inset: τd versus k. �, Experiments; and —,
best fit τd = Ak−1 with A= 3.2 s m−1.

5.4.1. Dissipation time
The dissipation time, τd(k), at each scale k is determined experimentally by

performing freely decaying experiments. The protocol is similar to that used in recent
works on gravity–capillary wave turbulence (Deike, Berhanu & Falcon 2012) or on
flexural wave turbulence on a plate (Miquel & Mordant 2011b). First, surface waves
are generated to reach a stationary wave turbulence state (see § 3). Then the forcing is
stopped at t = 0, and the temporal decay of the spatial wave field is recorded during a
time T = 3 s. The experiment is automatically iterated 10 times to improve statistics,
and results are averaged (ensemble average denoted by 〈·〉). To analyse the different
steps of the decay, the wave velocity spectrum is computed over short-time intervals
[t, t + δt] with δt = 0.1 s. Experiments are performed in the large vessel, and similar
results are obtained whatever the forcing.

The temporal decay of the space–time power spectrum 〈Sv(k, t)〉 is displayed
in figure 8(a) and shows that small scales are first dissipated. The inset shows
the temporal evolution of the spatial spectrum 〈Sv(k, t∗)〉 at different decay times
t∗. It corresponds to different vertical sections of the space–time spectrum of the
main figure 8(a). At the beginning of the decay (t . 0.5 s), the spectrum shape is
conserved (see top curves in the inset figure 8a). For t . 0.5 s, one finds roughly
〈Sv(1/λ, t∗)〉 ∼ k−2.8 within the inertial range. This exponent is thus close to the
one found in the stationary state (see § 5.2). This self-similar temporal decay of the
wave spectrum has been predicted theoretically (Zakharov et al. 1992), and has been
observed for decaying capillary wave turbulence (Deike et al. 2012), and decaying
flexural wave turbulence on a plate (Miquel & Mordant 2011b). For t & 0.5 s, no
power-law regime is observed, meaning that the wave turbulence regime stops in
favour of a purely dissipative regime.

Figure 8(b) shows the temporal evolution of the amplitude of the Fourier modes
〈Sv(k∗, t)〉 at different k∗. It corresponds to different horizontal sections of the
space–time spectrum of the main figure 8(a). For t & 0.5 s, each Fourier mode is
found to decay exponentially in time, 〈Sv(k∗, t)〉 ∼ exp[−2t/τd(k∗)] with a typical
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FIGURE 9. (a) ◦, Spectrum Sv(k∗, f ) normalized by its maximum for k∗ = 2π × 29 m−1; - -
-, Gaussian fit: exp[−(ω − ω∗)2/1ω2] with ω∗ = 2π × 47 s−1, and 1ω = 2π × 14.8 s−1. (b)
Typical time scales: ∗, τnl and •, τl for both low (top (blue)) and high (bottom (red)) forcing;
and �; τd. Dashed line: best fit τd ∼ 1/k; dash–dot lines: τnl ∼ k−3/4 from (2.13); solid lines:
τl ∼ k−3/2 (tensional waves). Low forcing is p = 2 Pa, and T = 4 N m−1. High forcing is
p= 145 Pa, and T = 17 N m−1.

time τd(k∗), given by the best fit of the experimental data; τd(k∗) is displayed in the
inset of figure 8(b). We find τd(k∗) ∼ 1/k∗ meaning that small scales dissipate more
rapidly than large ones. By using temporal measurement at one spatial point, one gets
the frequency scaling, τd(f ) ∼ f−0.7, consistently with τd(k) ∼ k−1 since ω2 = (T/ρ)k3.
Similar scaling laws are observed whatever the initial static tension used. Even if the
physical origin of the dissipation is not known, an important result of this part of the
work is that dissipation occurs at all scales within the inertial range, contrary to the
hypothesis of wave turbulence theory.

5.4.2. Nonlinear interaction time
As shown previously in figure 2, the spatio-temporal spectrum Sv(k, f ) broadens

around the linear dispersion relation curve when the forcing is increased. The
nonlinear time scale τnl(k) is related to this broadening (Nazarenko 2011; Miquel
& Mordant 2011a). It is estimated by τnl(k) = 1/1ω(k), the inverse of the width
1ω(k) of spectrum Sv(k, f ) at a given wavenumber k. As shown in figure 9(a), 1ω(k)
is extracted from Sv(k, f ) by the r.m.s. value of a Gaussian fit with respect to k at a
fixed ω∗. Then, iterating this protocol to all k allows us to determine τnl(k). Figure 9(b)
shows that τnl(k) is found to scale as τnl ∼ k−3/4 for low and high forcing, in good
agreement with the prediction of (2.13). When the forcing is increased, the degree
of nonlinearity increases, and τnl is found to decrease. This is consistent with the
theoretical scaling τnl ∼ ε−1/2 of (2.13).

5.4.3. Comparison of time scales
We can now take stock of our results to compare the evolution of the linear time

τl(k), the nonlinear time τnl(k), and the dissipation time τd(k) across the scales. We
have experimentally found τnl ∼ k−3/4 (see § 5.4.2) as expected theoretically from
(2.13), τd(k) ∼ k−1 (see § 5.4.1), whereas τl(k) ∼ k−3/2 comes from the experimental
dispersion relation. The time scale separation hypothesis of wave turbulence theory,
τl(k)� τnl(k)� τd(k), is well satisfied experimentally for k & kc = 2π × 10 m−1 as
shown in figure 9(b) for two forcing amplitudes. For k . kc, the scale separation
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breaks down since τl ≈ τnl� τd. This scale corresponds to a wavelength λc ' 10 cm of
the order of the forcing scale (&10 cm – see figure 7a), and thus is not involved in the
cascade process. Finally, even though the nonlinear time scale is in good agreement
with (2.13) and though the time scale separation is well satisfied experimentally within
the inertial range, the scaling of the power-law spectrum with k does not follow (2.9).

6. Conclusion

We have reported results of experiments on nonlinear waves on the surface of a fluid
covered by an elastic sheet. An optical method is used to obtain the full space–time
wave field. It enables us to reconstruct the dispersion relation of waves showing a
transition between tension and bending waves. When the forcing is increased, a shift
of the dispersion relation occurs. We show that this effect is due to an additional
tension of the sheet induced by transverse nonlinear motion of a fundamental mode of
the sheet.

When the system is subjected to a random-noise forcing at large scales, a regime
of hydroelastic wave turbulence is observed. The spectrum of wave velocity then
displays power laws of frequency and of wavenumber within an inertial range. This
wave turbulence state corresponds theoretically to a direct cascade of energy flux
through the scales. However, the frequency and wavenumber power-law exponents of
the spectrum are found to disagree with the theoretical prediction. These exponents
are found to be independent of the vessel size for the two tested configurations, of
the strength of the forcing, and of the static sheet tension applied. To explain this
discrepancy, several hypotheses of the theory have been experimentally tested to probe
their validity domain in our experiment. Although an anisotropy of the wave field
is induced by the forcing at large scales and weak forcing, it is not at the origin
of this discrepancy. The time scale separation hypothesis was then experimentally
tested. The dissipation time of the waves, the nonlinear interaction time and the
linear time of wave propagation have been measured at each scale. The separation of
these time scales is clearly observed within the inertial range of the wave turbulence
cascade. However, we have found that the dissipation occurs at all scales of the
cascade, contrary to the theoretical hypothesis. Although we cannot determine the
physical mechanism at the origin of the dissipation, the fact that it occurs at all
scales could explain the discrepancy between the experimental and theoretical scalings
of the spectrum. The occurrence of dissipation at all scales induces an ill-defined
inertial range between the forcing and the dissipation and has been recently shown
to be responsible for such a discrepancy in flexural wave turbulence on a metallic
plate (Humbert et al. 2013; Miquel, Alexakis & Mordant 2013). Possible non-local
interactions could be also put forward, such as those involving the slow dynamics of a
sheet fundamental mode that has been shown to modify the sheet tension at all scales.
Moreover the possible interpretation of this mode dynamic as a condensation process,
similar to what happen in two-dimensional hydrodynamic turbulence (Sommeria 1986)
or in optical wave turbulence (Laurie et al. 2012), is an open question and deserves
further study.

To conclude, a regime of wave turbulence has been observed in a new experimental
system even if some theoretical hypotheses are not fulfilled. We emphasize that
dissipation occurring at all scales, and non-local interactions should be included
in future wave turbulence theories to give a more complete description of the
experiments.
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