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At scales larger than the forcing scale, some out-of-equilibrium turbulent systems (such
as hydrodynamic turbulence, wave turbulence, and nonlinear optics) exhibit a state of
statistical equilibrium where energy is equipartitioned among large-scale modes, in line
with the Rayleigh-Jeans spectrum. Key open questions now pertain to either the emergence,
decay, collapse, or other nonstationary evolutions from this state. Here, we experimentally
investigate the free decay of large-scale hydroelastic turbulent waves, initially in a regime
of statistical equilibrium. Using space- and time-resolved measurements, we show that the
total energy of these large-scale tensional waves decays as a power law in time. We derive
an energy decay law from the theoretical initial equilibrium spectrum and the linear viscous
damping, as no net energy flux is carried. Our prediction then shows a good agreement with
experimental data over nearly two decades in time, for various initial effective temperatures
of the statistical equilibrium state.We further identify the dissipationmechanism and confirm
it experimentally. Our approach could be applied to other decaying turbulence systems, with
the large scales initially in statistical equilibrium.
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1. Introduction
The possible coexistence of two distinct regimes in out-of-equilibrium (forced and dissipated)
turbulent systems, namely, a turbulent cascade at small scales and statistical equilibrium
(SE) at large scales, is particularly interesting. It suggests that classical tools from statistical
mechanics may be applicable for describing the large-scale behavior of turbulent systems. In
this context, “large scales” refer to scales larger than the forcing scale, and SE is characterized
by energy equipartition among degrees of freedom due to the absence of flux across large
scales. Evidence of SE at large scales has been reported in different systems, including
three-dimensional (3D) hydrodynamic turbulence (Gorce & Falcon 2022), capillary wave
turbulence (Michel et al. 2017), flexural wave turbulence (Miquel et al. 2021), and
hydroelastic wave turbulence (Vernet & Falcon 2025). Classical condensation toward SE
has also been reported in optics (Sun et al. 2012; Baudin et al. 2020).
While the existence of SE within out-of-equilibrium systems is appealing, many questions
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remain. In particular, what is the mechanism to reach the SE regime, and how does it grow
or decay upon the starting or stopping of external forcing? How do the regimes of statistical
equilibrium (at large scales) and out-of-equilibrium (at small scales) interact, since they are
not isolated from each other? These questions, in this context, involve nonstationary processes
that are central to understanding how stationary regimes in physics arise and collapse.
Numerous studies have focused on the decay processes in nonlinear out-of-equilibrium

systems, including 3D hydrodynamic turbulence in wind tunnels (Comte-Bellot & Corrsin
1966) and rotating turbulence (Morize & Moisy 2006), initially forced at a large scale.
Free decay has also been investigated in two-dimensional (2D) turbulence, in a soap
film (Martin et al. 1998; Cieślik et al. 2009), in fluid layers (Shats et al. 2010), in
electron plasma (Bettega & Roman 2009), in 3D magnetohydrodynamics turbulence (Bigot
et al. 2008; Beresnyak & Lazarian 2008), and quantum turbulence (Skrbek & Sreenivasan
2012). In the context of wave turbulence, decay dynamics have been explored numerically
for surface gravity waves (Onorato et al. 2002; Yokoyama 2004; Zhang & Pan 2022) and
capillary waves (Falkovich et al. 1995; Pan & Yue 2015) and experimentally for elastic
waves in a thin plate (Miquel & Mordant 2011), hydroelastic waves (Deike et al. 2013),
surface gravity (Bedard et al. 2013; Deike et al. 2015), gravity-capillary (Cazaubiel et al.
2019) and capillary (Kolmakov et al. 2004; Deike et al. 2012) waves.
While all these nonstationary studies focused on the free decay of small-scale turbulent

cascade (primarily investigating whether the constant energy-flux phenomenology persists),
only a few have examined the decay behavior of large scales that initially exhibit a SE regime.
In particular, a recent experiment on 3D turbulence, initially forced at a small scale, was able
to distinguish between Saffman’s and Batchelor’s models of freely decaying turbulence, in
the early stage and final decay regimes (Gorce & Falcon 2024).
Hydroleastic waves are of particular interest, as they are deformation modes of an elastic

plate in contact with a fluid. These waves have direct applications in oceanography, notably in
modeling wave propagation over ice-covered ocean surfaces (Davys et al. 1985; Sutherland
et al. 2016; Das et al. 2018; Părău et al. 2024). The need for a better understanding of
hydroelastic wave dynamics has grown in recent years with the emergence of very large
floating structures, such as mobile offshore bases and expansive floating solar farms (Wang
et al. 2008; Yang & Huang 2024).
Here, we experimentally investigate how large-scale hydroelastic turbulent waves, initially

in SE, freely decaywhen external small-scale forcing is stopped. This decay is then understood
using a simple model based on the energy budget in Fourier space and on the dissipation
mechanism at play.

2. Experimental setup
The experimental setup follows that of Vernet & Falcon (2025) and is shown in figure 1.
It consists of a square tank of dimensions L × L × h with L = 600 mm and h = 100 mm.
The tank is fully filled with water (density ρ = 103 kg m−3) and covered by a white elastic
sheet made of silicone rubber (Ecoflex 00-30 soft elastomer) of thickness e = 0.5 mm,
density ρs ' 103 kg m−3, Young’s modulus EY = 7 × 104 Pa and Poisson’s coefficient
ν̃ ≈ 0.5 (Delory et al. 2024). A solid ring is placed on the top of the sheet to apply circular
boundary conditions and to enhance multidirectional wave reflections. The tank is connected
to a column filled with water to control the imposed hydrostatic pressure in the liquid and
the sheet stretching, and thus the applied tension T ∈ [3,7] N m−1 to the sheet. Hydroelastic
waves are produced by the vertical motion of a disk-shaped wavemaker (50 mm in diameter)
driven by an electromagnetic shaker (LDS V406) fed with a bandpass-filtered Gaussian
random noise signal in the range fp ∈ [50,100] Hz. The vertical deformations of the sheet



3

Figure 1: Top: Scheme of the experimental setup to study hydroelastic waves (lateral view). Left: top view.
Bottom: Typical hydroelastic wave field, η(x, y), obtained from Fourier transform profilometry.

are either measured at a given position, ξ(t), with a laser Doppler vibrometer (Polytech
OFV5000-505) or are fully resolved in space and time, η(x, y, t), using the Fourier transform
profilometry (FTP) method (Cobelli et al. 2009) using a camera (Basler acA2040) recording
at 120 fps the deformations of a fringe pattern projected over the sheet by a full-HD video
projector (Epson EH-TW9400). The size of the recorded images, centered in the middle of
the sheet, is L2 = 300 × 300 mm2. The sampling frequency of the vibrometer is 2 kHz. The
two notations ξ and η thus refer to the two experimental methods that yield the sheet vertical
deformations.
The two measurements are not performed simultaneously due to technical reasons. In both

cases, measurements are started at t = 0 when the wave maker is turned on to capture the
statistical equilibrium regime of the large scales (reached in about 1 s). At t0, it is switched off
to record the free decay. The same experiment is repeated 60 times, in the vibrometer case, to
obtain an ensemble average, thereby increasing statistics, reducing the signal-to-noise ratio,
and improving the time-frequency analysis. This one-point measurement is used to perform
a time-frequency analysis of the decay lasting ∼ 20 s. The spatiotemporal measurement gives
access to the spatial decay of the Fourier modes for t > t0 and the dispersion relation for
t < t0. Typical wave amplitude is [0.1, 1] mm in the SE regime.
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Figure 2: Experimental dispersion relation f versus [k/(2π)]3/2 (black circle). Small-scale random forcing
fp ∈ [50,100] Hz. Red line: polynomial fit of Eq. (3.1) with only one fitting parameter, the tension T , which
yields T = 6.8 N m−1. Inset: Spatiotemporal spectrum of the wave height, Sη(k,ω), versus f ≡ ω/(2π) and
k/(2π). Solid white line: linear dispersion relation of Eq. (3.1). Black line: lower bound [min( fp)] of the
random forcing range.

3. Results
3.1. Hydroelastic waves

Hydroelastic waves are deformations of an elastic sheet covering a fluid. They are described
by combining two equations, coupling elasticity and hydrodynamics. The Föppl-von Kármán
equation expresses the dynamics of the vertical deformation η(x, y, t) of a thin elastic
sheet while Bernoulli’s theorem yields the pressure field exerted by a perfect fluid on the
sheet (Landau & Lifshitz 1970). Neglecting sheet inertia (ke � ρ/ρs with ρ the fluid
density), the dispersion relation of hydroelastic waves, in a deep water regime (kh � 1 with
fluid depth h), reads (Davys et al. 1985; Schulkes et al. 1987; Deike et al. 2013)

ω2 = gk +
T
ρ

k3 +
B
ρ

k5, (3.1)

where ω is the wave angular frequency, k is the wave number modulus, g is the gravity
acceleration, T is the externally applied tension, and B = EYe3/[12(1− ν̃2)] ' 9.7 10−7 N m
is the bending modulus. The three terms of the right-hand side of Eq. (3.1) correspond to
gravity waves, tensional waves, and flexural waves, respectively.
The dispersion relation is reached experimentally from the wave field, η(x, y, t), given

by the FTP method. We compute the Fourier transform in space η̌(kx, ky, t) which leads in
polar coordinates to η̌(k, ϕ, t) with k = (k2

x + k2
y)

1/2 and ϕ ∈ [0,2π[. The Fourier transform
in time of this field gives η̂(k, ϕ,ω) which is used to compute the spatiotemporal spectrum
Sη(k,ω) = 〈|η̂(k, ϕ,ω)|2〉ϕ/(L2T), with L the window length and T = 30 s the acquisition
time. The spatiotemporal spectrum, Sη(k,ω), of the wave field, η(x, y, t), is shown in the inset
of figure 2.A small-scale random forcing is applied in the range fp ∈ [50,100]Hz.Weobserve
that wave energy is spread over all scales larger than the forcing scales (i.e., f < fp), around
the theoretical dispersion relation of Eq. (3.1) (white line). The experimental dispersion
relation is then inferred from the Sη(k,ω) maximum value for each k as shown in the main
figure 2 (black circle). Experimental data exhibit a clear k3/2 power law, highlighting the
tensional nature of the waves over the f and k available ranges. Experimental data are then
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fitted by a polynomial fit of Eq. (3.1) to infer the sheet tension T . Note that from Eq. (3.1),
the crossover between gravity and tension waves is kgt =

√
ρg/T , and between bending

and tension waves, kbt =
√

T/B, which give kgt/(2π) ' 6 m−1 and kbt/(2π) ' 421 m−1,
respectively. Gravity is thus relevant for wavelengths longer than ∼ 16 cm, whereas bending
effects occur at scales much smaller than the forcing scale, thus confirming the tensional
nature of the waves in the window of interest.

3.2. Statistical equilibrium (Rayleigh-Jean spectrum)
Statistical equilibrium corresponds to a stationary state where energy is equally shared among
different modes of a system. For 2D isotropic systems, such equipartition of kinetic energy
among Fourier modes k leads to the theoretical energy spectrum (Zakharov et al. 2025)

EEq(k) =
kBθ
2πρ

k, (3.2)

where k ≡ ||k| |, kB is the Boltzmann constant and θ is an effective temperature. Using
EEq(k)dk = EEq(ω)dω, and Eq. (3.1) considering only tensional waves, the energy spectrum
of statistical equilibrium of large-scale hydroelastic tensional waves reads

EEq(ω) =
kBθ

3πρ1/3T2/3ω
1/3. (3.3)

Note that the energy spectrum is related to the wave amplitude power spectrum, S(k), by
E(k) = (T/ρ)k2S(k) and E(ω) = (T/ρ)1/3ω4/3S(ω) for pure tensional waves. Such a statis-
tical equilibrium regime of large-scale hydroelastic tensional waves has been experimentally
evidenced by Vernet & Falcon (2025) (see also Sect. 3.5). Hereafter, as θ is no longer
discussed, we will use E0 ≡ kBθ as the SE energy reference.

3.3. Free decay from a statistical equilibrium regime
We now focus on the free decay of a system initially in a statistical equilibrium regime, once
the forcing is stopped, to understand how the energy stored in large scales is damped. To
do so, we adapt to our case the model of decay of 3D hydrodynamics turbulence Batchelor
(1953); Saffman (1967); Gorce & Falcon (2024).
The energy budget in ω-Fourier space reads

∂E(ω, t)
∂t

= T(ω, t) + I(ω, t) − D(ω, t), (3.4)

where E(ω, t) is the energy spectral density, T(ω, t) is the energy transfer between waves
(nonlinear term), I(ω, t) denotes the injected power, and D(ω, t) the spectral dissipation
(linear term). In the stationary state, dissipation is negligible compared to nonlinearities
within the large scales. As soon as the Rayleigh-Jean spectrum is established, the mean
energy flux vanishes at large scales. This does not exclude positive or negative fluctuations
of the energy flux, which are the counterpart of the fluctuations of the injected power, as
observed for the large scales in SE in hydrodynamic turbulence (Gorce & Falcon 2022).
Once the external forcing is turned off at t = t0, one has I = 0 and the wave field then freely
decays over time, in two stages.
(i) First, an initial decay dominated by reminiscent nonlinear processes, which lasts as long
as the energy transfer towards small scales occurs in the inertial range (Batchelor 1953;
Comte-Bellot & Corrsin 1966; Gorce & Falcon 2024). During this initial decay, energy
exchange between small scales and large scales still occurs through nonlinear transfer, thus
maintaining the SE regime during that period.
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(ii) Then, the final decay starts when nonlinearities become negligible, such that the viscous
dissipation dominates the decay dynamics at all scales.
Due to the time resolution limitation of the time-frequency analysis in Sect 3.4, we can

not accurately characterize the initial decay. Thus, hereafter, we focus only on the final decay
which starts at time tν , larger than t0. Experimentally, tν is the time at which the spectrum
departs from the SE prediction of Eq. (3.3).
In the final decay, Eq. (3.4) then reads

∂E(ω, t)
∂t

= −D(ω, t) ≡ −
2

τ(ω)
E(ω, t), (3.5)

where τ(ω) is the typical linear dissipation time scale. The term on the right-hand side thus
corresponds to energy dissipation induced by a linear mechanism. The factor 2 comes from
the definition of τ from the exponential decay ξ(t) ≡ ξνe−(t−tν )/τ with ξν ≡ ξ(t = tν) as tν
is the final decay starting time. By integrating Eq. (3.5) between tν and t, the energy decays
exponentially as

E(ω, t) = E(ω, tν)e
− 2
τ(ω) (t−tν ). (3.6)

As long as the final decay is not reached (t 6 tν), we assume that the energy spectrum of the
large scales follows a frequency power law. Thus, at time t = tν , one assumes E(ω, tν) = Aωα

with A a constant. The exponent α is kept for the sake of generality, but one can bear in mind
that, from Eq. (3.3), α = 1/3 and A ≡ E0/[3π(ρT2)1/3] in our case. Inserting E(ω, tν) into
Eq. (3.6), and the result into the total energy at time t, Eωth (t) ≡

∫ ωc

0 E(ω, t)dω, yields

Eωth (t) =
∫ ωc

0
Aωαe−

2
τ(ω) (t−tν )dω for t > tν . (3.7)

The superscript indicates whether total energy is computed from the frequency spectrum
(Eω) or the spatial spectrum (Ek) afterwards, while the index “th” indicates a theoretical
expression. ωc is a high-frequency cutoff that prevents the divergence of the integral at
t = tν and which appears naturally since SE is observed for frequencies smaller than forcing
frequencies fp.
Let us assume that τ(ω) is a power-law function of ω (as justified afterwards) as

τ(ω) = 2/(Cωβ)where the exponent β and the positive constant C depend on the dissipation
mechanism (see Sect. 3.4). The integral of Eq. (3.7) is convergent if α > −1 to ensure the
convergence whenω tends to zero. Using the change of variableω byC(t−tν)ωβ in Eq. (3.7),
we obtain a prediction for the decay of the total energy as

Eωth (t) = Ã(t − tν)−δγ[δ, (t − tν)/τc], (3.8)

where δ = (α+1)/β is the time power-law exponent, Ã = AC−δ/β is a constant, τc = τ(ωc)/2,
and γ is the lower incomplete Gamma function, γ[s, x] ≡

∫ x

0 us−1e−udu. When t → tν ,
Taylor’s expansion of γ scales as γ[δ, (t − tν)/τc] ∝ (t − tν)δ and thus regularizes Eq. (3.8),
i.e., prevents the divergence of Eωth (t). When x → +∞, γ[s, x] tends to Γ(s), the usual Euler’s
Gamma function. The error between the two functions, γ[s, x] and Γ(s), is of the order
O(xs−1e−x). Thus, Eωth (t) is predicted to follow a time power law for (t − tν) > τc , as

Eωth (t) ' Ã(t − tν)−δΓ(δ). (3.9)

This approximation will be discussed later in the light of the experimental values of τc .
Thus, although all energy modes E(ω, t) follow exponential decays of Eq. (3.6), the total

energy Eωth (t) decreases accordingly to a time power-law of Eq. (3.9).
This result appears to be quite general and extends beyond the scope of hydrodynamic
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turbulence and wave turbulence. Indeed, if the energy spectrum of a system, initially follows
a frequency power-law, and decays over time accordingly to a relation analog to Eq. (3.5),
then the total energy will decay as a time power-law as Eq. (3.9) whose the exponent δ can
be predicted as long as the linear time scale τ(ω) is a frequency power-law function.
In our specific case of hydroelastic tensional waves where large scales are initially in

a statistical equilibrium regime, with a spectrum as in Eq. (3.3), one has α = 1/3 and
A ≡ E0/[3π(ρT2)1/3]. Moreover, the linear dissipation time τ(ω) is predicted to scale as
τ(ω) = 2/(Cωβ) with β = 7/6 and C ≡

√
ν/2(ρ/T)1/3 [see Sect. 3.4 and Eq. (3.11)].

Therefore, the prediction for the total energy decay reads, from Eq. (3.9),

Eωth (t) '
211/7Γ(8/7) E0

7π(ν4ρ5T2)1/7
(t − tν)−8/7, (3.10)

that is δ = (α + 1)/β = 8/7 and Ã = AC−δ/β = 211/7E0/[7πρ5/7T2/7ν4/7] using previous
notations.
Before testing experimentally in Sect. 3.5 the large-scale energy decay prediction of

Eq. (3.10), the viscous dissipation nature of hydroelastic tensional waves is first investigated
below (Sect. 3.4), as it prescribes the β exponent value.

3.4. Viscous dissipation time scale
To obtain the exponent β, one must explore the dissipation mechanism in the system. For a
plate in contact with a liquid, the boundary condition of zero tangential displacement can be
obtained in two limits. In the small wave-amplitude limit, the sheet thickness is greater than
the displacements of points in the sheet, which guarantees the existence of a neutral surface.
On that surface, there is no compression or extension, and the horizontal displacements vanish
at first order (§11 of Landau & Lifshitz (1970)). This condition generally holds for an ice
layer covering the ocean (Squire 2009). Here, the wave amplitude is of the order of the typical
sheet thickness e = 0.5 mm (see bottom of figure 1). However, applying an external pressure
is crucial as the stress tensor is dominated by the constant external stretching forces (§14 of
Landau & Lifshitz (1970)). In consequence, no dynamical horizontal displacement of the
sheet is also expected here, and we thus assume a zero tangential velocity boundary condition
at the sheet/liquid interface. The derivation of the dissipation time scale is then fully analogous
to the deep-water surface wave case. In that case, the air/liquid surface boundary layer is due
to an inextensible film (Lamb 1932; Miles 1967), with τ−1(ω) = k

√
ων/(2

√
2), and ω(k)

given by the gravity-capillary wave dispersion relation. For hydroelastic tensional waves,
ω(k) is given by the second term of the right-hand side of Eq. (3.1), and the same procedure
yields a similar expression for τ(ω) as

τ−1(ω) =
ν1/2

2
√

2

( ρ
T

)1/3
ω7/6. (3.11)

and thus to the exponent β = 7/6.
Let us experimentally check the prediction of Eq. (3.11) for the frequency-power law of the

dissipation time scale, τ(ω), and the corresponding exponential decay of the energy spectral
density Eξ (ω, t) of Eq. (3.6). Eξ (ω, t) is obtained by performing a time-frequency analysis,
i.e., a spectrogram of the temporal signal of the pointwise vertical position ξ(t) (see inset of
figure 3a) measured by the vibrometer. The spectrogram is computed as the power-spectral
density at each time t∗

Sξ (ω, t∗) ≡
∫ t∗+δt

t∗
〈ξ(t)ξ(t + s)〉te−iωsds (3.12)
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Figure 3: (a) Spectrogram Sξ ( f , t∗) of the wave amplitude versus time t∗ (log-scale) and frequency f .
Log-scale colorbar. For t < t0: small-scale forcing ( fp ∈ [50,100] Hz) and SE regime at large scales
[ f < min( fp)]. Forcing is stopped at time t0 (vertical white solid line). For t0 6 t < tν : initial decaying
regime. Final decay starts at time tν (vertical white dot-dashed line). Applied tension T = 6.8 N m−1.
Inset: temporal decay of wave amplitude ξ(t) before (t < t0) and after (t > t0) forcing stops. (b) Normalized
energy spectrum versus the normalized time (t−tν)/τexp(ω∗) for various Fouriermodesω∗/(2π) ∈ [2,70]Hz
(symbols). The black dashed line has a−2 slope corresponding to the exponential decay of Eq. (3.6). Applied
tension T = 5 N m−1. Inset: Normalized energy spectrum versus unrescaled time t − tν for Fourier modes
ω∗/(2π) = 3.2(◦), 6.4 (C), and 20 (�) Hz.

over a short time scale δt = 0.5 s. Figure 3a shows a typical example of a spectrogram,
Sξ (ω, t∗), averaged over 60 iterations. The horizontal white dashed line corresponds to the
lower bound of the forcing frequency range, min( fp). The vertical solid line at t∗ = t0
indicates the time at which the external forcing is turned off. When the forcing is on (t∗ < t0),
the energy is well spread over all frequencies lower than the forcing ones f < fp (as in the
inset of figure 2) where SE is commonly established (Vernet & Falcon 2025). After external
forcing is switched off and final decay is initiated (t∗ > tν), all modes decay at different rates
that depend on their frequency.
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Figure 4: Experimental dissipation time scale τexp(ω) of hydroelastic tensional waves versus frequency
ω/(2π). The red dashed line corresponds to Eq. (3.11) with no fitting parameter. Horizontal dotted line:
temporal cutoff due to the spectrogram computation (short time interval δt = 0.5 s). Cutoff frequency:
1/δt = 2 Hz. Applied tension T = 5 N m−1.

The decay of the energy spectrum is then experimentally inferred from the link between the
energy spectrum and the wave-amplitude power spectrum as Eξ (ω, t) = (T/ρ)1/3ω4/3Sξ (ω, t)
(see Sect. 3.2). The inset of figure 3b shows that the energy spectrum Eξ (ω∗, t) decays
exponentially over time, and that its decay rate, 1/τexp(ω∗) (i.e., the dashed-line slope),
depends on the frequency mode ω∗. Each Fourier mode ω∗ corresponds to a horizontal line
in the spectrogram in figure 3a. When the energy spectrum Eξ (ω∗, t), normalized by its
value at t = tν , Eξ (ω∗, tν), is plotted as a function of a normalized time (t − tν)/τexp(ω∗),
all data for various modes ω∗ collapse on a master curve, as shown in the main figure 3b. A
clear exponential decay is observed up to (t − tν)/τexp(ω∗) ' 2 showing thus that Eq. (3.6)
is validated experimentally. The dissipation time scale can thus be directly obtained from
Eq. (3.6) as τexp(ω∗) = 2

∫ +∞
0 Eξ (ω∗, t)/Eξ (ω∗, tν)dt due to the exponential nature of the

decay.
Figure 4 then shows the experimental dissipation time scale as a function of the frequency.

The prediction of Eq. (3.11) (red dashed line in figure 4) is well verified over the available
frequency range with no fitting parameter. This frequency-scaling law has been checked for
different tension values, but the small range of accessible tension and theweak exponentmake
it difficult to verify experimentally the τ ∝ T1/3 scaling of Eq. (3.11). As the computation
relies on the spectrogram Sξ (ω, t∗), the moving integration time δt = 0.5 s is thus a lower
bound for τ(ω) as faster fluctuations are averaged. Decreasing further the value of δt presents
also two drawbacks: (i) as Sξ (ω, t∗) converges for f > 1/δt, so τ(ω) can be computed only
above this cutoff frequency, (ii) decreasing further δt also leads to noisier spectra. This
method thus estimates τ for 1/δt < f < 60 Hz, which is sufficient as the SE regime was
initially established for frequencies lower than the forcing range [50,100] Hz.

3.5. Temporal decay of energy
Figure 5 shows the energy spectral density Eξ (ω, t∗) at different decay times. Before the final
decay (t0 6 t < tν), statistical equilibrium of large scales is observed in reasonable agreement
with the stationary prediction of Eq. (3.3) (top black dashed line) and the corresponding
frequency power-law exponent α = 1/3. When the final decay starts (t > tν), the stationary
SE regime rapidly collapses due to spectral dissipation and the absence of energy flux. Indeed,
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Figure 5: Energy spectrum Eξ (ω, t) at different times, before (t < tν - top blue curve) and after
(t > tν - other curves) the final decay starts. Obtained from vibrometer measurements at times
t − tν ∈ [−0.4,0.04,0.7,1.3,2.9,4,6.2,8.4] s (from top to bottom). The arrow indicates the direction of
time. Black dashed lines correspond to Eq. (3.6) for the same times, except the blue dashed line, for
t − tν = −0.4 s (i.e., t − t0 = 0.1 s), corresponding to Eq. (3.3). Black dotted line: cutoff frequency, 1/δt,
due to the spectrogram computation (short time interval of δt = 0.22 s). Grey region: initial forcing range,
fp ∈ [50,100] Hz. Applied tension T = 6.8 N m−1.

all Fourier modes decay at different rates with τ−1(ω) ∝ ω7/6 [see Sect. 3.4, figure 4 and
Eq. (3.11)], and thus modes of higher frequency decay faster than large-scale modes. Such a
collapse of the spectrum is reasonably well captured by Eq. (3.6) (see black dashed lines in
figure 5) with no fitting parameter. As discussed in Sect 3.2, since α = 1/3 and β = 7/6, the
energy stored in large-scale tensional waves is predicted to decay following Eq. (3.8) with
δ = (α + 1)/β = 8/7, thus as Eq. (3.10) in Eω(t) ∝ (t − tν)−8/7.
Such a free decay of Fourier mode energy is experimentally studied using the temporal

signal ξ(t)measured at a given location by laser vibrometry. As the wave-amplitude spectrum
Sξ is related to the energy spectrum Eξ by Eξ (ω, t∗) = ω2Sξ (ω, t∗)/k, we obtain Eω(ω, t∗)
from the dispersion relation and the spectrogram Sξ (ω, t∗) over a short-time window δt =
0.22 s as

Eω(t∗) ≡
∫ ωc

2π/δt

T
ρ

k2Sξ (ω, t∗)dω, (3.13)

with ωc/(2π) = 30 Hz as SE is reasonably established for t . tν up to this frequency.
To increase the statistical reliability of experimental data for Eω(t∗), measurements are

performed over 60 decay experiments of 60 s each. Between each decay, forcing is maintained
over 60 s long enough to recover a steady SE regime.
Figure 6a shows the temporal evolution of the total energy Eω(t), computed from

Eq. (3.13), slightly before stopping forcing (t < t0), where a steady SE regime occurs,
and, after stopping (t > t0), where the decay is observed during 30 s. Before collapsing,
the SE prediction is maintained over a short period of time (tν − t0 ∼ 0.5 s, i.e., 2 to 3δt)
during an initial period of decay. A final decay (t > tν) then occurs during roughly 20 s. The
main figure 6b then shows the temporal decay of Eω(t) in a log-log plot. Eω(t) shows a time
power-law decay well described, over almost two decades, by the prediction of Eq. (3.10) in
(t − tν)−8/7 (red-dashed line), up to t − tν ∼ 20 s. Note this self-similar decay does not rely on
a self-similar spectrum during the decay (see figure 5). Similar results have been obtained
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Figure 6: (a) Temporal evolution (semilog-y plot) of the total energy Eω(t) before (t < t0) and after (t > t0)
forcing stops. Vertical solid line corresponds to t = t0. Vertical dashed line corresponds to the start of the
final decay at t = tν . The initial decay lasts tν−t0 ' 0.5 s and the final decay of the order of 20 s. (b) Temporal
decay of the total energy Eω(t), estimated by laser vibrometry and averaged over 60 decay experiments.
Red-dashed line has a −8/7 slope corresponding to the prediction of Eq. (3.10). Full prediction of Eq. (3.8)
corresponds to the blue-dashed line. Applied tension: T = 6.8 N m−1. (c) Eω(t) rescaled by its initial value
for various initial forcing strengths E0 ∈ [1.5,15] × 10−8 m3.s−2 (from ◦- to 4-symbols). Red-dashed line
has a −8/7 slope [Eq. (3.10)]. (d) Temporal decay of the total energy Ek (t) estimated by FTP. Red-dashed
line has a −8/7 slope [Eq. (3.10)]. Applied tension T = 6.8 N m−1.

at different measurement locations and for different applied tensions T ∈ [3,7] N m−1.
Moreover, the −8/7 exponent is independent of the strength of the initially applied forcing,
thus for different energies Eω(t = tν) of the initial SE regime (see figure 6c), as expected
by Eq. (3.10). Note that only the total duration of the decay is modified. As detailed in
Sect. 3.3, the time power-law prediction of Eq. (3.10) is accurate only for t − tν > τc with
τc ∼ 0.3 − 0.5 s. As shown in figure 6b, the full prediction of Eq. (3.8) (blue-dashed line)
departs from this time power law only for (t − tν)/τc . 2, i.e., (t − tν) . 1 s.
Finally, let us use the spatiotemporal measurements of η(x, y, t) obtained by FTP to probe

the energy decay in the spatial Fourier spaceEk(t).We expect that the energy decay, computed
with the two different methods, will be the same, i.e., Eω(t) = Ek(t). The total energy Ek(t)
is then defined by

Ek(t) =
∫ kc

kL

T
ρ

k2〈S̃η(k, t)〉δτdk, (3.14)

where kc = k(ωc), kL = 2π/L, and S̃η(k, t) = 〈|η̌(k, ϕ, t)|2〉ϕ/L2 is the spatial power
spectrum of the wave amplitude, η̌(k, ϕ, t) is the spatial Fourier transform of η(x, y, t), and
〈·〉δτ denotes a temporal average over a short time window δτ = 8.3 × 10−2 s to slightly
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smooth the spectrum fluctuations. Figure 6d then shows the temporal decay of the total
energy, Ek(t), computed from Eq. (3.14) over the spatial scales fulfilling SE, i.e., from kL to
kc . Here also, Ek(t) shows a power-law decay well described, over almost two decades, by
the prediction of Eq. (3.10) in (t − tν)−8/7 (red-dashed line). After a typical time t − tν ∼ 4 s,
the spatiotemporal measurement reaches a signal-to-noise ratio close to unity. The duration
of decay (∼ 20 s) is longer using local vibrometry measurements due to its better vertical
resolution. Overall, both methods converge to the same decaying exponent −8/7 predicted
by Eq. (3.10) during the final decay.

4. Conclusions
We experimentally reported on the free decay of large-scale hydroelastic turbulent waves,
initially in a state of statistical equilibrium (SE) where energy is equipartitioned among large-
scale modes. Using space- and time-resolved measurements, we showed that the total energy
of such large-scale tensional waves decays over time as E(t) ∝ (t − tν)−8/7, where tν denotes
the start of the final decay. We derived the energy decay law from the theoretical SE spectrum
and linear viscous damping. This prediction is in good agreement with experimental data
over nearly two decades in time, for various initial energy inputs of the SE state. We also
identified the dissipation mechanism as arising from a zero horizontal velocity boundary
condition at the sheet-liquid interface, and confirmed the predicted dissipation rate τ(ω)
experimentally over more than a decade in frequency. To our knowledge, this represents
the first experimental validations of both E(t) and τ(ω) for hydroelastic tensional waves.
Our approach is broadly applicable to other decaying turbulence or wave-turbulence systems
initially in a large-scale SE regime.
Once forcing is stopped, a short initial decay driven by nonlinearities occurs before a

long viscous final decay initiates. Within this final decay, each energy Fourier mode decays
over a different timescale, leading to a rapid breakdown of the SE regime as high-frequency
(i.e., small-scale) modes dissipate faster. This collapse of SE prevents the definition of
effective temperature and entropy, which are onlymeaningful in the stationary regime (Vernet
& Falcon 2025). Although weak dissipation allows SE to form under steady forcing, it
dominates once the final decay starts, making statistical mechanics inapplicable. Still, the
energy decay retains a memory of the initial SE through its influence on the time power-law
decay exponent of the total energy. This behavior contrasts with classical wave turbulence,
where energy stored in the largest scale continues to cascade toward smaller scales during
decay, preserving a self-similar spectrum at early time (Deike et al. 2012; Cazaubiel et al.
2019). The scenario described here is thus the wave turbulence counterpart of the free decay
of large-scale SE in 3D turbulence reported by Gorce & Falcon (2024).
Although our experimental system focuses on tensional waves, i.e., hydroelastic waves

that differ from the bending-dominated regime relevant to ice floes, these two systems share
several common properties. Both tensional and bending waves exhibit three-wave resonant
interactions, which thus inhibit an inverse cascade of energy, making the SE regime relevant
for large-scale turbulent bending waves. Moreover, the dissipation mechanism identified here
should also apply to the sea-ice case, although whether it is the dominant pathway for energy
dissipation remains unclear. This question is still open in geophysics and lies beyond the
scope of the present study.
Finally, several questions remain open when considering nonstationary processes. Namely,

what is the mechanism behind the emergence of SE? What is the SE dynamics when the
external random forcing is slowly modulated in time? From a broader perspective, and for the
steady SE regime, how far can the analogy to statistical mechanics be pushed? For instance,
is there a possibility for the Fluctuation Theorem and the Fluctuation-Dissipation relation to
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hold in these systems in SE? Answering these questions using statistical mechanics concepts
would undoubtedly strengthen our understanding of the large scales of turbulent systems in
SE.
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