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Abstract. We report on an experimental study of a dilute gas of steel spheres
colliding inelastically and excited by a piston performing sinusoidal vibration,
in low gravity. Using improved experimental apparatus, here we present some
results concerning the collision statistics of particles on a wall of the container.
We also propose a simple model where the non-classical statistics obtained from
our data are attributed to the boundary condition playing the role of a ‘velostat’
instead of a thermostat. The significant differences from the kinetic theory of
usual gas are related to the inelasticity of collisions.
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1. Introduction

A tremendous number of works have been devoted to the study of granular gas within
the past fifteen years [1]-[3]. But a series of basic questions remain to be addressed:
what is the effect of particle rotations [4]7 Does the vibrated container play the role of a
thermostat or of a velostat [5]7 Is the limiting case of particles interacting only with the
walls the same as that of particles interacting with each other? What is the true role of
the boundaries and of the gravity? These last three points were previously investigated
in [6] and demonstrated the importance of rotation and boundary conditions for very
dilute systems.

However, many works devoted to granular gas are often addressed from a theoretical
point of view without gravity or particle rotation, or by means of two-dimensional (2D)
numerical simulations without taking rotation into account [7,8]. In the same way, most
of the experimental results are obtained in 2D experiments in the presence of gravity [9].
It is then difficult to achieve a complete comparison in such conditions. This highlights
the lack of true 3D experiments in microgravity to test the theoretical and numerical
results.

The present paper reports on 3D experiments of a dilute granular medium strongly
fluidized by sinusoidal vibrations in a low gravity environment and where impacts of
particles are recorded by a force sensor. This paper is a continuation of previous
experiments [10] where non-classical statistics were found. The force sensor has been
calibrated showing that the maximum amplitude, I, of detected impact scales as the
maximum force in a Hertz contact leading to I o< v%/%, where v is the particle’s velocity
at impact.

2. Experimental apparatus

As shown in figure 1(a), the experimental set-up consists of a cylindrical cell (D = 13 mm,
H =10 mm at rest) closed at the bottom by an electromagnetically driven mobile piston
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Figure 1. Experimental apparatus (a), and typical signal of amplitude I (b)
recorded with the force sensor during 0.25 s (10 periods) of vibration. The
parameters of vibration are f = w/2m = 40 Hz, A = 1.11 mm. The number
of balls in the cell is: N = 12. The radius of the balls is » = 1.00 mm and the
dimensions of the cell are D = 13 mm, H = 10 mm.

which vibrates according to z = A cos (wt) (A is the amplitude of vibration, 24 < 5 mm,
and f = w/27 is the frequency of vibration, 30 Hz < f < 120 Hz, Aw? < 480 m s™2)
and at the top by a fixed force sensor working in the impacting regime [6,10]. The
cell contains N steel spheres of radius r = 1 mm (N = 12, 24, 36, 48, corresponding
respectively to n = 0.3, 0.6, 0.9, 1.2 layers at rest). The apparatus is placed onboard the
Airbus A300-0g of CNES which delivers 0.0g + 0.05g during a series of parabolas lasting
20 s each. Figure 1(b) shows a typical recording of the signal from the force sensor. It
exhibits a series of peaks of maximum amplitude I, known as impact hereafter. Compared
to [6,10,11], the gauge has now been covered by a lid of given thickness to avoid non-
uniform response of the sensor. Moreover, calibration of the force covered sensor using
impacts from 1-ball experiments [6] have shown that the maximum amplitude of each
peak behaves as the maximum force in a Hertzian contact.

The experiment consists of studying the collision frequency and amplitude as functions
of the number of balls in the cell and of the typical piston speed V = Aw.

3. Experimental results

In order to make the comparison with [10] easier, the same protocol is applied: the collision
statistics are obtained from the 16 central seconds of the 20 s of zero gravity condition—to
avoid transients—and the data are presented with the same axis.

Figure 2(a) gives an example of the number N, of collisions with the sensor divided
by the duration of the measurement (16 s), for a cell containing 12 balls at different piston
speeds V = Aw. The linear behaviour shows that the controlling parameter is the piston
speed V. Moreover, as shown in figure 2(b), this trend is independent of the number of
balls in the cell, within the investigated range of A € [0.79-1.21 mm)], f € [40-121 Hz] and
N € [12-48]. So the average speed of the balls in the direction of vibration (|vy,|) scales
linearly with V.

Figure 2(b) strengthens the result of [10]. It shows with different and less noisy data
that the number of collisions N, scales linearly with N6 within the experimental range
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Figure 2. (a) Typical variation of the number of collisions per second, averaged
over different periods of time (1, 2.5 and 5 s) and at different instants (after 2,
5 and 10 s), for 12 balls, as a function of the piston speed V = Aw. One then
has nine values for each V giving an estimation of the typical deviation to the
mean. The dashed line is a guide for the eye. (b) Total number of collisions N,
observed during time 7' = 16 s of low gravity, rescaled by N%¢: N./(TN°5) as a
function of V' for N = 12,24, 36 and 48. The empty symbols are from a previous
set of experiments [10]. N is the number of particles in the cell. The dashed line
corresponds to the fit N./(TN"®) = aV.

of investigated parameters, N, oc N%¢. Note that if the dynamics of the particles were
not correlated, N, should scale as N. The latter observation allows determination of some
typical average ball speeds (|v.|) in the direction of vibration. Let us define (|v,.|) as
the mean particle velocity in the direction of vibration. The total distance travelled by
all the particles in this direction during the time 7" is N{|v,,|)7" and the corresponding
number of impacts with the sensor gives N. = N(|v,.|)T/2(H — 2r). One deduces (with
N, o< VNO6Y: (|vg.|) o< (V/NO4)(H — 2r).

The typical impact recording (figure 1(b)) gives access to different statistics. In the
following we study the distribution of waiting times between successive impacts and the
distribution of impact maxima.
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Figure 3. Probability density functions of the free time At separating two
successive collisions detected by the impact sensor rescaled by V = Aw, for
different vibration parameters during 16 s of low gravity.

Figure 3 shows the probability density function (PDF) of the time lag At between
two successive impacts with the sensor for several numbers of particles N and figure 4
shows the rescaled PDF leading to a single exponential curve ~ exp 3N*SVA¢. Figure 5
shows the PDF of the maximum of impact on the force sensor. Both distributions present
exponential trends in agreement with those obtained in previous experiments with a less
improved experimental apparatus [10]. If the number of balls N is less than 36, the PDF
of the impact amplitude is not exponential (also observed in [10] for N = 12). This can
be attributed either to an insufficient number of impacts, or to the saturation of the ball
speed v,, = 2(H — 2r)f, leading to a superposition of two behaviours: the first one, at
low I/V, when the ball motion is not synchronized with the piston and the second one,
at larger I/V, corresponding to a progressive synchronization with the piston motion as
in [6]. However, more experiments should be performed to validate this last idea.

The above results combined with previous ones [10] show the robustness of the
exponential distributions for the PDF of At and I in this range of experimental parameters
and conditions. However, we shall note that other kinds of distributions have also
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Figure 4. Probability density function of the free time At separating two
successive collisions, rescaled by V' (V = Aw) and by the number of beads N.

been observed experimentally [6,9,12] with different experimental conditions—2D, 3D,
gravity—highlighting the sensitivity of the problem.

It is then worth noting that none of the previous simulations or theoretical models find
this kind of exponential distribution [14, 15], except with very special boundary rules [13].
Note also that the scaling of the number of collisions, N, ~ /N, has recently been
recovered in 2D simulations [16], but no information about the shape of the impact
distribution was given and particle rotation has not been introduced, although it has
recently been shown [4, 6] that rotation might be important in the 3D granular gas pattern
of the 1-g oscillon type, and of the ultimate case of 0-g and very low density respectively.

In the next section, we present an interpretation of these exponential distributions
found here.

4. Discussion

4.1. Time lag distribution as a Poisson process

From the exponential trend of the PDF of the time lag between two successive impacts,
the impact series on the force sensor can be seen as a Poisson process on which one can
perform several statistical tests. We have already shown that correlations might exist
due to the anomalous scaling of the number of impacts with N. We want to confirm the
importance of correlation and to show whether the Poisson process is homogeneous or
not, that is, if the impact series corresponds to a stationary state.

We first perform a Kolmogorov—Smirnov test [17] of hypothesis Hy: ‘the PDF of time
lag is exponential with no correlation’. The test shows that Hj, is not achieved. We
then fit our experimental PDF with an exponential law and find that the error is small,
allowing us to conclude that the PDF is exponential but with correlation between events
as expected.

The second test is a homogeneity test of the Poisson process. We plot the number
of impacts between t = 0 and ¢ = t' for increasing t’. A likelihood ratio test shows
that the number of impacts does not increase linearly with ¢’ proving that the Poisson

doi:10.1088 /1742-5468/2006,/07 /P0O7012 6


http://dx.doi.org/10.1088/1742-5468/2006/07/P07012

Microgravity experiments on vibrated granular gases

N=12 N=36
10°g 10°E
== f=40 Hz, A=1.11 mm =—a =40 Hz, A=1.19 mm
af T~ el o f=60 Hz, A=1.2]1 mm B +— =60 Hz, A=1.21 mm
10k +—+ £=90 Hz, A=1.14 mm 10 F=ueg, +—+ =90 Hz, A=1.08 mm
E *x—x f=121 Hz, A=0.79 mm S an, x—x f=121 Hz, A=0.79 mm
E 10_25 N
= F
= [
& 0%k

10°F
107 I ] ! . ] . ! 10 . ! . ! . ! . !
0 200 400 600 800 0 200 400 600 800
IV (au.) 1/V (a.u.)
N=24 N=48
10° 10°
=—u =40 Hz, A=1.19 mm +— =60 Hz, A=1.21 mm
1 +— =60 Hz, A=1.21 mm “1 +—+ =90 Hz, A=1.08 mm
10 ¢ +— =90 Hz, A=1.08 mm 10" Eoseae s x— f=121 Hz, A=0.79 mm
xx f=121Hz, A=0.79 mm
~ 12 —~
2 10 2
E £
2 4 =)
W 10 W
10*
107 . . . . 1 107 . ! . ! . ! . !
0 200 400 600 800 0 200 400 600 800
¥V (au) I/V (a.u.)

Figure 5. Probability density functions of the impact amplitude I measured
by the sensor, for different vibration parameters during 16 s of low gravity, for
different number of balls: N = 12, 24, 36 and 48.

process is non-homogeneous and consequently that the impact series do not correspond
to a stationary state despite a large number of impacts per particle.

It seems that this non-stationarity cannot be attributed to the g-jitter because it
would involve a variation of the speed of a particle much smaller than the minimum speed
of the piston. In another context, Moon et al [4] have noticed that particles rotation
plays an important role, not only by increasing the dissipation but also by modifying the
coupling and increasing the real distribution of grains which can be observed. This might
also be the case here, in particular including that the rotation degrees of freedom increases
the time for a stationary state to be reached. It also points out the necessity to prove that
the stationary state still exists in this experiment when rotations are considered. Longer
experiments or numerical simulations with rotation and suitable statistical tests should
be performed to address this issue.

4.2. A simple model ‘a la Boltzmann’ for the impact distribution

Recently, Van Zon et al [12,18] have shown numerically that the velocity distribution
depends on the boundary condition, while Campbell [19] casts a doubt on the relevance
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of kinetics theory to describe rapid granular flow particularly because of large dissipation.
Here, we propose a model which takes into account the specific boundary condition
and which is based neither on energy conservation nor on the importance of granular
temperature.

Figure 5 shows that the ball speed at impact (i.e. close to the wall container opposite
the piston) obeys approximately an exponential distribution, PDF (vj,) ~ e~%=/". This
may be explained by a simple model, first reported in [11]. Starting from the general
framework of Boltzmann’s equation, and from its stationary solution, let us consider that
a statistical distribution can be written as a function of the collision invariants, that is
here the total momentum of the particles rather than the total energy, because impacts
between particle are inelastic. One might then consider that the quantity whose disorder
has to be maximized is the momentum of the particles. This allows us to proceed as in
classic statistical physics: one assumes that the observed state is the most probable one;
S0, it is the state with the largest possible complexion number W: W should be optimum,
and In(W) too. However, it should also correspond to a possible state of the system. Let
us also assume that the mean speed is imposed by the coupling between the particles and
an external system, known as a ‘velostat’. Let n; be the number of particles with speed
v;, the number of complexion W is: W = N!/(ni!n;!...). The two conservation laws
write: N =Y .n;, N(v,) = >, vn;. Using dv; = 0, dW = 0, dN = 0 and the Stirling
relation In(N!) ~ NIn(N) — N, one gets: dln(W) =0 = —>".In(n;)dn;, 0 = = >, dn,,

0=—>,vdn;. A way to condense these three equations into a single one is to use the
Lagrange multiplier technique and then:
0==> [In(n;) + A\ + Aowi] dn; (1)

(2

where A\; and A, are fixed by the experimental conditions and the n; are uncoupled to each
other. With the normalization condition ) n,dv; = N, one has the general exponential

solution:

i (1) = Ageov 2)
N (2
which is in agreement with figure 5 for N = 36 and 48. As a consequence, one can
see the system of grains as coupled to a velostat—the moving piston—confirming recent
assumptions [5,11]. However, the typical speed of the balls depends on the mean free
path compared to the cell size, that is the number of particles N. It means that the
moving piston is not a true velostat, since it imposes a typical speed which depends on
the number of balls and that the system does not follow an ‘extensive’ physics.

5. Conclusion

This experiment has investigated the statistics of collisions in a granular gas excited by
a vibrating piston in micro-gravity conditions in the dilute regime. It follows up our
previous observed experiment [10]. The regime studied here is intermediate between the
very low density regime of non-interacting particles [6], and the high density one where
clustering of particles probably occurs [20, 21].

It has been found here that the typical ball speed (vy,) is proportional to the piston
speed V, and decreases rapidly with N as V/N%4. The distribution of time lag between
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two successive collisions with a wall container is found to be exponentially decreasing with
At. It has been interpreted as a non-homogeneous Poisson process. For large enough N,
the experimental distribution of impacts amplitude I is found to decrease exponentially
as I/V. An interpretation for this exponential tail is proposed: the piston does not play
the role of a thermostat, but that of a ‘velostat” or of a random impact generator. More
generally the notion of temperature should also be taken with caution in the case of rapid
granular flow [19].

Finally, in most experiments on dilute granular gas, the piston speed V goes faster
than the typical ball speed, which indicates a supersonic excitation since the typical
sound speed ¢ of a normal gas is also its mean speed (v,) ~ c (within a /¥ factor,
v = C,/C,). Even if this continuous mechanics view point is not obvious at all in the
Knudsen regime, it confirms previous analyses and findings on denser samples [21,22].
These results cast a doubt on using continuous equations to model granular gases, because
they demonstrate the difficulty of defining correct boundary conditions, correct local
averages and correct coupling due to dissipation and /or the Knudsen regime. In particular,
the role of dissipation has to be elucidated.
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