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We measured, at low applied voltage, the ac electrical resistance and capacitance of a metallic powder
sample under uniaxial compression. Whatever the applied stress, the frequency-dependent resistance curves
can be displayed on a master curve by an appropriate rescaling. The same property is also observed for the
capacitance. A one-dimensional model shows that the strong frequency dependence of the macroscopic resis-
tance and capacitance is a consequence of the broad contact resistance distribution between grains. No micro-
scopic model of conduction nor any parameter related to the unknown disorder need to be assumed. Relevance
to other systems like random conductor-insulator mixtures or metal-cluster compounds is discussed.
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I. INTRODUCTION

For many years, many experimental, numerical, and the-
oretical efforts have been made to understand the ac electri-
cal conductivity of heterogeneous materials composed of
conductive and insulating constituents. The experimental re-
sults of the ac conductivity ��� and permittivity ��� in these
systems are power-law dependent on the frequency �: �
��x and ���−y, where x is typically 0.6�x�1, and y is
found to be close to 1−x. Such frequency response is gener-
ally named the “universal dielectric response”1 and is ob-
served in a wide variety of materials: metal-cluster
compounds,2,3 random conductor-insulator mixtures,4,5 and
polymer composites.6,7 In a recent series of publications,8–11

it has been suggested that this universal frequency-dependent
conductivity and permittivity does not characterize the physi-
cal or chemical material involved, but is just an emergent
property of a complex network of resistive and capacitive
microstructural regions.

In this paper, we report measurements of ac conductivity
of a metallic powder. This system can be electrically de-
scribed by a complex network of resistors, each resistor rep-
resenting one single electric contact between two grains. If
the resistance values are restricted to a couple of numbers,
one has a system close to a random conductor-insulator mix-
ture. In practice, the resistances are distributed continuously
between rmin and rmax, where rmin and rmax are, respectively,
the minimum and the maximum of the contact resistances
within the powder.

This paper is organized as follows. In Secs. II and III, we
describe the experimental apparatus and give the experimen-
tal results. The complex admittance of the powder as a func-
tion of frequency follows a power-law behavior. We then
describe our model and report the analytical result in Sec. IV.
The powder is simply electrically modeled by a chain of
resistors and capacitors in parallel. In Sec. V, a comparison
with the experiments is given. Section VI is dedicated to the
influence of the mechanical pressure on the frequency-
dependent capacitance.

II. EXPERIMENTAL SETUP

Experiments are performed with commercial copper pow-
der samples of 100 �m, constituted of roughly spherical

particles.12–14 The polydispersity is relatively large since the
diameter of the particles varies from 50 to 110 �m.

As shown in Fig. 1, 0.5 g of powder are confined in a
Plexiglass cylinder �7 mm of inner diameter�, capped with
two metallic electrodes �brass cylinders�. The powder height
is close to 2.4 mm, roughly corresponding to 500 000 par-
ticles. A mechanical pressure P rising up to 50 N /mm2 is
applied on the powder, and is measured with a static force
sensor �FGP Instrumentation™, with a 0.6 mV /N sensitiv-
ity�. The ac resistance and capacitance are simultaneously
measured using a Hewlett Packard 4192A impedance ana-
lyzer. The amplitude of the voltage applied to the powder
sample is fixed to a low value �Urms=100 mV� in order to
avoid any voltage-induced nonlinear effect.14,15 The fre-
quency � ranges from 20 Hz to 1 MHz. Before each experi-
mental run, the container is refilled with a new sample of
powder. This procedure ensures better reproducibility than
simply relaxing the confining pressure and shaking the con-
tainer.

III. EXPERIMENTAL RESULTS

Figure 2 is a log-log plot of the ac resistance and ac ca-
pacitance of several copper powder samples as a function of
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FIG. 1. �Color online� Sketch of the experimental principle. The
powder sample is confined in a polymethylmethacrylate �PMMA�
cylinder, capped with two metallic electrodes. A static pressure P is
applied on the powder and is measured using a force sensor. An
impedance analyzer is used to measure the impedance of the
powder.
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frequency. The pressure applied ranges from
4 to 52 N /mm2. The complex dependence of resistance on
the pressure will be studied in a future paper. At fixed pres-
sure and low frequencies, the resistance is frequency inde-
pendent. At higher frequencies, the resistance decreases and
follows a power-law behavior: R�����−x, with x close to
0.65 �see Fig. 2�a��. Whatever the pressure applied to the
powder is, the power law is still observed and the exponent x
seems to be independent of P. As for capacitance, their rela-
tive variations are smaller than those of the resistance. The
capacitance is also well described by a power law: C���
��−y, with y close to 0.25 �see Fig. 2�b��. Finally, at high
frequencies, the product RC seems to be proportional to �−0.9

�Fig. 3�. Besides, RC� tends to be close to 1 when � in-
creases.

Such behaviors of complex admittance with frequency are
observed in a very wide range of materials. To explain this
ubiquity, any model must be independent of the particular
physical and chemical properties of the materials involved.
In our opinion, the power-law behavior does not characterize
the electrical conduction at the atomic level, but it is “sim-
ply” the response of an electrical network of conventional
resistive and capacitive components. Indeed, in many mate-
rials that are found to exhibit power-law behavior, we can
identify resistive and capacitive microstructural regions.8–11

That is why we simply model the powder by a network of
resistors and capacitors.

IV. MODEL AND ITS ANALYTICAL RESULTS

The powder is a set of conductive copper grains in con-
tact. Its high electrical resistance is probably due to an oxide
layer on the grain surface. As a consequence, the contact
between two metallic grains can be electrically described by
a resistor �r� and a capacitor �c� in parallel. A suitable rep-
resentation of the whole powder is then a three-dimensional
network of connected r �c circuits, where r is the resistance
and c the capacitance of each grain-grain contact. However,
to simplify our model, only one conductive path is assumed
to connect the lower to the upper electrode �see Fig. 4�a��.
We will then show that this one-dimensional model is really
sufficient to describe correctly the frequency behavior of
both resistance and capacitance observed in Fig. 2. Besides,
the number N of grain-grain contacts is choosen large
enough to allow a statistical evaluation of the impedance of
this system.

To complete the model, we have to know the form of the
distribution functions of the contact resistances P�r� and of
the contact capacitances Q�c�. Intuitively, these two distribu-
tions depend on the physical and chemical properties of the
oxide on the grain surface. Here, we suggest that the strong
frequency dependence of the equivalent resistance R and the
equivalent capacitance C �see Fig. 4�b�� is directly caused by
the distributions P�r� or Q�c� being broad enough.

First, the assumption that P�r� is broad seems quite rea-
sonable and consistent with some experimental observations.

ν (Hz)

FIG. 2. �Color online� Logarithmic plot of the �a� ac resistance
and �b� ac capacitance of powder samples versus frequency. Differ-
ent symbols correspond to different pressures �P� applied to
samples: P=4 ���, 5 ���, 8 ���, 15 ���, 22 ���, 36 ���, and 52 ���
N /mm2. For each value of frequency, when the pressure increases,
the capacitance increases, whereas the resistance decreases. At fixed
pressure, both resistance and capacitance decrease with the
frequency.
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FIG. 3. �Color online� Logarithmic plot of the product RC ver-
sus frequency. Same symbols as in Fig. 2.
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FIG. 4. �a� The electrical properties of the powder are simply
modeled by a chain of N r �c circuits. �b� Electrical equivalent cir-
cuit of the chain. The equivalent resistance R and the equivalent
capacitance C depend on the frequency � or on the angular fre-
quency 	=2
�.
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Indeed, in recent works,15,16 we showed that the contact re-
sistances between stainless steel beads are widely distributed,
probably as a consequence of the inhomogeneity of the oxide
layer. The distribution of resistance was well fitted by a log-
normal distribution.

Second, in the Appendix, we demonstrate that the distri-
bution function of the product �=rc must be broad enough to
reproduce well the measured equivalent impedance of the
powder. We note �max and �min the largest and the smallest
characteristic times, respectively, of the N r �c circuits. At
very low frequencies �i.e., ��r��1 /�max� and also at very
high frequencies �i.e., �1 /�min�, the total resistance of a
chain of r �c circuits is frequency independent. The ratio be-
tween the resistance when the frequency is low �R0� and its
value when the frequency is high �Rhf� is lowest than the
ratio between �max and �min: R0 /Rhf ��max /�min. The experi-
mental data indicate that R0 /Rhf is greater than 100 �Fig. 2�.
So, in our model, we must take �max /�min�100.

We now make some assumptions on the form of P�r� and
Q�c� which are very useful from an analytical point of view.
For P�r�, we do not use a lognormal distribution �as in Refs.
15 and 16�, but use a simple flat distribution of resistance
logarithms. We suppose that the contact resistances between
copper grains �r� are such that the probability density of their
logarithm is uniform with the value P0 for ln rmin� ln r
� ln rmax. As for the capacitances, the distribution Q�c� is
chosen as simple as possible since we suppose that all ca-
pacities c are equal to a constant value c0. Thus, the distri-
bution of the characteristic time �=rc is broad because it is
also P. Beyond simplicity, Q is choosen very different from
P since, until now, no experiment has shown that the contact
capacitances are widely distributed, contrary to the contact
resistances.

Finally, our model depends on three parameters: c0, rmax,
and �=rmin /rmax�1:

c = c0, �1�

P�r� = P0/r , �2�

where P0=−1 / ln �, due to normalization.
The total impedance predicted by the above model is NZ

with

Z = �
rmin

rmax r

1 + jrc0	
P�r�dr =

z1 − jz2

c0	
, �3�

where

z1 = �
rmin

rmax rc0	

1 + r2c0
2	2P�r�dr , �4�

z2 = �
rmin

rmax r2c0
2	2

1 + r2c0
2	2P�r�dr . �5�

The powder can be described electrically by a resistor and a
capacitor in parallel, both are frequency dependent:

1

NZ
=

1

R�	�
+ jC�	�	 �6a�

=
z1

z1
2 + z2

2

c0	

N
+ j

z2

z1
2 + z2

2

c0	

N
. �6b�

From Eqs. �6a� and �6b�, the evolution of RC	 as a function
of the angular frequency 	 then is

RC	 =
z2

z1
. �7�

In the case of a flat distribution of resistance logarithms �Eq.
�2��, explicit integration of z1 and z2 is possible, and Eq. �7�
becomes

RC	 =
1

2

ln�1 + rmax
2 c0

2	2� − ln�1 + rmin
2 c0

2	2�
arctan�rmaxc0	� − arctan�rminc0	�

. �8�

At low enough frequency, the product RC is very close to a
constant R0C0:

R0C0 =
1 + �

2
rmax c0 �

rmax c0

2
. �9�

Measuring RC at very low frequency, thus, gives the value of
the product rmaxc0. It follows that

RC

R0C0
=

1

�

ln�1 + �2� − ln�1 + �2�2�
arctan��� − arctan����

, �10�

where �=2R0C0	 is the adimensional angular frequency.
Since � is close to zero, a good approximation is to neglect
terms containing � in Eq. �10�. These theoretical results
show that RC /R0C0 is a “universal” function of � since it
has no adjustable parameter and is independent of the pres-
sure and the physical properties of the oxide. Finally, the
dependence of resistance and capacitance on � can be ex-
pressed for �=0:

R

R0
=

1

�

�arctan����2 + 1
4 �ln�1 + �2��2

arctan���
, �11�

C

C0
=

ln�1 + �2�
�arctan����2 + 1

4 �ln�1 + �2��2
. �12�

V. COMPARISON WITH THE EXPERIMENTS

Figure 5 is a log-log plot of RC /R0C0 as a function of
adimensionnal angular frequency �, comparing both the
model of Sec. IV and the experimental data of Sec. III. R0
and C0 are simply the measured values of the resistance and
the capacitance at 20 Hz, respectively.

The rescaling predicted in our model �Eq. �10�� is almost
perfect. Moreover, in order to have good agreement with the
data, � has to be smaller than 10−5 �see Fig. 5�. This means
that the distribution of resistances is broad: rmin�10−5rmax.
However, the model slightly overestimates RC /R0C0.
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Figures 6�a� and 6�b� display the variations of R /R0 and
C /C0 as a function of �. For comparison, the predictions
from Eqs. �11� and �12� are also shown. Two observations
can be made. First, using the adimensional angular frequency
� and rescaling the resistance by its value at low frequency,
all curves R vs 	 fall on the same master curve whatever the
pressure applied to the powder. Second, our model provides
a correct scaling function R /R0 vs � without using any ad-
justable parameter.

The rescaling is also acceptable for the capacity �Fig.
6�b�� and the model reproduces well the general trend. Dif-
ferences between rescaled experimental data and model pre-
dictions are greater for the capacity than for the resistance. It
is certainly due to the simplicity of our model, in particular,
all grain-grain contacts are supposed to have the same capac-
ity c0.

VI. CAPACITANCE VERSUS MECHANICAL PRESSURE
AND FREQUENCY

In other experimental works14,17 dedicated to the influence
of mechanical pressure on the DC electrical properties of a
powder sample, we show that both resistance and capaci-
tance follow a power-law behavior like

R0�P� � P−�0, �13�

C0�P� � P�0, �14�

where �0	1.7 and �0	1. R0 and C0 are the resistance and
the capacitance at low frequencies.

In this section, we investigate the influence of frequency
on the power-law dependence of capacitance with the me-
chanical pressure. For any fixed frequency � arbitrarily cho-
sen between 20 Hz and 1 MHz, the capacitance as a function
of pressure can be approximately fitted by a power law in the
pressure range from 4 to 50 N �see Fig. 7�:

C�	,P� � P�	. �15�

The exponent �	 remains close to 1, but depends slightly on
the angular frequency 	=2
� �see Fig. 8�.

Interpretation

Equation �12� describes the evolution of the capacitance
with both angular frequency and pressure. It can be rewritten
in a more appropriate form as

C�	,P� = C0�P�F��� . �16�

As �=2R0C0	, with R0 and C0 pressure dependent, F���
varies with P at fixed 	. We show below that we can fit this
variation with a power law in pressure in the limited ex-
plored range Pmin� P� Pmax, with Pmin=4 and Pmax
=50 N /mm2 �see Fig. 7 and Eq. �15��. We define Pm

=
PminPmax such that ln ��	 , Pm� is the center of the varia-
tion interval of ln ��	 , P� at fixed 	 �see Eqs. �13� and
�14��:
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FIG. 5. �Color online� Logarithmic plot of RC /R0C0 versus �,
for different pressures applied to the powder. The lines correspond
to Eq. �10� with � going from 0 to 10−3.
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FIG. 6. �Color online� �a� Rescaled resistance as a function of
rescaled angular frequency for various pressures applied to the
powder. The solid line is the prediction from Eq. �11�. �b� Rescaled
capacitance as a function of �. The solid line shows the behavior
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FIG. 7. �Color online� The capacitance as a function of me-
chanical pressure for four particular frequencies: 200 Hz ���,
3 kHz ���, 50 kHz ���, and 800 kHz ���. Solid lines are power-
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��	,P� = ��	,Pm�� P

Pm
��0−�0

. �17�

In this limited range of �, we can approximate F��� as

F��� � �−��	�, �18�

where

��	� = −
d ln F
d ln �

�� = ��	,Pm�� . �19�

Finally, according to our model described in Sec. IV, the
capacitance remains a power law of pressure for any angular
frequency:

C�	,P� = C�	,Pm�� P

Pm
��	

, �20�

with

�	 = �0 + ��0 − �0���	� . �21�

We report in Fig. 8 the exponent �	 �defined by Eq. �15��
as a function of the frequency. The experimental results ex-
hibit good agreement with the theoretical prediction �Eq.
�21�� obtained with our simple electrical model of powder.
We stress here that there is no fitted or adjustable parameter
in this approach. Besides, Eq. �21� shows that �	 depends
not only on the angular frequency, but also on the arbitrary
pressure Pm �see also Fig. 8�. Since �	 is not strictly pressure
independent, according to our model, the power-law behav-
ior of capacitance as a function of the pressure �Eq. �15��
cannot be valid when the pressure is largely lower or largely
higher than Pm. Experimentally, such deviations from this
power law are seen at low and high pressures �Fig. 7�, and
they might be explained by the variations of the exponent �	

predicted by our model.
Similarly, one can extend this analysis to the resistance

behavior as a function of the pressure and the frequency.
However, at fixed pressure, the capacitance is close to a
power law of � �Fig. 6�b��, whereas the resistance cannot be

considered as a power law of � �Fig. 6�a��. The approxima-
tion �18� is then not valid for the resistance. So, the relative
variations of the resistance with pressure and frequency are
much more complex to interpret than those of the capaci-
tance.

VII. CONCLUSION AND RELEVANCE TO OTHER
PHYSICAL SYSTEMS

This work has shown that the electrical characteristics of
a metallic powder are simply those of an electrical network
formed by a large number of pure resitors and pure capaci-
tors in random position. At high enough frequencies, the ob-
served power-law dependence on the frequency of the ac
resistance and capacitance originates from a broad resistance
variability of the contact between grains. ac measurements
have given precious hints on the distribution of resistances
and capacitances that are compatible with a wide distribution
of resistances and a narrow distribution of capacitances.

For such a granular medium, we have demonstrated that a
simple one-dimensional model can easily describe the
frequency-dependent impedance observed. For this, no mi-
croscopic model of conduction nor any parameters related to
the unknown disorder need to be assumed. Similar behavior
of the complex impedance has been observed in many het-
erogeneous materials �random conductor-insulator mixtures,
metal-cluster compounds, etc.�. We suggest that our interpre-
tation remains valid in other materials containing a large
variability of resistance and capacitance phases.

APPENDIX: ELECTRICAL BEHAVIOR OF A CHAIN OF
r ¸c CIRCUITS AT LOW AND HIGH FREQUENCIES

Let us consider the low- and high-frequency limits of the
equivalent resistance R�	� and the equivalent capacitance
C�	� in the model described in Fig. 4. Here, no assumption
is made on the distribution of resistance P�r� or on the dis-
tribution of capacitance Q�c�. The total impedance of the
chain is the sum of the individual impedances of the r �c
circuits and it can also be described by a resistance R�	� in
parallel with a capacitance C�	� depending both in the an-
gular frequency 	:

Z = 
i=1

N
ri

1 + j�i	
=

R

1 + jR�	�C�	�	
, �A1�

with j2=−1.
At very low frequencies �	�1 /�max�, the impedance of

each capacitor ci is broadly smaller than its corresponding
resistance ri. Then, Z can be approximated by

Z 	 
i=1

N

ri − j
i=1

N

�iri	 = R − jR2C	 . �A2�

So, when 	�1 /�max, the resistance and the capacitance are
found to be independent of 	 and are equal to

R0 = 
i=1

N

ri = 
i=1

N

�i/ci, �A3�
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FIG. 8. �Color online� Frequency dependence of the power-law
exponent �	. ��� experiments from the power-law fits of Fig. 7. At
low and high frequencies, �		�0=1. The solid line shows the
behavior expected from our model with Pm=15 N �Eq. �21��. Ac-
cording to Eq. �21�, �	 depends slightly on the pressure Pm, so �	

varies a little bit with the range of pressure chosen in Fig. 7.
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C0 =


i=1

N

ri�i

� 
i=1

N

ri�2 . �A4�

On the contrary, at very high frequencies �	1 /�min�,
every resistance ri is broadly smaller than the impedance of
its corresponding capacitor ci. Equation �A1� becomes

Z 	 
i=1

N
ri

j�i	
+ 

i=1

N
ri

�i
2	2 =

1

jC	
+

R

R2C2	
. �A5�

When the frequency is sufficiently high, R and C are fre-
quency independent:

Rhf =
� 

i=1

N

ri/�i�2


i=1

N

ri/�i
2

=
� 

i=1

N

1/ci�2


i=1

N

1/�ci�i�
, �A6�

Chf =
1


i=1

N

ri/�i

. �A7�

We deduce from Eqs. �A3� and �A6� that the ratio R0 /Rhf
can be written as

R0/Rhf = ��i��ci�
� �1/�i��ci�

, �A8�

where �xi��yi�
is the weighted average of data �xi� with corre-

sponding weights �yi�.
Similarly, from Eqs. �A4� and �A7�, the ratio C0 /Chf can

be written as the product of the weighted average time ��i��ri�
by the weighted average of inverse time �1 /�i��ri�

:

C0/Chf = ��i��ri�
� �1/�i��ri�

. �A9�

Finally, Eqs. �A8� and �A9� show that ratios R0 /Rhf and
C0 /Chf are smaller than the ratio �max /�min.
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