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Gravity wave turbulence revealed by horizontal vibrations of the container
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Univ Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, F-75013 Paris, France

(Received 12 July 2012; published 4 January 2013)

We experimentally study the role of forcing on gravity-capillary wave turbulence. Previous laboratory
experiments using spatially localized forcing (vibrating blades) have shown that the frequency power-law
exponent of the gravity wave spectrum depends on the forcing parameters. By horizontally vibrating the whole
container, we observe a spectrum exponent that does not depend on the forcing parameters for both gravity and
capillary regimes. This spatially extended forcing leads to a gravity spectrum exponent in better agreement with
the theory than by using a spatially localized forcing. The role of the vessel shape has been also studied. Finally,
the wave spectrum is found to scale linearly with the injected power for both regimes whatever the forcing type
used.
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When waves of large-enough amplitudes propagate within
a dispersive medium, the nonlinear interactions generate
waves at different scales. This energy transfer from the
large scales (where the energy is injected) to the small
scales (where it is dissipated) is called wave turbulence. It
occurs in various domains: optical waves, surface or internal
waves in oceanography, astrophysical plasma waves, Rossby
waves in geophysics, and elastic or spin waves in solids
(for recent reviews, see Refs. [1–3]). Since the end of the
1960s, weak turbulence theory describes the wave turbulence
regimes in almost all fields involving waves [4]. It assumes
strong hypotheses such as those addressing weakly nonlinear,
isotropic, and homogeneous random waves in an infinite-size
system with scale separation between injection and dissipation
of energy. It notably predicts analytical solutions for the
spectrum of a weakly nonlinear wave field at equilibrium or in
a stationary out-of-equilibrium regime.

While homogeneity and isotropy are two premises of
the theory, laboratory experiments generally use spatially
localized forcing to generate wave turbulence (e.g., elastic
waves on plates or surface waves on a fluid). The use of a
spatially homogeneous forcing is, thus, of primary interest to
probe the validity domain of this theory. Previous experiments
were performed by vertically vibrating a vessel filled with a
fluid using the Faraday instability to homogeneously generate
capillary wave turbulence [5–7]. However, this forcing gener-
ates localized structures and discrete resonance peaks in the
wave spectrum.

In oceans, the gravity wave spectrum depends on numerous
forcing parameters (wind, fetch, sea severity, etc.). Conse-
quently, in situ spectra are usually fitted with many parameters
[8], and some data are quantitatively in rough agreement
with the weak turbulence predictions [9]. However, recent
well-controlled laboratory experiments show deviations from
the predictions for the scaling of the gravity wave spectrum
when waves are locally generated (using vibrating blades at
the surface of a fluid) [10,11]. In this case, the exponent of the
frequency power-law spectrum of gravity waves depends on
the forcing parameters (amplitude and frequency bandwidth)
[10,11] instead of being independent, as expected theoretically.
The origin of this discrepancy remains an open problem. It has

been suggested to be due to finite-size effects [10] or to the
presence of strong nonlinear waves [12].

In this Rapid Communication, we study gravity-capillary
wave turbulence subjected to horizontal random vibrations of
the whole container. The frequency power laws of the wave
spectrum are found to be independent of the forcing parameters
in both gravity and capillary regimes, with a rough agreement
with weak turbulence theory. The probability distribution of
the wave height and the scaling of the wave spectrum with
the forcing amplitude is also measured. Note that horizontal
vibrations of a container at a single frequency have been used to
study liquid sloshing motions [13], the shape of steep capillary-
gravity waves arising through Kelvin-Helmholtz instability of
two immiscible liquids [14], and in other dissipative systems
driven far from equilibrium such as granular materials [15].
To our knowledge, no experiment using horizontal random
vibrations of the container has been performed so far to study
hydrodynamic wave turbulence.

The experimental setup is shown in Fig. 1. A circular vessel,
22 cm in diameter, is mounted on four ball-bearing wheels
and is horizontally vibrated using an electromagnetic shaker.
The container is filled with water up to a depth h = 3 cm,
leading to an almost deep water limit (λ � 2πh for our range
of wavelengths λ). The shaker (LDS V406/PA 100E) is driven
by a random noise forcing low-pass filtered within a frequency
bandwidth between 1 Hz and fp (fp being from 5 to 7 Hz).
A force sensor (FGP Instr. NTC) is fixed to the shaker axis to
measure the instantaneous force F (t) applied by the shaker to
the container. The instantaneous velocity V (t) of the container
is measured using a homemade coil placed on the shaker axis
[16]. A magnet links the container to the shaker axis (and the
axis of both sensors) to impose a force on the container in the
direction of the shaker axis. The surface wave height η(t) is
measured by a homemade capacitive sensor [10]. This sensor
moves together with the vessel, η(t) thus being measured in the
container framework. Typical wave mean steepness s ranges
from 0.01 to 0.10, estimated as s = k∗/ση with ση the rms
value of η(t) and k∗ the wave number of the first normal
mode of the vessel (roughly corresponding to the maximum
frequency of the spectrum). F (t) and V (t) are recorded for
5 min to compute the mean power P injected to the system
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FIG. 1. Experimental setup.

(see below). η(t) is recorded for 5 and 30 min, respectively, to
compute its power spectrum and its probability distribution.
The location of the capacitive sensor has no influence on the
spectrum. We are far from conditions of resonance sloshing
generating waves strongly coupled with the bulk flow such
as swirling waves [13]. Note also that the maximum forcing
amplitude is less than the onset of the water drop ejection or
wave breaking.

A typical temporal recording of η(t) is shown in the
inset of Fig. 2. η(t) displays erratic motion with 〈η〉 = 0.
Its power spectral density is shown in Fig. 2. Note that two
peaks are visible (at 3.4 and 4.5 ± 0.2 Hz) that correspond
to theoretical vessel eigenvalue modes [17]. Here, we are
interested in the part of the spectrum not directly excited by
the forcing (f > 6 Hz). At low forcing amplitude, no power
law is observed and no wave turbulence regime occurs. At
high-enough forcing, two frequency-power laws are observed
in the spectrum corresponding to the gravity and capillary wave
turbulence regimes at low and high frequency, respectively.
Similar results were obtained with a vibrating blade forcing
[10]. The transition between both regimes occurs at a crossover
frequency close to 20 Hz corresponding to λ ≈ 1 cm. The
spectrum strongly decreases at high frequency (�100 Hz)
due to dissipation. When the forcing amplitude is increased,
the frequency–power-law fits are roughly parallel for each
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FIG. 2. (Color online) Spectra of the wave height for different
injected powers: P = 1.2, 14.6, 17.2, 23.6, and 28.5 mW (bottom
to top). Frequency bandwidth of the forcing: 1–6 Hz (colored area).
Curves are vertically shifted for clarity. Dashed (red) lines: Power-law
fits of the gravity spectra. Dash-dotted (blue) lines: Power-law fits of
the capillary spectra. Inset: Typical temporal evolution of the wave
height.
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FIG. 3. (Color online) Exponents of the frequency power-law
spectra of the capillary and gravity regimes as a function of injected
power. Different frequency bandwidths of the forcing: 1–5 Hz (�),
1–6 Hz (�), and 1–7 Hz (•). Theoretical exponents: −17/6 [top (blue)
dashed line] and −4 [bottom (red) dashed line] for the capillary and
gravity wave turbulence regimes. Inset: Crossover frequency between
both regimes. Same symbols as in the main figure.

regime. The exponents of the frequency-power laws are shown
in Fig. 3. Both gravity and capillary exponents are found to
be independent of the forcing parameters for our range of
injected power, taking values of −4.5 ± 0.2 and −2.4 ± 0.3,
respectively. These differ from results of previous studies
with localized vibrating blades [10,11] where the gravity
spectrum exponent was strongly dependent on the forcing
parameters, taking values between −7 and −4 for the same
range of injected power [10]. The exponents obtained here,
however, differ slightly from those of the theory. Indeed,
the gravity exponent is between −4 and −5. These values
correspond respectively to the weak turbulence spectrum
S

grav
η (f ) ∝ ε1/3gf −4 [18] and the Phillips spectrum ∝ε0gf −5

for sharp crested waves [19], ε being the energy flux, f

the frequency, and g the acceleration of gravity. A possible
explanation for this deviation is that most of the waves are
strongly nonlinear with the wave crest propagating with a
preserved shape [20]. The spectrum of wave crest ridges
having a fractal dimension in the range 0 < D < 2 is indeed
predicted to scale as ε(2−D)/3g1+Df −3−D [11]. The gravity
spectrum found experimentally in f −4.5 thus corresponds to
D = 1.5. The capillary exponent is also found slightly shifted
(see Fig. 3) with respect to the weak turbulence prediction
S

cap
η (f ) ∝ ε1/2 (γ /ρ)1/6 f −17/6 [21], γ and ρ being the surface

tension and the density of the fluid.
The crossover frequency fc between both regimes is

measured on the spectrum in Fig. 2 as the intersection of
both power laws. fc is shown in the inset of Fig. 3 for different
forcing parameters. For such a horizontal forcing of the whole
container, fc is roughly independent of the forcing parameters.
This result differs from previous studies with a vibrating blade
forcing [10], where fc depended on the forcing parameters in
a range from 15 to 35 Hz for the same range of injected power
and the same container size.
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FIG. 4. (Color online) Top view of the tested setups. The shaker
horizontally vibrates a blade on the surface of water (left) or the whole
container (right) as in Fig. 1. Both experiments are performed with a
circular and a rectangular vessel. The light gray (red) denotes motion
parts and black denotes fixed parts.

Consequently, horizontally vibrating the whole container
is better than using vibrating blades or parametric forcing to
reach a continuum wave turbulence regime independent on
the forcing parameters. The main reason is that this forcing is
expected to be more spatially homogeneous and, thus, better
approaches the corresponding theoretical hypothesis, even if
other assumptions are still not met, like weak nonlinearity and
infinite vessel size.

To test the role of the vessel shape and of the type of
forcing on gravity-capillary wave turbulence, experiments on
two vessels were performed: the circular vessel (22 cm in
diameter) and a rectangular one (15 × 19 cm2). Two types
of forcing were tested for each vessel: a localized vibrating
blade and a horizontal forcing of the container as shown
in Fig. 4. To avoid the predominance of the eigenvalue
frequencies and sloshing modes of the rectangular container,
its diagonal is chosen in the same direction as the shaker axis
(see Fig. 4). We find that the frequency power-law exponent
of the gravity spectrum depends on the forcing parameters:
(i) with the vibrating blade forcing regardless of the vessel
shape and (ii) with the rectangular vessel whatever the forcing
type. The gravity spectrum exponent is found independent of
the forcing parameters only when horizontally vibrating the
circular container. Although the direction of the forcing is
favored in any case, a circular vessel is more isotropic than a
rectangular one due to the various wave reflection directions
generated by the curved boundary. Thus, beyond homogeneity
of the forcing, isotropy is also necessary to reach a gravity
spectrum exponent independent of the forcing parameters.

Let us now focus on the scaling of the wave height
spectrum with the mean injected power. The power injected
by the shaker to the system corrected by its inertia is P(t) =
(F − mdV/dt)V . m = 3.1 kg is the moving system mass
(including the fluid). The mean injected power, P ≡ 〈P〉,
linearly increases with the variance of the shaker velocity
σ 2

V ≡ 〈V 2〉 (see inset of Fig. 5). 〈·〉 denotes the temporal
average.

The height spectrum is found to scale as P 1±0.1 for both
regimes over almost one order of magnitude in P (see Fig. 5).
This scaling does not depend on the vessel geometry used.
A similar spectrum scaling ∼P 1 has been observed for both
regimes with a vibrating blade forcing [10] for the same range
of P , for the capillary regime with a parametric forcing [7]
and for the inverse cascade of gravity wave turbulence [22].
This linear scaling is in disagreement with the weak turbulence
theory that predicts a spectrum ∼ε1/3 in the gravity regime and
∼ε1/2 in the capillary regime (see above). Experimentally, the
mean energy flux ε is usually estimated by the measurement
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FIG. 5. (Color online) Power spectral densities of the wave height
rescaled by the mean injected power P for P = 10, 14.6, 17.2, 22.1,
23.6, and 28.5 mW. Forcing: 1–6 Hz. Dashed (solid) line is the power-
law fit of slope −4 (−2.8) respectively. Inset: P vs. σ 2

V . Slope of solid
line is 2.6 mWs2/cm2. Forcing: 1–6 Hz.

of P/(ρS), S being the immersed moving surface. It is likely
that a part of the power is directly provided to the bulk flow
and dissipated by viscosity without cascading through the
wave field. Although this mechanism is certainly present, it
is unlikely to be the dominant one. Indeed, the scaling law
of the spectrum with P is the same when the forcing is
parametric, by using wave makers, or by horizontally vibrating
the container, while those forcings generate very different
bulk flows. We rather think that the part of the injected
power directly generating large-scale waves only transfers a
small amount of energy flux to higher harmonics compared to
the direct dissipation of large-scale waves by viscosity. This
speculation is strengthened by recent experiments of decaying
wave turbulence on the surface of a fluid that have shown
that only a small part of the initial power injected into the
waves feeds the capillary cascade, whereas the major part
is dissipated at large scales [23]. This unknown dissipated
fraction of injected power could explain the discrepancy with
weak turbulence theory for the scaling of the spectrum with
P . Other possible origins of this discrepancy might be due
to finite-size effects (by inhibiting the energy transfers among
large scale waves) [10] or the presence of strong fluctuations
of the injected power [16].

Finally, the probability density function (PDF) of the
wave height normalized by its rms value, η/ση, is shown
in Fig. 6. At low forcing, it is symmetric and is roughly
fitted by a Gaussian function with zero mean and unit
standard deviation. At high-enough amplitude, it becomes
asymmetric suggesting that large crests are more probable
than deep troughs as usual in laboratory experiments with
a vibrating blade forcing [10,24,25] or in oceanography
[8,26,27]. At high forcing, the PDF tends towards a Tayfun
distribution (the first nonlinear correction to the Gaussian)
that reads p[η̃] = ∫ ∞

0 exp{[−x2 − (1 − c)2]/(2s2)}/(πsc)dx,

where c =
√

1 + 2sη̃ + x2, η̃ = η/ση, and s the mean wave
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FIG. 6. (Color online) Probability density function of the wave
height for P = 1.2 (red), 2.7 (blue), 14.8 mW (magenta) (arrows
indicate increasing power) corresponding to s = 0.018, 0.037, and
0.075. Solid black line: Gaussian with zero mean and unit standard
deviation. Dashed black line: Tayfun distribution with s = 0.075.
Forcing: 1–6 Hz. Inset: σ 2

η vs. P for a forcing of the whole container
(•) or with a vibrating blade (�). Slopes are respectively 8.1 and 53
cm2/W. Forcing: 1–6 Hz.

steepness [25,28]. No adjustable parameter is used here. The
shape of PDF(η/ση) thus is similar to the one obtained with
a vibrating blade forcing. We also find that σ 2

η = aP for both

forcing types with different proportionality constants a (see
inset of Fig. 6). For a vibrating blade forcing, P was shown
to be proportional to the immersed moving surface S [10].
Here, we have checked that a ∼ 1/S for both methods of
forcing. Indeed, the ratio of slopes in the inset of Fig. 6 is
equal (with a 4% accuracy) to the inverse of the ratio of the
immersed surfaces of the blade and of the container boundary.
Finally, the experimental results, P ∼ σ 2

η and Sη(f ) ∼ P 1, are
consistent since by definition

∫ ∞
0 Sη(f )df = σ 2

η /(2π ).
In conclusion, we have introduced a new type of forcing to

study gravity-capillary wave turbulence. With this spatially
extended forcing, the frequency power laws of the height
spectrum are found to be independent of the forcing parameters
for both gravity and capillary regimes. This contrasts with
results of previous experiments using a spatially localized
forcing where the gravity spectrum exponent depended on
the forcing parameters [10–12]. Our study suggests that the
dependence should be related to the inhomogeneity and the
anisotropy of the localized forcing. The gravity spectrum
exponent found here slightly differs from the one predicted by
weak turbulence theory due to the presence of strong nonlinear
waves. Finally, an explanation for the discrepancy observed
with the theory for the spectrum scaling with P is also given
and applies regardless of the forcing used.
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