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Energy flux measurement from the dissipated energy in capillary wave turbulence
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We study experimentally the influence of dissipation on stationary capillary wave turbulence on the surface of a
liquid by changing its viscosity. We observe that the frequency power-law scaling of the capillary spectrum departs
significantly from its theoretical value when the dissipation is increased. The energy dissipated by capillary waves
is also measured and found to increase nonlinearly with the mean power injected within the liquid. Here we propose
an experimental estimation of the energy flux at every scale of the capillary cascade. The latter is found to be
nonconstant through the scales. For fluids of low enough viscosity, we found that both capillary spectrum scalings
with the frequency and the newly defined mean energy flux are in good agreement with wave turbulence theory.
The Kolmogorov-Zakharov constant is then experimentally estimated and compared to its theoretical value.
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I. INTRODUCTION

When a large ensemble of weakly nonlinear waves interact
with each other, they can develop a regime of wave turbulence
where the wave energy is transferred from the large forcing
scales to the small dissipative scales. Exact solutions of
out-of-equilibrium dynamics for the spectral content of energy
can be derived analytically by a statistical theory called weak
turbulence theory [1,2]. This theory can be applied in various
contexts involving waves at various scales: astrophysical
plasmas, internal waves in oceanography or in the atmosphere,
spin waves in magnetic materials, nonlinear waves in optics,
etc. Because of hypotheses of weakly nonlinear waves, infinite
systems, local interactions, and scale separations between an
energy source and dissipation, the applicability of weak tur-
bulence to real systems can be questionable, and experimental
results are often in disagreement with theory (see Refs. [3,4]
for recent reviews). In experiments, dissipation is often present
at every scale and could explain some of these discrepancies.
For instance, the spectrum of wave turbulence on an elastic
plate has been experimentally shown to depart from its pre-
diction when dissipation is increased [5], whereas numerical
works have shown that the theoretical spectrum is recovered
when dissipation within the inertial range is removed [6,7].

Capillary waves are likely the easiest system in which
to investigate wave turbulence in the laboratory. Numerous
experiments have been dedicated to stationary capillary wave
turbulence on the surface of fluids of low viscosity [8–15]. For
capillary wave turbulence, weak turbulence theory predicts
that the Kolmogorov-Zakharov spectrum of the wave height
reads [1]

Sη(f ) = CKZε1/2

(
γ

ρ

)1/6

f −17/6, (1)

where ε is the mean energy flux cascading through the scales, γ
the surface tension, ρ the liquid density, f the wave frequency,
and CKZ the Kolmogorov-Zakharov constant, which can
be determined theoretically. Such a frequency scaling Sη ∼
f −17/6 has been observed both numerically [16,17] and exper-
imentally using vibrating plunging wave makers [8,9], vibrat-
ing the whole container [10], and working in low-gravity [11]
or acoustically levitated [18] environments. With parametric
forcing, the capillary wave spectrum displays either peaks

and forcing harmonics with maximal amplitudes decreasing
roughly as a frequency power law [13–15,19] or a continuum
power-law spectrum at much higher frequencies [12,18,20].
Note that this capillary wave turbulence regime driven by
nonlinear interactions between waves should not be confused
with thermally excited capillary waves that involve only linear
mechanisms [21,22].

Some questions still remain open. For instance, experiments
show a spectrum scaling with the energy flux in disagreement
with the one predicted by theory [8,10,15]. The energy
flux is usually estimated by measuring the power injected
into the liquid that is assumed to be transferred in the
wave system without dissipation within the inertial range.
Another attempt to estimate the mean energy flux consists
of measuring the wave energy decay rate after switching off
the wave maker [23]. However, in an earlier paper [24], we
have experimentally shown that the energy decay in gravity-
capillary wave turbulence is mainly piloted by large-scale
viscous dissipation.

In this paper we will study stationary gravity-capillary wave
turbulence on the surface of liquids of different viscosities.
We show that the frequency scaling of the capillary spectrum
departs from its theoretical prediction when dissipation is
increased. By measuring the power injected to the liquid,
together with the dissipated powers by gravity and capillary
waves, we show that most of the injected energy is dissipated
at large scales by gravity waves, whereas a small part feeds the
capillary cascade. Moreover, the energy dissipated by capillary
waves is found to increase nonlinearly with the mean injected
power. Both results mean that estimating the mean energy flux
in the capillary cascade by the injected power is not valid. Here
we propose an original estimation of the energy flux at every
scale of the capillary cascade from the experimental energy
spectrum and the wave dissipation rate. This energy flux is then
found to be nonconstant through the capillary scales in contrast
to the assumptions. However, defining a mean energy flux over
the scales allows us to rescale the wave spectrum with the mean
energy flux in good agreement with wave turbulence theory
for fluids of low enough viscosity. The Kolmogorov-Zakharov
constant is then evaluated experimentally, for the first time.

The paper is organized as follows. In Sec. II we recall the
origin of wave dissipation in wave turbulence on the surface of
a liquid. The experimental setup is described in Sec. III. The
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experimental results are then discussed: the evolution of the
wave spectrum when the dissipation is increased (Sec. IV), the
measurement of the dissipated powers by gravity and capillary
waves, and their corresponding spectra (Sec. V). Finally, we
present the experimental estimation of the energy flux at every
scale (Sec. VI) and of the Kolmogorov-Zakharov constant
(Sec. VII). A conclusion is given in Sec. VIII.

II. ORIGIN OF WAVE DISSIPATION

Dissipation of propagating waves in a closed basin has
been studied theoretically and experimentally by various
authors [25–27]. Linear viscous dissipation leads to an
exponential decay of the wave: η(t) = η0e

−�t , with η0 the
initial amplitude of the wave and �−1 its theoretical damping
time, which depends on the frequency and the nature of
dissipation. Wave damping can have different origins: bottom
boundary layer (�B), side wall boundary layer (�W ), and
surface dissipation. Two types of surface dissipation can be
considered: the classical viscous dissipation at a free surface
�ν ∼ νk2 [26,27] or viscous dissipation in the presence of an
inextensible film �S ∼ (νf )1/2k [25,27]. The latter comes from
the presence of surfactants or contaminants at the interface that
leads to an inextensible surface where the tangential velocity
is canceled at the interface and was first considered to study
the effect of the calming effect of oil on water. Note that these
surface dissipations are incompatible since they correspond to
two different kinematic conditions at the interface [27]. The
decay rate for the wave of frequency f is defined by δ ≡
�/(2πf ). The theoretical decay rate for the various types of
viscous dissipation in a liquid of arbitrary depth h are [25–27]

δν = νk2

πf
, (2)

δS =
(

ν

4πf

)1/2
k cosh2 kh

sinh 2kh
, (3)

δB =
(

ν

4πf

)1/2
k

sinh 2kh
, (4)

δW =
(

ν

4πf

)1/2 1

2R

[
1 + (m/kR)

1 − (m/kR)
− 2kh

sinh 2kh

]
, (5)

where R is the size of the circular vessel, and m = 1 the
antisymmetrical modes and m = 0 the symmetrical ones.

In an earlier paper [24], we have experimentally shown
that the major part of dissipation occurs at large scales in
gravity-capillary wave turbulence, and that the experimental
decay rate scales as ν1/2 over two decades in viscosity, and
not as ν1 as expected by classical viscous dissipation. In
our experiments, viscous dissipations by the surface boundary
layer and bottom boundary layer are the most important, while
friction at the lateral boundary is negligible [24]. Bottom
friction is significant at a large scale since the forcing scales are
of the order of the depth. The experimental wave dissipation
is correctly described by the total theoretical dissipation:

�(f ) = 2πf δT = 2πf (δS + δB + δW ). (6)

The fact that the inextensible condition has to be taken into ac-
count instead of the usual free surface condition was previously
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FIG. 1. (Color online) Experimental setup. The diameter of the
vessel is 22 cm.

observed in laboratory experiments with water [25,28,29]. In-
deed, if no particular attention is paid (such as working in clean
rooms, filtered liquids, or liquids with low enough surface
tension), the surface dissipation by boundary layer dominates
the νk2 dissipation [29]. Finally, note that the infinite depth
condition is satisfied for f > 10 Hz (i.e., λ < 2 cm and kh �
1), and thus bottom friction becomes negligible also for capil-
lary waves. Consequently, in our experiments, the dissipation
source for capillary waves is only due to surface dissipation
in the presence of an inextensible film [24]. In the following,
we will estimate the damping rate using the full Eq. (6) since
gravity and capillary waves are involved in our experiments.

III. EXPERIMENTAL SETUP

The experimental setup is shown on Fig. 1, is
the same as in the experiment on freely decaying
wave turbulence [24] and similar to the one used
in Ref. [8]. It consists of a circular plastic vessel,
22 cm in diameter, filled with a liquid to a height h = 25 mm.
Various liquids are used: water, mercury, silicon oils, and
aqueous solutions of glycerol (denoted as x% GW with x

the glycerol percentage) to vary kinematic viscosity, ν, over
two orders of magnitude. Properties of these liquids are listed
in Table I. The main difference between the different fluids

TABLE I. Physical liquid properties: density, ρ, kinematic viscos-
ity, ν, and surface tension γ [30]. The frequency transition between
gravity and capillary waves is fgc (see text).

Liquid ρ (kg/m3) ν (m2/s) γ (mN/m) fgc (Hz)

Mercury 13 600 1.1 × 10−7 400 17
Water 1000 10−6 73 14
20% glycerol-water 1020 2 × 10−6 70 13.5
30% glycerol-water 1050 3 × 10−6 70 14
50% glycerol-water 1120 5 × 10−6 68 14
Silicon oil V5 1000 5 × 10−6 20 18.8
Silicon oil V10 1000 10−5 20 18.5
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is their kinematic viscosity. The theoretical gravity-capillary
transition fgc = 1

2π

√
2g/lc is between 14 and 19 Hz in all

cases, with lc = √
γ /(ρg) the capillary length, ρ the density,

and γ the surface tension.
Surface waves are generated by a rectangular plunging

wave maker (13 cm in length and 3.5 cm in height) driven
by an electromagnetic vibration exciter (LDS V406) driven
by a random noise (in amplitude and frequency) band-pass
filtered typically between 0.1 and 5 Hz. The wave maker is
continuously driven, and the wave height η(t) is recorded
during the stationary regime (300 s acquisition time) at a
given location (center of the vessel) by a capacitive wire
gauge plunging perpendicularly to the liquid at rest [8,24].
The capacitive gauge is calibrated for each liquid, and we
have checked than the response is linear with the wave height
whatever the working liquid.

The force F (t) applied by the shaker to the wave maker
and the velocity V (t) of the wave maker are measured to
access the injected power I = F × V into the liquid [8].
We have checked that the classical relation 〈I 〉 ∼ ρσ 2

V [8,31]
between the wave maker rms velocity and the mean injected
power holds for every liquid. Moreover, a scaling 〈I 〉 ∼ ν1/2

is observed, compatible with the observed dissipation. One
also observes 〈I 〉/ρ ∼ σ 2

η for all liquids, which is due to the
fact that the gravity wave energy scales as ∼gη2. The mean
injected power value is thus directly related to the rms wave
height. 〈I 〉 is normalized by ρ and the vessel surface S = πR2

to compare the results without considering the inertial effects

εI = 〈I 〉
ρS

. (7)

εI has thus the dimension of an energy flux by density unit
([L3T −3]), as for the theoretical mean energy flux ε.

IV. ROLE OF DISSIPATION IN CAPILLARY
WAVE TURBURLENCE

In this section we investigate the influence of an increasing
dissipation on capillary wave turbulence.

A. Power spectrum of wave height

We first focus on the power spectrum of wave height,
Sη(f ), on the surface of various liquids of different viscosities.
Figure 2 shows Sη(f ) for different viscosities (1.1 × 10−7 �
ν � 5 × 10−5 m2/s) and different forcing amplitudes.

For low dissipation (i.e., small viscosity as in mercury or
water), Sη(f ) displays two frequency power laws whatever the
forcing amplitude [see Fig. 2(a)], corresponding to the gravity
(6 Hz < f < fgc) and capillary (fgc < f � 120 Hz) wave
turbulence regimes. The transition between these two regimes
is observed around the theoretical gravity-capillary transition
frequency fgc. The gravity spectrum scales as S

g
η ∼ f −β ,

where β is found to increase (from 4.5 to 5.5) with the injected
power as previously found in tanks of various sizes [8,23,32–
34]. It thus differs from the forcing-independent exponent of
the Kolmogorv-Zakharov spectrum (∼f −4) [35] or the Phillips
spectrum (∼f −5) [36]. The observed dependence could be
due to possible finite size effects, but no direct comparison
exists with models including these effects [37–40]. Within

10
0

10
1

10
2

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

S
η
∼ f−2.8

S
η
∼ f−4.7

f (Hz)

S
η (

m
2  s

)

10
0

10
1

10
2

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

S
η
∼ f−3.9

S
η
∼ f−4.9

f (Hz)

S
η (

m
2  s

)

10
0

10
1

10
2

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

S
η
∼ f−4.9

S
η
∼ f−4

f (Hz)

S
η (

m
2  s

)

FIG. 2. (Color online) Power spectrum Sη(f ) for low (top),
medium (middle), and high (bottom) viscosity corresponding re-
spectively to mercury, 30% GW, and 50% GW of viscosity ν =
1.1 × 10−7, 3 × 10−6, and 5 × 10−6 m2/s. Injected power increases
from bottom to top. Dashed lines are power law fits.

the capillary inertial range (fgc < f � 120 Hz), one has
Sη ∼ f −α , with α = 2.8 ± 0.2 independent of the injected
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power, and in good agreement with wave turbulence theory
(∼f −17/6). At higher frequencies (f > fd ≈ 120 Hz), the
spectrum shape changes due to an increase of dissipation. All
these results are similar to those found in Refs. [8,24].

For higher viscosities (ν > 2 × 10−6 m2/s), the spectrum
phenomenology changes as shown in Figs. 2(b)–2(c). It is
not possible anymore to define a cascade within the gravity
wave range; the power law has been replaced by peaks,
corresponding to the vessel eigenvalues and their harmonics.
However, a power law is still observed in the capillary wave
range, Sη ∼ f −α , with α larger than its theoretical value and
dependent on the injected power. The wave spectrum is steeper
when the injected power decreases. These observations are
valid for all considered liquids with ν > 2 × 10−6 m2/s, both
in aqueous solutions of glycerol and in silicon oil. We will
refer below this behavior as the high dissipation regime of
wave turbulence. Finally, when the viscosity is increased, a
change of curvature of spectrum shapes is observed near high
frequencies (f � 120 Hz) in Fig. 2. For high enough viscosity,
the capillary cascade gets directly into the noise level, which
can be ascribed to the lower sensitivity of the capacitive gauge
when the glycerol concentration is increased.

B. Frequency power-law exponent of the spectrum

Figure 3 shows Sη(f ) at different kinematic viscosities for
a fixed strong forcing. For the two lowest viscosity liquids, the
spectrum exhibits two frequency power laws, corresponding to
the gravity wave cascade, Sη(f ) ∼ f −5±0.5, and the capillary
one Sη(f ) ∼ f −2.8. Thus at low dissipation, the capillary
exponent is in good agreement with the wave turbulence
prediction. When the dissipation is increased, a capillary
cascade is still observed, Sη(f ) ∼ f −α , but with an exponent
α dependent on the viscosity as shown in the inset of Fig. 4.
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Figure 4 shows the capillary exponent α as a function of
εI . At low viscosity (ν � 10−6 m2/s), the exponent α = 2.8 ±
0.2, independent of εI , as expected by the theory. At higher
viscosity (ν � 2 10−6 m2/s), α is larger than the theoretical
value and depends on the injected power: α decreases with εI

up to a saturating value at large forcing (εI > 3 10−5 m3 s−3).

C. Discussion

The capillary cascade displays two qualitative behaviors re-
garding the amount of dissipation. When the dissipation is low
enough, the theoretical scaling in frequency is observed and
is independent of the injected power, as previously reported.
When the dissipation is increased beyond a certain point, a
steeper power-law spectrum is observed. This discrepancy
between theory and experiment becomes larger when the
dissipation is further amplified. This result is very similar
to the one recently reported in flexural wave turbulence [5].
Moreover, the frequency exponent of the wave spectrum power
law depends on the injected power. This latter reminds us
of what is observed in gravity wave turbulence [8,23,34].
Recent results in hydroelastic wave turbulence on the surface
of a floating elastic sheet [41] also show a wave turbulence
regime with a power law steeper than the one given by
theoretical predictions. Dissipation could be also responsible
of this dependency in those systems. Note that finite size
effects on capillary wave turbulence have been described
numerically [42] but should not be relevant in our case since
capillary waves are damped before experiencing multiple
reflexions with vessel boundaries.

V. EXPERIMENTAL DETERMINATION OF DISSIPATED
POWER BY THE WAVES

The part of the injected power linearly dissipated by the
waves will now be determined experimentally, using the
experimental wave height spectrum Sη(f ) and the theoretical
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dissipation rate �(f ), and will be compared to the mean
injected power at the wave maker εI .

A. Definitions

The potential wave energy, per surface, and density unit
is Eg = 1

2gη2 for gravity waves and by Ec = 1
2

γ

ρ
k2η2 for

capillary waves. For linear waves, the total energy is given by
the sum of the kinetic and the potential terms, and both values
are equal in average. Since we do not measure the kinetic
energy, the potential energy is multiplied by 2 to take into
account the kinetic energy. The wave energy spectrum in the
Fourier space Ef is related to the total energy E = ∫

Ef df

where Ef = E
g

f + Ec
f , and to the wave height power spectrum

Sη(f ) by

E
g

f (f ) = gSη(f ), for gravity waves, (8)

Ec
f (f ) = γ

ρ
k2Sη(f ), for capillary waves. (9)

We define the wave dissipation spectrum Dη(f ) by

Dη(f ) = Ef (f )�(f ), (10)

where Ef (f ) is the wave energy spectrum and � = 1/T the
theoretical dissipation rate of Eq. (6). Dη(f ) can be split into
two terms, the capillary wave dissipation spectrum and the
gravity one, with Dη(f ) = D

g
η (f ) + Dc

η(f ) and

Dg
η (f ) = gSη(f )�(f ), (11)

Dc
η(f ) = γ

ρ
k2Sη(f )�(f ). (12)

The total power dissipated linearly by the waves is then given
by integrating the dissipation spectrum:

D =
∫

Dη(f ) df =
∫

Ef (f )�(f ) df, (13)

The capillary and gravity dissipated powers are separately
calculated:

Dg =
∫ fgc

fT

gSη(f )�(f ) df, (14)

Dc =
∫ fs/2

fgc

γ

ρ
k2Sη(f )�(f ) df, (15)

and the integration ranges are given by fT = 1/T , the
lowest accessible frequency where T = 300 s is the total
measurement time, fgc the gravity-capillary transition, and
fs is the sampling frequency (fs = 1 kHz). The total power
dissipated by the waves is given by D = Dc + Dg . Thus, if all
the injected power by the wave maker goes into the waves, we
should have the power budget

εI ≡ 〈I 〉
ρS

= D = Dg + Dc. (16)

The dimension of εI , D, Dc, and Dg is [L3T −3], the same as
the one of the energy flux of wave turbulence theory. Note that
this power budget does not take into account wave dissipation
by nonlinear processes or bulk dissipation (the fluid being
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D = p(ν)εI . Inset: Part of the injected power dissipated in waves
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supposed to be almost irrotational, and all the dissipation takes
place near the boundaries).

B. Dissipated power by the waves

We first measure the total power dissipated by the waves,
D, from the experimental power spectrum, Sη(f ), and using
Eqs. (13), (8), and (9). Figure 5 shows that D increases roughly
linearly with εI for all fluids with a slope p that depends on
ν. The inset of Fig. 5 shows that p ∼ ν1/2 as expected by the
definition D ∼ � [see Eq. (13)] and by the nature of dissipation
� ∼ ν1/2 (see Sec. II). To sum up, Fig. 5 shows that the power
dissipated linearly by the waves is proportional to the mean
injected power D ∼ εI . However, only a small part of the
injected power is linearly dissipated by the waves. Indeed, the
inset of Fig. 5, shows that p = D/εI is only around 5% in
mercury and grows to ≈13% in the GW solutions and up to
around 20% in silicon oils. We will discuss later the possible
mechanisms responsible for these observations.

The dissipated power budget is shown in Fig. 6 in the case
of low dissipation (mercury) and high dissipation (GW 50%).
The total power dissipated D and the parts dissipated by gravity
waves, Dg , and by capillary waves, Dc, are computed from the
experimental power spectrum, Sη(f ), and using Eqs. (13), (14),
and (15). In both dissipation cases, the power dissipated by
gravity waves is much larger than the one by capillary waves.
Moreover, Dg is roughly linear with εI , whereas Dc is found
to scale nonlinearly with εI (e.g., ∼ ε2

I for mercury at high
εI ). As explained below, this result will be of prime interest to
understanding the scaling of Sη(f ) with the energy flux.

Calculating the ratio Dg/D as a function of εI shows that
65%–85% of the wave dissipated power is dissipated by the
gravity waves for mercury and 95%–85% for GW fluids. Thus,
not more than 35% of the dissipated power is due to capillary
waves for mercury and less than 15% for GW fluids.
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C. Wave dissipation spectrum

The spectrum of wave dissipation, Dη(f ), is obtained from
the experimental power spectrum of wave height, Sη(f ), and
using Eqs. (10), (9), (8), and (6). Figure 7 shows Dη(f ) as a
function of frequency, in the case of low dissipation (mercury)
and high dissipation (GW 50%). The dissipation spectrum
of gravity waves, D

g
η (f ), and of capillary waves, Dc

η(f ), are
computed from Sη(f ) and using Eqs. (11), (12), and (6). In both
dissipation cases, Fig. 7 shows that most dissipation occurs at
large scales within the gravity wave frequency range, near the
forcing scales. D

g
η declines then abruptly at higher frequency.

Note that the shape of Dc
η is very different in the case of low

and high dissipation. For low dissipation, a capillary cascade is
observed in good agreement with wave turbulence theory [see
inset of Fig. 7 (top)], and Dc

η remains large at all scales: Dc
η is

almost constant within the capillary inertial range (fgc � f �
fd ≈ 120 Hz), before slightly increasing (fd ≈ 120 Hz), and
decreasing abruptly after the end of the capillary cascade. For
high dissipation, energy is also dissipated at all scales, but the
amplitude of Dc

η decreases much more faster in frequency as a
consequence of a much steeper wave height power spectrum.

The theoretical frequency scaling of the dissipation spec-
trum of capillary waves is easily determined by combining
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FIG. 7. (Color online) Spectrum of wave dissipation. Mercury
(top), 50% GW fluid (bottom). From top to bottom: Total dissipation
spectra Dη(f ) (blue solid line), of pure gravity waves Dg

η (f ) (black
dot dashed line), and of pure capillary waves Dc

η(f ) (red dashed
line). Dotted line shows the theoretical scaling Dc

η ∼ f −1/3. Inset:
Corresponding spectrum of wave height Sη(f ), where f −2.8 (top)
and f −4.1 (bottom) are the best fits in the capillary range.

the Kolmogorv-Zakharov solution of Eq. (1), Sη ∼ f −17/6,
and the dissipation rate, from Eq. (3), � ∼ f 1/2k. Using the
capillary wave dispersion relation ω2 ∼ k3, we then obtain
Dc

η ∼ Sη� ∼ f −1/3. For low dissipation, we observe that
Dc

η is almost constant within the capillary inertial range
(fgc < f < fd ) as shown in Fig. 7 (top), and so in rough
agreement with the f −1/3 prediction. For high dissipation, Dc

η

is far from this theoretical scaling [see Fig. 7 (bottom)], Sη(f )
being also much steeper than the theoretical wave spectrum
(see inset).

D. Dissipation at all scales

In this part we have experimentally determined the dis-
sipated power in capillary and gravity waves and their
corresponding spectra. We have shown quantitatively that
dissipation occurs at all scales, and that only a small part
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of the power injected by the wave maker is linearly dissipated
by waves. The main part must therefore be dissipated either in
the bulk or by nonlinear wave dissipation processes (that are
not taken into account in the present estimation of the wave
dissipation) such as wave breakings [43,44] or the formation
of capillary ripples on crested gravity waves [45–47].

We have also shown that the wave energy is mainly
dissipated by gravity waves and that only a small part is
transferred to capillary waves. In consequence, the capillary
wave turbulence cascade is fed by only a small amount
of the energy contained in the gravity waves, as discussed
in Ref. [24]. Moreover, the dissipated power by capillary
waves has been found to scale nonlinearly with εI , at high
enough injected power. Thus, the energy cascading through
the capillary cascade is not proportional to the injected power.
Instead of εI , we will now define a quantity representing better
the mean energy flux cascading through the capillary scales.

VI. ESTIMATION OF THE ENERGY FLUX

We will focus here on our experiments performed at low
dissipation in which the frequency scaling of the experimental
spectrum is found in agreement with the theoretical one of
Eq. (1). Let us discuss now the spectrum scaling with the
mean energy flux ε. To do that, two experimental estimations
of ε are used.

First, ε is estimated straightforwardly by the mean injected
power, ε ≡ εI , as previously proposed in Refs. [8,15]. This
estimation assumes that all the power injected into the system
is injected into waves, then transferred through the gravity and
capillary scales without dissipation, and finally dissipated at
the end of the capillary cascade. The spectra of Fig. 2 (top)
normalized by ε1

I displays a good collapse on a single curve as
shown in Fig. 9. However, as also reported previously [8,15],
this Sη ∼ ε1

I scaling is in disagreement with the predicted
one of Eq. (1) of weak turbulence theory. This discrepancy is
explained by the presence of dissipation at all scales. Indeed,
the mean injected power εI is not a good estimation of the
energy flux within the capillary cascade since the energy
dissipated by the capillary wave is not linearly dependent of
εI as shown in Sec. V.

A better way to estimate the energy flux is from the
dissipated power by the capillary waves. The total power
dissipated linearly by the capillary wave is given by Eq. (15),
that is, Dc = ∫ fs/2

fgc
Dc

η(f ) df . This quantity integrates the
power dissipated within the capillary cascade but also within
the dissipative part of the spectrum. Thus, estimating ε ≡ Dc

would lead to an overestimation of the mean energy flux. The
power budget in the frequency Fourier space reads [2,7]

∂Ef

∂t
= −∂ε(f )

∂f
. (17)

Consequently, the energy flux ε(f ∗) at a given frequency f ∗
reads

ε(f ∗) =
∫ fs/2

f ∗
Dc

η(f ) df. (18)

In practice, ε(f ∗) is obtained using Eqs. (12), (6), and (18)
and the experimental power spectrum of wave height, Sη(f ).

50 100 150 200 250
0

1

2

3

4

5

6
x 10

−7

f* (Hz)

ε(
f* ) 

(m
3  s

−
3 )

0 5

x 10
−7

0

2

4

6
x 10

−7

D
c
 (m3 s−3)

ε*  (
m

3  s
−

3 )

fgc fd

FIG. 8. (Color online) Experimental energy flux ε(f ∗) at fre-
quency f ∗ estimated from Eq. (18) for an increasing forcing
amplitude (from bottom to top). Mean energy flux ε∗ (•) estimated
from Eq. (19), energy flux at fgc [ε(fgc) = Dc (�)] and at fd [ε(fd )
(�)]. Same data as in Fig. 2 (top). Vertical dot-dashed lines indicate
fgc and fd delimiting the frequency range of the capillary cascade.
Dashed lines: Theoretical scenario of a constant flux in the inertial
range and dissipation localized at fd . Inset: Same symbols as in the
main figure as a function of the dissipated power by capillary waves
Dc. Dashed line is a linear fit. Solid line has a unit slope.

Figure 8 shows ε(f ∗) as a function of the frequency f ∗ within
the capillary range and for various forcing amplitudes. ε(f ∗)
is found to decrease with frequency since a part of energy
is dissipated at each scale while another part is transferred
to higher frequency. Thus, the theoretical scenario of weak
turbulence where all the energy should be dissipated for
frequencies larger than a critical dissipative frequency fd (see
Fig. 8) is not realistic in our experiments. A nonconstant energy
flux through the scale has been also found numerically in wave
turbulence on a metallic plate in the presence of dissipation at
all scales [7].

The mean energy flux ε∗ is then defined by the energy flux
averaged through the capillary frequency range

ε∗ =
∫ fd

fgc
ε(f ) df

fd − fgc

. (19)

Figure 8 shows the mean energy flux ε∗ for different forcing
amplitudes [see the (•) symbols]. These values roughly
correspond to values of ε(f ) at f ≈ 80 Hz in the middle of
the cascade. The inset of Fig. 8 shows the evolution of ε∗, the
values of the flux at the beginning, ε(fgc), and at the end, ε(fd ),
of the capillary cascade as a function of the dissipated power
Dc by capillary waves. Note that from Eq. (18), Eq. (15), and
Eq. (12), one has ε(fgc) = Dc. These three quantities depend
linearly on Dc. Thus, rescaling the wave spectrum with one of
these quantities would be equivalent. We choose ε ≡ ε∗ as an
estimation of the energy flux cascading through the capillary
scales. Figure 9 (bottom) then shows the rescaled spectrum
Sη/(ε∗)1/2 where all curves roughly collapse on a single curve.
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To sum up, we have shown that dissipation at all scales
explains the previous controversy of the scaling of the capillary
wave spectrum with the mean energy flux. A new estimation
of the flux has been proposed from the dissipated power. The
energy flux is then found to be nonconstant over the scales.
Nevertheless, the estimation of the mean energy flux allows us
to rescale properly the wave height spectrum, and we observe
Sη(f ) ∼ ε1/2f −17/6 in agreement with the theory of capillary
wave turbulence.

VII. ESTIMATION OF THE
KOLMOGOROV-ZAKHAROV CONSTANT

In the previous section, we have shown that the scalings of
the capillary spectrum both with frequency and with the mean
energy flux ε∗ are found in agreement with wave turbulence

theory of Eq. (1). We can thus now evaluate experimentally
the Kolmogorov-Zakharov constant CKZ using the estimation
ε ≡ ε∗. Figure 9 (bottom) shows the Kolmogorov-Zakharov
spectrum Sη(f ) = CKZ

exp ε∗1/2( γ

ρ
)1/6f −17/6, where the constant

CKZ
exp is experimentally fitted (see dot-dashed line). One finds

CKZ
exp ≈ 0.01.

The CKZ constant was previously calculated from the
wave action spectrum nk [17]. The relation between the
constants defined from nk (CKZ

nk
) and from Sη(f ) (CKZ) is

given by CKZ = 4π
3 CKZ

nk
(2π )−17/6. The (2π )−17/6 factor is

due to the change from frequency f to the pulsation ω,
and the 4π

3 factor comes from the relation between nk and
Sη(f ). Theoretically, Cth

nk
= 9.85 [17], while in the numerical

simulations, Cn
nk

≈ 1.7 [17]. The difference between theory
and numerics is explained by the small inertial range and the
existence of numerical dissipation [17].

Here we experimentally found CKZ ≈ 0.01, which corre-
sponds to CKZ

nk
≈ 0.5. This value is 3.4 times smaller than

the numerical value and 20 times smaller that the theoretical
one. However, we have to keep in mind that dissipation occurs
at all scales experimentally, and that a nonconstant energy
flux through the scales is observed, contrary to the theoretical
hypotheses.

VIII. CONCLUSION

In this paper we have discussed the influence of dissipation
on gravity-capillary wave turbulence. We have shown that the
main part of the injected energy at a large scale is dissipated
by gravity waves and only a small part of it is transferred
to capillary waves. This show that evaluating the energy flux
by the mean injected power is not a valid approximation. We
propose an estimation of the energy flux within the capillary
cascade, related to the linear dissipated power by the capillary
waves with the cascade inertial range.

A capillary wave turbulence regime with a wave spectrum
as a power law of the scale is observed whatever the intensity
of the dissipation, but two regimes can be defined, depending
on the level of dissipation in the system.

When the dissipation is low enough, the wave spectrum is
found in good agreement in regard to the frequency scaling and
the energy flux scaling (newly defined). This result explains the
previous controversy on the energy flux scaling of the capillary
wave spectrum [8,15], pointed out as an open question in a
recent review [4]. The Kolmogorov-Zakharov constant is then
evaluated experimentally. The value is found one order of
magnitude smaller than the one predicted by the theory, since
dissipation occurring at all scales is observed experimentally,
as well as a nonconstant energy flux through the scales in
contrast to the theoretical hypotheses.

When the dissipation goes beyond a certain threshold,
the power-law spectrum becomes steeper and the agreement
with the theory is lost. The spectrum becomes steeper when
the dissipation is further increased. This latter has also been
observed experimentally and numerically in flexural wave tur-
bulence [5,7]. It is possible that dissipation is also responsible
for the discrepancy between theory and experiment observed in
wave turbulence at the surface of a floating elastic sheet [41].
Moreover, at high dissipation, the capillary wave spectrum

023003-8



ENERGY FLUX MEASUREMENT FROM THE DISSIPATED . . . PHYSICAL REVIEW E 89, 023003 (2014)

is found to depend on the injected power, which reminds
us of results in gravity wave turbulence [8,23,34]. Thus
dissipation appears to be of prior importance to explain the
differences between weak turbulence theory and experimental
wave turbulence regimes.

The next step would to explain quantitatively the threshold
from the low dissipation to the high dissipation situations.
The measurement of the nonlinear interaction time τnl and its
comparison with the dissipation time should be the starting
point. Experimentally, a direct measurement of the energy
flux in the k space (in a similar way to what is done
numerically [7]) remains an important challenge and would be
of interest to confirm our results and discuss the nonlinear time.
Moreover, it would be interesting to be able to close the power

budget by means of surface and bulk measurements. A better
understanding of nonlinear dissipation processes also appears
necessary, for wave breaking and the occurrence of ripples
on gravity waves. The inclusion of these kinds of coherent
structures, as well as the coexistence of dissipation [48] and
energy transfers, are important challenges to improve our
understanding of natural wave turbulence systems.
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