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In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear
mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for
gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study
their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one
(diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance
conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking
into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then
compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results
confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally,
we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary
turbulence.
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I. INTRODUCTION

When a wave field is governed by linear propagation
equations, the different space and time scales coupled by
the dispersion relation evolve independently. In contrast, by
introducing nonlinearity, energy exchanges between the scales
become possible. Among nonlinear interaction phenomena,
particular attention has been given to the resonant interaction
mechanisms [1–3]. In the weakly nonlinear limit, dispersive
waves can substantially exchange energy at long time, if their
respective angular frequencies ωi = 2π fi and wave numbers
ki (‖ki‖ = ki = 2π

λi
) satisfy the resonance conditions. For a

process involving N waves, these conditions take the form:

k1 ± k2 + · · · ± kN = 0 (1)

ω(k1) ± ω(k2) + · · · ± ω(kN) = 0 (2)

with ω(ki) the dispersion relation of the waves.
At the lowest order of the weakly nonlinear expansion,

three-wave mechanism or triadic resonance is usually consid-
ered for a system with a quadratic nonlinearity. Nevertheless, if
the dispersion relation cannot satisfy the three-wave resonance
condition, four-wave mechanism occurs. This is precisely
the case of large-scale surface gravity waves [4,5], in which
resonant interactions rule dynamics and evolution of oceanic
gravity waves [6]. At smaller scales, in the crossover between
gravity and capillary waves and also for pure capillary waves,
three-wave interactions occur [7]. Triadic resonance is also
involved in numerous natural and physical examples in which
they mediate energy exchanges between the different scales,
such as internal gravity waves [8] in oceanography or for
three-wave mixing in nonlinear optics [9]. Recent experiments
have indeed investigated triadic resonance and verified the
resonance condition in internal waves [10], in inertial waves
in rotating tank [11], in plasma waves [12], or in hydroelastic
waves [13].

Moreover, understanding resonant interaction mechanisms
is of prime interest in the study of wave turbulence regimes.

The dynamics of a set of numerous random waves in
interaction, is said to be in a wave turbulence regime, when
a self-similar mechanism transfers energy from an injection
scale to a dissipative scale. The aim of the weak turbulence
theory [14,15] is to describe this regime by taking the main
wave resonant mechanism as the elemental process coupling
the waves. Power spectra of wave amplitude can be analytically
derived as power laws of k (spatial spectrum) or ω (temporal
spectrum). Recently several laboratory investigations of wave
turbulence have been carried out in regard of weak turbulence
theory, specifically for the example of hydrodynamics surface
waves. At large scale, in the gravity wave regime involving
four-wave interactions, power spectra of wave elevation are
generally in partial agreement with theoretical predictions.
The exponent of the scale-power law depends on forcing
amplitude and seems to saturate close to the predicted
value [16–18]. At small scale, in the capillary wave regime,
several independent studies report, in contrast, observation of
the exponents given by the weak turbulence theory [18–23].
More recently the spatiotemporal characterization of capillary
wave turbulence [24] and the study of its decay [25] have
shown that despite the compatibility of the spectra with weak
turbulence theory, the needed experimental conditions depart
from the theoretical framework. First, viscous dissipation
occurs at all the scales of the turbulent cascade leading
to a nonconserved energy flux [26] and anisotropy in the
forcing is conserved [24]. Then the dimensionless nonlinear
parameter, i.e., the wave steepness, seems too large to verify the
hypothesis of small nonlinearity, needed to consider resonant
interactions. Therefore, in order to solve this paradox, an
experimental investigation of three-wave resonant interactions
of gravity-capillary surface waves is here performed, with
similar experimental conditions than those exhibiting capillary
wave turbulence.

Although this phenomenon has been widely studied, some
important features have never been tested experimentally.
Theoretically, by considering three waves verifying the res-
onant condition, amplitude equations can be derived using
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perturbative [7,27] or variational [28] methods, in which
dissipation is neglected. A few experimental studies tried
to verify these last results in laboratory channel tanks, by
generating a well-controlled sinusoidal wave train. The first
investigations of such interactions were performed in the 1970s
for a special degenerate case, the Wilton ripples (f1 = f2 =
9.8 Hz, f3 = 19.6 Hz for pure water) with, in that case, the
daughter wave collinear to the two mother waves [29]. By
adding dissipation as a perturbation, a conclusive agreement
was found with theory. Similar experiments observed the
same phenomenon under near-resonant conditions [30]. Then
subharmonic generation of gravity-capillary waves were also
studied at the beginning of the 1980s [31], in which two waves
are generated from a single one at higher frequency. However,
this three-wave process was not properly observed due to oc-
currence of subharmonic cross waves [3,32]. At the end of the
1980s, the subharmonic three-wave interaction phenomenon
was appropriately reported [33–35], by demonstrating the
instability of a capillary surface wave train, whose frequency is
above 19.6 Hz. The selection process of the observed triads was
also studied. Moreover, in a wave turbulence regime, a recent
experimental study close to the gravity-capillary crossover
has shown significant occurrence of quasi-one-dimensional
three-wave interactions [36]. Finally, occurrence of three-
wave interactions was demonstrated for capillary waves under
parametric excitation [37].

In that context, the present paper investigates interactions
between two gravity-capillary mother waves and a third daugh-
ter wave. By studying experimentally interactions between
two sinusoidal wave trains producing a daughter wave at
higher frequency, we intend to characterize the elemental
process of wave turbulence, producing a positive transfer
of energy through the small scales. This regime is indeed
formed by a dynamic superposition of multiple interactions. In
particular we aim to test the robustness of resonant interaction
mechanisms knowing that in small-scale experiment viscous
dissipation is significant, multiple reflections occur, and time-
scale separation is not guaranteed allowing observation of
nonresonant interactions [6,30]. Moreover, three-wave interac-
tion mechanisms for surface waves have never been addressed
experimentally in the configuration where two mother waves
generate one daughter wave at higher frequency. Only the
degenerated and collinear case [29,30] (f1 = f2; f3 = 2f1)
and the subharmonic generation of two waves by one wave at
high frequency [31–33] (f1 = 2f ∗; f2 = f3 = f ∗) have been
experimentally investigated.

The paper is organized as follows. A state of the art is given
in Sec. I on the topics of gravity-capillary wave interactions
whereas Sec. II recalls the key points of the theoretical
background of the resonant triadic interactions. Section III
presents the experimental setup and techniques. Section IV
reports an extensive study with local and spatial measurements
of the triad, where two mother waves of frequency f1 = 15
and f2 = 18 Hz generate a daughter wave at the frequency
f3 = f1 + f2 = 33 Hz. Section V shortly extend the results to
another triad experimentally tested (f1 = 16, f2 = 23, f3 =
39 Hz) and draws some conclusions. Finally, in the Appendix,
characterization of wave dissipation in the experimental setup
is given.

II. THREE-WAVE RESONANCE: THEORETICAL
BACKGROUND

A. Resonance conditions

Let us consider the case of two mother waves with
frequencies f1 and f2 and wave vectors k1 and k2, leading
to the appearance of a daughter wave with frequency f3 =
f1 + f2.

Each wave i satisfies the gravity-capillary linear dispersion
relation:

ω2
i =

[
g ki + σ

ρ
k3
i

]
tanh(ki h0) (3)

with g the gravity acceleration, ρ the fluid density, σ the sur-
face tension and h0 the liquid depth at rest. As the frequencies
are imposed, norms of wave vectors ki are known by inverting
numerically the relation dispersion. The components of the
triad satisfy the resonance conditions:

ω1 + ω2 = ω3 k1 + k2 = k3. (4)

The angle between the two mother wave vectors k1 and k2
is called α12. In the resonance conditions [Eq. (4)], this angle
noted α12 r is completely determined by the choice of mother
wave frequencies f1 and f2.

cos(α12 r ) = k2
3 − (

k2
1 + k2

2

)
2k1k2

. (5)

For the triads, we have investigated in the following, the
values of α12 r are 54 deg (f1 = 15, f2 = 18, and f3 = 33 Hz)
and 59 deg (f1 = 16, f2 = 23, and f3 = 39 Hz), by taking
σ = 60 mN/m and ρ = 1000 kg/m3 for water as working
fluid. These frequencies belong to the capillary waves domain,
but gravity is not negligible and the complete form of the
dispersion relation of Eq. (3) has to be used. A schematic
view of the wave beams of the mother waves and the
resulting interaction zone area are given in Fig. 1(a), with
the corresponding angle α12 r between k1 and k2. An origin
O and an axis Oξ in the direction of k1 + k2 are defined to
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) 

FIG. 1. (a) Schematic view of the interaction zone between
the two mother waves. O is the origin of this zone, M locates
a point in this area along the direction Oξ given by k1 + k2.
(b) Graphical construction of the triad for f1 = 15 Hz and f2 = 18 Hz
with α12 r = 54 deg (resonant angle). The green circle (dash-dotted
line) corresponds to k3r satisfying the gravity-capillary dispersion
relation and the red circle (continuous line) to all location of the
extremity of vector k2. Axes are here defined relatively to k1.
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FIG. 2. For a fixed mother wave f1 = 15 Hz, (a) evolution of the
angle α12 r versus f2 from Eq. (5) and (b) evolution of the interaction
coefficients versus f2 from Eq. (8).

describe the daughter wave propagation at a given point M

along Oξ .
It is also possible to determine graphically the resonant

wave vector k3r satisfying both the dispersion relation and
the resonance conditions as illustrated in Fig. 1(b). The red
circle (continuous line) defines the loci of all the possible k3
built by the sum of k1 + k2, different angles between them
being possible when changing the orientation of the vector
k2 on this circle, keeping its norm k2 constant. The green
circle (dash-dotted line) corresponds to the loci of the vectors
k3r in accordance with the dispersion relation. As a conse-
quence the intersection between the red and the green circles
defines the vector k3r satisfying both the resonance conditions
and the relation dispersion. Two solutions exist corresponding
to opposite values of α12 r . If the angle between k1 and k2
differs from α12 r , being for example 90 deg, there is no
intersection with the green circle and hence the corresponding
triad is not satisfying the dispersion relation anymore. More-
over, varying f2 for a given f1 changes the value of α12 r

computed with Eq. (5). Figure 2(a) shows indeed a significant
increase. At the lowest possible value of f2, α12 r = 0 and
the mother waves are collinear. The value α12 r = 90 deg,
cannot be reached and corresponds to f2 going to infinity.
Note also that another graphical determination of triads is
provided by the construction of Simmons [28], which builds
in the three-dimensional (3D) space (kx , ky , ω) the loci of the
vector ki to be in the resonant situation.

TABLE I. Norms of the wave vectors and interaction coefficients
calculated from Eq. (8). The different values are calculated with
σ = 60 mN/m and ρ = 1000 kg m−3.

ki (m−1) γi (m−1 s−1)

f1 = 15 Hz 428 −1.40×104

f2 = 18 Hz 507 −1.38×104

f3 = 33 Hz 834 1.24×104

f1 = 16 Hz 455 −1.65×105

f2 = 23 Hz 626 −1.58×104

f3 = 39 Hz 946 1.41×104

B. Amplitude equations

In the weakly nonlinear regime, considering one isolated
triad, equations can be derived for the amplitudes and the
phases of the three waves [28]. By hypothesis, the free surface
elevation η is written as the sum of the components of the triad
taken as propagative waves: η(x,y,t) = ∑3

i=1 ai cos(ki · x −
ωi t + φi), where ai and φi are the amplitude and the phase of
the wave i. Temporal evolutions of ai and φi are then expressed
as a system of six coupled first-order linear differential
equations. Moreover, in capillary wave experiments wave
dissipation due to viscosity needs to be taken into account.
Considering a linear dissipation process, amplitude equations
are modified by adding a decay term δi ai [29,33], where
δi is the viscous dissipation coefficient, i.e., the inverse of
the viscous decay time at the frequency fi . This approach
is justified, if this later time scale is small compared to the
characteristic nonlinear time associated with the nonlinear
growth of a3. Then for each component i of the triad, one
has [33]:

∂ai/∂t + δiai + (vgi .∇)ai = ai+1ai+2 γi sin φ (6)

∂φi/∂t + (vgi .∇)φi = ai+1ai+2

ai

γi cos φ (7)

with i = 1,2,3 interchanged cyclically, φ the total phase
defined as φ = φ1 + φ2 − φ3, ∇ = (∂x,∂y), vgi = ∂ωi/∂ki
group velocities, and γi the interaction coefficients, whose
expressions are given by [28]:

γi = − ki

4ωi

3∑
j=1

ωjωj+1

(
1 + kj.kj+1

kjkj+1

)
. (8)

In this last formula, the convention of negative frequency
for ω3 is taken in order to write the resonance conditions:
ω1 + ω2 + ω3 = 0 and k1 + k2 + k3 = 0, as defined in the
variational derivation of interaction coefficients [28]. In the
following except in the calculation of these coefficients,
frequencies are considered positive.

In order to provide some orders of magnitude, the evolution
of the various γi versus f2 have been plotted on Fig. 2(b),
for a fixed value of f1 = 15 Hz. The evolution with f2 is
monotonous (decreasing for γ1,2 increasing for γ3). The values
of γi for (15, 18, 33) and (16, 23, 39) (shortly discussed in
Sec. V) are reported in Table I.

The coefficients of the mother waves are negative whereas
the coefficient for the daughter wave is positive. The wave
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3, initially null, would thus grow, by pumping energy from
the waves 1 and 2. With negligible dissipation, a3 is sup-
posed to grow linearly in time, at short time, as long as
a3 � √

a1 a2. Long-time behavior of the system formed by
Eqs. (6) and (7) predicts nonlinear oscillations and recurrence
phenomena [2,28], also with negligible dissipation.

To make a quantitative comparison between these theoreti-
cal results and the following experimental measurements, we
study the behavior of the daughter wave with the hypothesis
a3 � √

a1 a2. We consider in stationary regime the evolution
of the wave amplitude a3 in the direction Oξ given by k3, as
previously explained and illustrated in Fig. 1(a). From Eq. (6),
we get a linear differential equation of order one with a second
member:

vg3 ∂a3/∂ξ = −δ3a3 + a1a2 γ3 sin φ. (9)

If the wave field can be considered homogeneous and if the
total phase φ does not vary with ξ , the previous equation
can be integrated and by introducing the coordinate ξ0 where
a3(ξ0) = 0, we obtain:

a3(ξ ) = γ3 sin φ

δ3
a1a2

[
1 − exp

(
− δ3

vg3
(ξ − ξ0)

)]
. (10)

To be consistent ∂φ3/∂ξ = 0, then Eq. (7) imposes cos φ = 0
and thus sin φ = ±1 or φ = ±π

2 . The phase locking at φ =
π/2 was supposed in most of the experimental studies of
three-wave resonance [29,33] and was justified by a reasoning
of maximal energy transfer. Otherwise the phase φ3 would
be spatially modulated and an analytical solution cannot be
expressed any more. The dependency of a3 with the distance
ξM from the origin, ξ0, is expressed by the prefactor K , whose
expression is:

K(ξM ) = 1 − exp

(
− δ3

vg3
ξM

)
. (11)

As a consequence, at a given point M , a3 is expected to be
proportional to the product a1a2 and the slope can be identified
to γ3 sin φ K(ξM )/δ3. In the experiments, ξ0 is assumed to
be at the first crossing point between the two mother wave
trains, in the direction of the daughter wave, i.e., the origin
point O in Fig. 1(a). As a remark for surface gravity waves, to
validate the four-wave resonant mechanism, experiments were
performed by generating two distinct waves trains crossing
perpendicularly [38,39]. These experiments with negligible
dissipation, validated four-wave resonant interaction in the
degenerated case [5], in finite wave basins. Similarly, the
beginning of the daughter wave is taken at the first crossing
point between the two mother wave trains.

Homogeneity of the wave field is hard to fulfill due to
viscous dissipation and presence of boundaries, but it will
be shown in the following that by taking into account this
correction with K(ξM ), we obtain a satisfying estimation of
the interaction parameter γ3. Moreover, two limit behaviors
can be deduced from Eq. (10). At short distance or for weak
dissipation, a3 grows linearly with ξ :

a3 lin(ξ ) = γ3 sin φ

vg3
a1a2(ξ − ξ0). (12)

In contrast, at high enough distance, if the amplitude of mother
waves remain constant, viscous dissipation can saturate the

resonant interaction to a constant value:

a3 sat(ξ ) = γ3 sin φ

δ3
a1a2. (13)

Thus, a3 grows with the distance to reach this saturation value
due to the balance between nonlinear growth and viscous
dissipation. In contrast to the theory that considers an open
system, in this work, we investigate three-wave resonance in
a closed system, which is the relevant case for capillary wave
turbulence experiments. The circular boundaries of the tank
reflect indeed a part of incident waves in many directions. The
wave field contains thus a propagative part and a standing (or
stationary) part, and this later brings inhomogeneity. In the
following, we will show that although effects of reflections
are significant, they do not modify the three-wave interaction
mechanisms. Thus, reflections present in all closed tanks are
not preventing resonant interactions, but make their analysis
more complex.

III. EXPERIMENTAL SETUP

We use a circular Plexiglas (PMMA) container of diameter
240 mm filled with a liquid up to a height h0 = 50 mm,
corresponding to deep water wave regimes, for frequencies
considered in the following. Two gravity-capillary waves 1
(k1,ω1) and 2 (k2,ω2) are produced at the air-liquid interface
using two wave makers, consisting in two vertical rectangular
plastic paddles of width 100 mm driven horizontally and
independently by two electromagnetic shakers (Brüel & Kjaer
LDS V201). The paddles are immersed 10 mm under the
surface of the liquid. Recording of the input excitation is
carried out by accelerometers (Brüel & Kjaer 4393) glued on
the paddles. Note also that the distance and the angle between
the two wave makers can be tuned.

Two optical techniques have been used to investigate the
wave field: local measurements with a laser Doppler vibrome-
ter and spatiotemporal measurements using the diffusing light
photography (DLP) method. The laser Doppler vibrometer
(Polytech OPV 506), measures the velocity at one point of
the free surface given by the position of the vertical laser
beam. The distilled water is white dyed thanks to TiO2

pigment (Kronos 1001, 10 g in 1 L of water), to make the
fluid opaque. The laser beam is thus subjected to a diffuse
reflection and the velocity of the point at the free surface is
extracted from the interference between incident beam and
back-scattered light. After temporal integration, vibrometer
can capture deformations smaller than 1 μm, without any
bias. For these concentrations of TiO2, the properties of pure
water at ambient temperature (25 ◦C) are weakly modified.
We measure a density ratio with water ρsol TiO2/ρwater = 1.009
and a kinematic viscosity ν = 1.02 × 10−6 m2 s−1 using a
Anton Paar, MCR 500 rheometer, equipped with a cone-plate
combination (diameter 50 mm, angle 1 deg). As TiO2 particles
are not accumulating at the interface, surface properties are
comparable to those of pure water [40]. By measuring the
phase velocity in monochromatic experiments, we find a
surface tension of σ = 62 ± 5 mN m−1. In the following,
measurement point is located at a distance of 90 ± 5 mm
from each wave maker, corresponding to the position (xv, yv).
Figure 3(a) shows a top view of the tank for an angle α12
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dynamics recorded in transmission
with a CMOS camera
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water + intralipids
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for the DLP method

(b) (c)water + intralipidswater + TiO2
(a)

FIG. 3. (a) Top view of the set up for local temporal measurements: the tank is filled with water mixed with TiO2 pigment. The red spot is
the beam of the laser vibrometer. (b) Top view of the setup for spatiotemporal measurements with the DLP method. The liquid is a solution
of intralipids in water. The blue rectangle depicts the observation area S of 103 × 94 mm2 where the wave field reconstruction is performed.
(c) Schematic representation of the side view of the setup for DLP spatiotemporal measurements.

equal to 60 deg, for experiments using the laser Doppler
vibrometer placed about 64 cm above the liquid surface. As a
remark, during preliminary experiments, local measurements
were performed using a capacitive wave probe, providing very
similar results. Attenuation measurements giving values of the
viscous damping coefficients δi are presented in the Appendix.

The second method, diffusing light photography
(DLP) [19], consists in the reconstruction of the 3D free surface
from the measurement of the transmitted light through a liquid
diffusing the light. A small amount of micrometric particles
are added to the liquid (4.5 mL of Intralipids 20% Fresenius
KabiTM in 1 L of distilled water). We measure a density ratio
with water ρsol intra/ρwater = 1.001 and a kinematic viscosity
ν = 1.24 × 10−6m2 s−1. The surface tension will be deduced
from the measurements. As displayed in Fig. 3(c) a diffuse
LED light source of 200×200 mm2 (Phlox) provides a
homogeneous lighting below the transparent tank. Transmitted
light is recorded on an observation area S of 103 × 94 mm2,
with a fast camera (PCO Edge, scientific CMOS) located
above the tank, and with focus made on the surface (frame
rate 200 Hz). Knowing that the transmitted intensity is related
to the local height of liquid, it is possible with a suitable
calibration to reconstruct the wave field in space and time.
More details about DLP are available in an experimental
work on capillary wave turbulence [24], where a similar setup
was used. Spatiotemporal dynamics of free-surface elevation
can be thus extracted with a good sensitivity even for steep
deformation. This method has an accuracy of order 10 μm
due to uncertainties in the calibration process, and is thus
less precise than the laser Doppler vibrometry. Moreover,
surfactants present for stabilization purpose in commercial
solutions of intralipids increase slightly wave dissipation (see
Appendix). Therefore, for quantitative measurements of wave
amplitudes, laser Doppler vibrometry will be preferred in the
following. However, we have checked that all the phenomena
observed with the vibrometer are reproduced with the DLP
method with less accuracy and slightly different physical
constants. DLP will thus succeed to characterize spatial
properties of the wave field and to display mechanisms of
three-wave resonant interactions.

Finally, a data acquisition card (NI-USB 6212) controlled
through MATLABTM, sends programmed signals to the elec-
tromagnetic shakers and record analog signals from the
laser Doppler vibrometer and from the two accelerometers
(sampling frequency of 10 kHz). As optical properties of liquid
are different for the two methods (opaque for the vibrometry
and light diffusing for the DLP), local and spatiotemporal
measurements are taken separately on dedicated experiments.
For the local measurements, recordings are taken during
170 s, in which waves are generated for 150 s including
transient, stationary, and decaying regimes. Each measurement
is repeated 12 times to ensure a statistical averaging. Then,
for spatiotemporal measurements, due to the larger amount
of data, the wave reconstruction is performed usually on
a duration of 20.5 s, in stationary regime. Throughout the
text, the mother wave amplitudes a1 and a2 measured with
the vibrometer (wave amplitudes are obtained by bandpass
filtering around f1 and f2, see Sec. IV D) will be attributed
to the spatiotemporal measurement as forcing parameters,
which have the same values of forcing amplitude imposed
to the electromagnetic shaker. Using this scale, the two
kinds of measurements can be compared with a parameter
corresponding to properties of the wave field.

IV. EXPERIMENTAL STUDY

We first investigate three-wave interactions, by setting
experimentally the conditions imposed by the resonance
condition and the dispersion relation. Here we report the results
for f1 = 15 and f2 = 18 Hz, imposing the angle α12 r = 54 deg
from Eq. (5), between the two wave trains. Appearance
of a third wave at the frequency f3 = f1 + f2 = 33 Hz is
thus expected. The two wave trains are generated by the
sinusoidal motion of each paddle. The angle between the two
paddles is set at 180 − 54 = 126 deg with an experimental
accuracy estimated to be ±2 deg. Examples of the wave field
obtained with DLP measurements, in the transient and the
stationary regimes, are displayed in Fig. 4. In the interaction
zone between the two mother waves, a modulated wave field
is observed, with crests and troughs in the surface height
distribution, corresponding mainly to the linear superposition
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FIG. 4. Examples of wave-field reconstruction obtained with the
DLP technique, for f1 = 15 Hz, f2 = 18 Hz and α12 = 54 deg: (a)
in the transient and (b) in the stationary regime, with a color scale
in mm (total height of fluid in the tank), with a1 = 130 and a2 =
132 μm (high forcing). The position of the laser spot for vibrometer
measurements is indicated by the black cross symbol located at
xv = 54.6 mm and yv = 43.3 mm.

of the two mother waves. To detect the presence of the daughter
wave, performing a Fourier transform analysis is necessary.
From DLP measurements, spatial homogeneity can be also
estimated by computing the ratio between the spatial standard
deviation of wave amplitude and the spatial average wave
amplitude and typical values of 10% are found. The control
parameters will be the amplitudes of mother waves a1 and a2.

A. Power spectra of wave elevation

We detect the presence of the daughter wave by computing
the local power spectrum Pη(ω) of wave height η(t,xv,yv),
using the vibrometer. Pη is defined as the square modulus
of the Fourier transform of η and is computed using the
pwelch function with MATLABTM. A typical spectrum for
an intermediary amplitudes among the tested one is shown
in Fig. 5(a). Peaks corresponding to the mother waves are
clearly visible at frequency f1 and f2. An additional peak of
smaller amplitude is present at the frequency f3 = f1 + f2,
clearly demonstrating the existence of a mode at f3. Note
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FIG. 5. (a) Local power spectrum Pη(ω) for f1 = 15, f2 = 18 Hz
and α12 = 54 deg. There, a1 = 130 and a2 = 132 μm (high forcing).
(b) Spatiotemporal spectrum of wave elevation Sη(ω,k). White dashed
line: linear theoretical dispersion relation for σfit = 55 mN/m. Color
scale corresponds to log10[Sη(ω,k)] with Sη in mm3 s, with a1 = 55
and a2 = 56 μm (low forcing).

here that the amplitude of the daughter wave at f3 is of
the same order of magnitude as the amplitudes of the two
harmonics 2f1 and 2f2. These harmonics are generated by
nonlinearity in the generation by the wave makers (typical
mother wave steepnesses range: 0.01 < kiai < 0.1). A peak
of smaller amplitude (not depicted) is also observed at f =
f2 − f1 = 3 Hz. Although its generation is also related to a
three-wave mechanism, the corresponding wavelength (around
167 mm) is too close to the tank dimensions and we choose
to focus on the triad, which is transferring energy at high
frequency. Moreover, especially when the forcing amplitude
is high enough, higher-order resonant triads are also observable
in the spectrum, such as (f1,2f1,3f1), (f1,f1 + f2,2f1 + f2),
(f2,2f1,2f1 + f2), (f2,f1 + f2,f1 + 2f2), (f1,2f2,f1 + 2f2),
and (f2,2f2,3f2), which can be seen in Fig. 5(a). At high
forcing amplitude, spectral peaks become wider, due to
nonlinear broadening. Therefore at high enough forcing the
considered triad cannot be taken isolated and we expect a
departure from the theoretical considerations of Sec. II B.
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FIG. 6. Spatiotemporal spectra of wave elevation Sη(ω,kx,ky), is displayed for the triad frequencies: (a) f1, (b) f2, and (c) f3. Circles
correspond to the linear theoretical dispersion relation at the given frequency. The arrows indicate the vector ki extracted from the maxima of
the experimental spectra. We observe k3 ≈ k1 + k2. Color scale log10(Sη) arbitrary unit, with a1 = 55 and a2 = 56 μm.

Using the DLP method, we compute also spatiotemporal
power spectra Sη(ω,kx,ky) by performing a 2D spatial Fourier
transform and a temporal Fourier transform on the wave

field η(x,y,t). The spectrum Sη(ω,k) with k =
√

k2
x + k2

y

is averaged over the different directions and is displayed in
Fig. 5(b), as a function of the inverse of the wavelength λ and of
the frequency f . The spatial resolution of the spectrum is equal
to 2π δλ−1 = δk ≈ 30.5 m−1. Peaks of the spectrum appear
as high amplitude spots. As seen previously, the spectrum
contains peaks at the frequencies of the mother waves f1 and
f2, the harmonics of the mother waves 2f1 and 2f2 (hardly
visible), and the daughter wave f3 = f1 + f2. Small amplitude
waves are expected to follow the linear gravity-capillary
dispersion relation. The experimental dispersion relation can
thus be accurately fitted by the linear dispersion relation where
the surface tension σ is the only free parameter in Eq. (3).
We find here σfit = 55 mN/m, but for other experiments
with solution of intralipids σ can be significantly lower, up
to 45 mN/m. We observe also a broadening of the relation
dispersion in λ−1, evaluated using a Gaussian adjustment of
the peaks, as 2π δλ̃−1 = δk̃ ≈ 70 m−1 around the fit. This
broadening is due to the finite field of view of the camera, to
the weak nonlinearity and to the dissipation of the waves.

B. Verification of the spatial resonance condition

Resonance implies that both temporal and spatial condi-
tions f3 = f1 + f2 and k3 = k1 + k2 are satisfied simultane-
ously. Figure 6 shows separately the spatiotemporal spectra
Sη(ωi,kx,ky) for the frequency f1, f2, and f3. In Figs. 6(a)
and 6(b), the maximum of each spectrum is observed in the
direction of propagation of the wave 1 or 2 at a position from
the center equal to ki = ‖ki‖ given by the linear dispersion
relation. However, wave energy is also detected with wave
number k1 and k2 in other directions than the initial propagation
one. Since measurements are performed during the stationary
regime, this is due to the multiple reflections on the border
of the tank. Despite the multidirectionality observed for the
mother waves, for the daughter wave at f3 in Fig. 6(c), a
maximum is clearly detected at k = k3 and the corresponding
wave vector k3 is close to the vectorial sum of k1 and k2.

To quantify the verification of the spatial resonance
condition, a systematic study was performed for growing
mother wave amplitudes. In Fig. 7 for increasing a1a2, we
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FIG. 7. Comparison between the experimental values of k1 + k2

and k3 exp. as a function of the product a1 a2 of the mother wave
amplitudes. (a) in norm and (b) in direction, when α12 = 54 deg. In
(a) the value of k3 given by the linear dispersion relation is represented
by a black line. The black dashed line provides the acceptable bounds
due to the finite resolution δk = 30.5 m−1 of the spectra. In (b) θ is
the angle between the horizontal axis of Fig. 6(c) and k3. The black
dashed lines indicate the angular accuracy δθ around the average
orientation 〈θ〉 of k1 + k2. The product a1a2 has been measured with
the laser vibrometer, in equivalent experimental conditions.
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test the accordance of k3 with the dispersion relation and
on the direction θ made by k3 with the horizontal axis. As the
spectra have a finite resolution δk = 30.5 m−1, the modulus
of k is measured with an accuracy equal to ±δk and its
direction with an accuracy equal to ±δθ = δk/k3 = 2.0 deg.
The resonant condition is thus well verified for low values
of the product a1a2. When this product becomes larger than
2 × 10−8 m2 a significant departure is observed, probably due
to higher nonlinear effects. The angle θ is also decreasing
with the amplitude of the two mother waves. Nevertheless,
spatiotemporal measurements show that resonance conditions
are well verified in time and space for a significant range of
mother wave amplitudes.

C. Spatial behavior of mother and daughter waves

Using the spatiotemporal DLP measurements, we aim to
access to the spatial behavior of each component in the triad.
Indeed, according to Eq. (10), the daughter wave is expected
to grow with the distance and thus its amplitude depends
on the spatial coordinate. Moreover, as the system is finite
and presents inhomogeneity due to reflections and viscous
dissipation, the spatial evolution of the waves has to be studied.
To do this, the Fourier power spectrum is applied only in time
to the wave field η(x,y,t), to obtain a spectrum Sη(x,y,f ),
which is here a function of spatial coordinates and frequency.
By taking the spectra for the frequencies fi in the triad, we can
define wave modes ãi(x,y) depicting the spatial distribution
of each wave of frequency fi in the triad. To express ãi as an
amplitude, they are obtained by integration of the spectrum

around fi , ãi(x,y) = √
2 (

∫ fi+δf

fi−δf
Sη(x,y,fi) df )

1/2
with i =

1,2,3 and δf = 0.2 Hz. Note by definition that ãi is averaged
with time. Spatial wave modes ã1 , ã2 and ã3(x,y) are plotted
respectively in Figs. 8(a)–8(c). Due to the circular boundary
of the tank producing a stationary component on the wave
field, on each graph we observe a significant modulation at
the wavelength λi/2 for the frequency fi , because the power
spectrum is a quadratic operation. Nevertheless, ãi provide a
useful evaluation of local wave amplitudes. We observe that
the inhomogeneity of the mother wave modes are significant.
Nonetheless, in agreement with the results from the spatial
spectra, the wave 3 is found to propagate in a direction close

to Oy and its amplitude is important in the middle of the
crossing region between the two mother wave trains. Then
by plotting the amplitudes ãi as a function of the distance
d from the bottom of the image, Fig. 9(a), we observe a
decay of ã1 and ã2 due to viscous dissipation and nonlinear
pumping by the wave 3. ã3 is indeed found to grow slightly.
This behavior is qualitatively described with Eq. (10), by
taking ξ 
 d. In this equation a1a2 is taken as the average
value of ã1ã2 for d < 30 mm. We assume that sin φ = 1
and we take vg3 = 0.316 m.s−1, δ3 = 4.83 s−1 and so that
γ3 is taken equal to 1.30 × 104 m−1 [see Eq. (8) with the
physical properties of the intralipid solution]. Then the origin
O at ξ = 0 is determined by matching ã3 for d = 0, which
gives d0 = −23 mm. Although ã3 is not so small for this
measurement and the ã1 and ã2 are varying in space, the
model depicts roughly the a3 evolution with the good order of
magnitude for d < 50 mm. At higher distance, inhomogeneity
seems too important to make a quantitative comparison.

These results are confirmed for several measurements with
different forcing amplitudes by plotting the rescaled amplitude
ã3/(ã1ã2) in Fig. 9(b). We observe that the fast spatial mod-
ulations are not coherent from one measurement to another,
although experiments have been performed successively in
identical conditions. We suppose that the stationary pattern
of standing waves depends in the capillary regime on the
meniscus shape on the border of the circular tank, which is
known to be subjected to hysteresis. Except at lowest mother
wave amplitudes, where signal to noise ratio is too important
and at high amplitude, the rescaled evolution of ã3 is in qual-
itative agreement with the model despite the approximations,
which validates the resonant interaction theory. Moreover, we
demonstrate that for capillary-gravity waves, neither the linear
growth solution [Eq. (12)] nor the saturated solution by viscous
dissipation [Eq. (13)] describes the observations and thus the
more complete solution [Eq. (10)] has to be used, which is
taking into account the spatial growth of a3 with ξ .

D. Amplitudes and phase locking in stationary regime

After verifying the resonance conditions and showing that
Eq. (10) describes the spatial behavior of the daughter wave
in stationary regime, we study now its temporal dynamics
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FIG. 8. (a) ã1(x,y) providing the spatial distribution of wave mode at the frequency f1, when α12 = 54 deg. The black cross indicates
the corresponding position of the laser beam for the measurements performed with the vibrometer. Color scale ãi in mm. Here a1 = 104 and
a2 = 110 μm. (b) ã2(x,y) spatial mode at f2. (c) ã3(x,y) spatial mode at f3.
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FIG. 9. (a) Evolution of wave amplitudes ãi (averaged between
49 < x < 55 mm) along the propagation direction of the wave 3
as a function of the distance d from the bottom of the image. The
behavior of ã3 is compared to the model (black solid line) given by
Eq. (10) with ξ 
 d . The vertical black dashed line gives the position
yv of the laser beam for vibrometer measurements. (b) Rescaled
amplitude of ã3/(ã1ã2) as a function of the distance d for different
measurements (6.5 × 10−9 < a1a2 < 1.7 × 10−8 m2). We notice that
the spatial amplitude modulations are not in phase in the different
measurements. The average evolution of ã3 on the measurements,
green (light gray) line, is compared with the model given by Eq. (10),
black solid line. The linear limit for negligible dissipation [black
dashed line from Eq. (12)] and the saturated value [light-gray dotted
line from Eq. (13)] are also depicted.

in more accurate measurements using the laser Doppler
vibrometer. Twelve realizations of the same experiment and for
12 increasing mother wave amplitudes have been performed.
Concerning the experimental protocol, at t = 10 s, excitation
is started for 150 s and is then stopped at t = 160 s, whereas
wave heights are recorded during the total duration of the
experiment lasting 170 s.

From the measurements, we examine the evolution of the
amplitudes and the phases of the different components of the
triad in the stationary regime at the position (xv,yv). To do
so, the vibrometer signal is filtered around each considered
frequency fi : the filter is of Butterworth type, of order 2 and
with a pass band of 2�f (�f = 0.5 Hz). Resulting signals
are then integrated over time, to transform vertical interface
velocity into wave amplitudes. Then a Hilbert transformation
is applied to the signal in order to extract separately the
instantaneous wave amplitude ai(t) and the instantaneous

phase ψi = ki · xv − ωi t + φi of the different waves at the
laser beam position xv .

Looking at the amplitudes ai averaged on 12 realizations
in Fig. 10(a), we can see that after a transient and a small
overshoot, the amplitudes stabilize to a stationary value. At
t = 160 s, when the excitation is stopped, the amplitudes
return to zero. The growing and decaying transient regimes
involve shaker dynamic response, wave propagation, viscous
dissipation, and nonlinear wave interaction. Due to the lack
of temporal resolution resulting from the filtering operation,
transients cannot be used to evaluate the growth coefficient γ3

of the daughter wave. We notice also that the amplitude of the
daughter wave, around 20 μm, is smaller than the amplitudes
of the mother waves, around 130 μm (a3 � √

a1 a2).
Concerning the phase, Fig. 10(b) displays sin φ as a function

of t . If the resonant conditions of Eq. (4) are verified, by
computing ψ1 + ψ2 − ψ3, we obtain the total phase φ =
φ1 + φ2 − φ3 and so the sin φ term involved in Eq. (6). During
the transient regimes, phases φi are not related and sin φ

fluctuations are fast. Then, once stationary regime is reached,
sin φ evolves slowly and stabilizes to 1. Therefore, there is
a constant relation between the phases in the triad, i.e., a
phase locking around φ = π/2 as expected theoretically to
have a stationary phase behavior [see Eq. (7)]. This constitutes
a strong argument proving that the wave 3 is created by the
resonant interaction mechanism.

The influence of increasing the amplitudes of the two
mother waves is presented in Figs. 10(c) and 10(d) for which
both amplitudes ai and sin φ are averaged first over time in
the stationary regime (between t = 60 and 140 s) and then
on the 12 consecutive identical experimental realizations. In
these experimental conditions, Fig. 10(c) shows the mean
value and the standard deviation of sin φ versus a1a2. Except
at the lowest amplitudes, standard deviation of sin φ is quite
small (below 0.02), showing that a phase locking occurs.
But we observe that the phase locking value differs at small
amplitude from the expected value of 1. Figure 10(d) presents
the evolution of a3δ3/[K(ξ ) sin φ] versus a1a2. As expected
from Eqs. (10) and (11), we found a proportional behavior
between the rescaled a3 and a1a2, at least for not too high
amplitudes. Following Eq. (10), we estimate the interaction
coefficient γ3 for the daughter wave by computing the slope
of the linear fit of a3δ3/[K(ξ ) sin φ]. To take into account
the growth of the daughter wave on a distance ξ between the
beginning of the wave train and the laser spot, the coefficient
K(ξ ), has to be evaluated. For these experiments the distance
ξ is roughly 30 mm, leading to K(ξ ) = 0.33. The slope of the
linear fit in Fig. 10(d) is 4.85 × 103 m−1.s−1, and gives, thus,
an estimate of γ3. We obtain, thus, an experimental estimation
of the nonlinear interaction coefficient γ3exp = 1.46 × 104

m−1.s−1, which is 20% more than the theoretical value
γ3 = 1.24 × 104 m−1 s−1. Note that repeating the experiments
with another triad (16, 23, 39) Hz leads to an estimation of the
coefficient γ3,exp = 1.22 × 104 m−1 s−1, which is 13% less
than the theoretical value γ3,th = 1.41 × 104 m−1 s−1.

These measurements validate, thus, the generation of a
daughter wave from the interaction between two mother waves,
for capillary-gravity waves in a closed tank. It is important to
keep in mind that the wave field presents inhomogeneity for
two main reasons: first, the presence of a significant standing
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FIG. 10. (a) Amplitudes ai and (b) sin φ versus time for f1 = 15 Hz, f2 = 18 Hz, and α12 = 54 deg. For these parameters, a1 = 130 and
a2 = 132 μm. (c) Mean value of sin φ versus a1a2 in stationary regime, with in the inset: the standard deviation of sin φ, quantifying fluctuations
around the mean value. We observe that the phase locking occurs for the considered forcing amplitudes, but at low forcing sin φ departs slightly
from 1 and fluctuations are stronger. (d) In stationary regime 〈a3〉 × δ3/(K(ξ ) 〈sin φ〉) is found proportional to a1a2 for small and moderate
forcing. Solid line is the linear fit valid for not too high values of a1a2.

wave part, in addition to the main propagative part; second,
the viscous dissipation decreases significantly the amplitudes
of the mother waves as they propagate away from the wave
makers. Moreover, the frequencies f1, f2, and f3 of the triad,
are involved in other nonlinear mechanisms. Nevertheless, the
main features given by the resonant interaction theory are
recovered in this experiment. We observe that the daughter
wave verifies the resonant conditions in frequency and wave
number. Furthermore, the total phase φ is locked to a value
close to π/2. The nonlinear interaction coefficient experimen-
tally estimated is finally quite close to the theoretical one,
considering that the experimental conditions are not strictly
conform to the framework of the theory.

V. CONCLUSIONS AND DISCUSSION

We report an experimental study on three-wave interactions
of capillary-gravity waves in a closed tank. We showed that
the interaction between two mother wave trains at frequencies
f1 and f2 creates a daughter wave at f3 = f1 + f2. For mother
waves crossing at the resonant angle, we experimentally
validate the three-wave resonant mechanism. By means of
a spatiotemporal measurement, we verify that the spatial
resonance condition is fulfilled. We also observe a phase
locking at φ = π/2, between the different waves of the triad as
theoretically expected. In the stationary regime, we measure

the growth rate of the daughter wave amplitude a3, which is
found to be proportional to γ3 a1a2, with a1 and a2 the mother
wave amplitudes. Our quantitative estimation of the nonlinear
interaction coefficient γ3 gives the correct order of magnitude
with respect to the theoretical value, within an accuracy of less
than 20%. This extensive study has been performed for two
different triads (15, 18, 33) Hz or (16, 23, 39) Hz (the latter
is not shown here). Similar results are found. This confirms
that the features of three-wave interaction reported here can
be generalized to different capillary-gravity triads within a
frequency range of approximatively 10 < f < 50 Hz.

Several phenomena could be addressed to explain the
slight departures between experimental and theoretical values:
(i) higher-order interactions at high forcing amplitude;
(ii) wave reflections on the boundary of the tank producing
standing waves, which reduce the homogeneity of the wave
field where the daughter wave is studied; (iii) issues to localize
the beginning of the daughter wave in local measurements; and
(iv) finite width of the wave trains that could also modify the
derivation of interaction coefficients [41].

The model used here [Eqs. (6), (7), and (10)], involving vis-
cous dissipation as a perturbation [2,29,33], describes appro-
priately our results in the stationary regime. The characteristic
nonlinear time τnl for the growth of a3 can be approximated
as 1/τnl = (γ3

√
a1a2). For the triad (15,18,33) Hz, 1/τnl ≈

1.24 s−1 taking a1a2 ≈ 1.10−8 m2 [Fig. 10(d)], leading to
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τnl ≈ 0.81 s. The dissipative time is evaluated as τd = 1/δ3 =
0.23 s. For capillary waves, the dissipation is thus always too
strong to be neglected and it is surprising that inviscid theories
provide correct values for the interaction coefficients. Con-
sequently, a theoretical effort describing three-wave resonant
interactions from Navier-Stokes equations for surface waves,
would be of prime interest.

Note that such an extensive experimental study of three-
wave interaction for gravity-capillary waves on the surface of
a fluid has never been tested, although this process transfers
energy at small scale in wave turbulence. Indeed, previous
works using only collinear wave trains investigated the
degenerated case of Wilton ripples [29,30] or the subharmonic
generation where one wave at high frequency produces two
waves at a lower frequency [31–33]. Here, we emphasized that
for a given couple of mother wave frequencies the resonance
conditions impose, theoretically from Eq. (5), the value of
the resonant angle between the two mother waves. When the
angle is experimentally fixed to the resonant angle, we have
shown here that three-wave interactions are correctly described
by the resonant interaction theory. As these interactions are
the elemental mechanism of capillary wave turbulence, this
study seems to show that resonant interactions ensure energy
transfer through the scales. The average flux ε3 transferred
to the daughter wave by unit of area and density, can be
estimated from the energy of the wave 3 [42]. After spatial and
temporal averaging, we find 〈ε3〉 ≈ 2 × 10−7m3 s−3, which
is close to values obtained in capillary wave turbulence
experiments in water, when energy flux is evaluated through
the dissipated power [26]. Nevertheless, it is important to
evaluate and understand the relative contribution of three-wave
quasiresonances [36] and nonresonant interactions [6] in
front of the resonant interactions for gravity-capillary wave
experiments in laboratory.
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APPENDIX: ATTENUATION OF THE WAVES
DUE TO VISCOUS DAMPING

In our experiments, the amplitude of a daughter wave
is due to a balance between viscous attenuation and three-
wave interactions. In order to experimentally determine the
viscous dissipation or attenuation coefficients δi , we have
performed experiments with only one wave maker generating a
monochromatic wave, with f1, f2, and f3 generated separately.
The amplitude of the wave has been recorded every centimeter
with the laser vibrometer put on a linear translation stage. A
beach with a slope around 45 deg and lateral walls has been
placed in the tank in order to avoid reflections of the waves
when encountering the solid curved walls of the tank.

The evolution of amplitude is expected to decrease ex-
ponentially with the distance from the wave maker. For a
given frequency, the attenuation length li can be estimated
from the decaying exponent of an exponential fit performed
on the experimental amplitudes as shown in Fig. 11, for
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FIG. 11. Decrease of the amplitude of the wave with frequency
f = 33 Hz versus the distance from the wave maker, for a small
excitation forcing amplitude.

a frequency equal to 33 Hz. Then the coefficients δi are
simply computed by δi = vgi/ li . The group velocities are
calculated using vgi = ∂ωi/∂ki for deep water dispersion

relation, ωi =
√

gki + σ
ρ
k3
i . This leads to:

∂ωi/∂ki = 1

2

(
g + 3σ

ρ
k2
i

)(
gki + σ

ρ
k3
i

)−1/2

. (A1)

Despite the experimental care in preparing the solution of
TiO2, the dissipation exponents are found after one hour, well
described by the inextensible free-surface model due to the
presence of insoluble surfactants [25,43–45]. The values of
the viscous dissipation coefficients are thus computed using
the formula δi model = √

2
√

νωiki/4. The values of the norms
of the wave vectors ki (found with the graphical resolution of
Fig. 1(b) with σ = 60 mN/m), the phase and group velocities
vpi and vgi , the attenuation parameters δi model, li , and δi

are reported in Tables II and III. Note that the measured
coefficients are close to the value of δi model (maximum relative
error around equal to 7%).

Note, as previously mentioned, that gravity-capillary waves
are sensitive to the contamination of the surface, which is an
unavoidable effect. In order to check if contaminants play
a significant role in the present experimental conditions we
have performed, for an arbitrary angle between the two wave
makers, a complete series of experiments with a home-built
plastic cover and the same series another day without the

TABLE II. Norms of the wave vectors, phase, and group veloc-
ities. The different values are calculated with σ = 60 mN/m and
ρ = 1000 kg m−3.

ki (m−1) vpi (m s−1) vgi (m s−1)

f1 = 15 Hz 428 0.220 0.227
f2 = 18 Hz 507 0.223 0.248
f3 = 33 Hz 834 0.249 0.326
f1 = 16 Hz 455 0.221 0.234
f2 = 23 Hz 626 0.231 0.278
f3 = 39 Hz 946 0.259 0.349
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TABLE III. Viscous damping coefficients (viscous model:
δi model = √

2
√

νωiki/4), experimentally measured attenuation
lengths and corresponding deduced viscous damping coefficients.
The different values are calculated with σ = 60 mN/m.

δi model (s−1) li (m) δi (s−1)

f1 = 15 Hz 1.49 0.162 1.40
f2 = 18 Hz 1.93 0.128 1.94
f3 = 33 Hz 4.31 0.080 4.07
f1 = 16 Hz 1.63 0.122 1.92
f2 = 23 Hz 2.70 0.103 2.70
f3 = 39 Hz 5.31 0.061 5.71

plastic cover. Results appear to be comparable with and
without the cover, except during the first hour.

Finally, viscous damping coefficient have been also mea-
sured for the solution of intralipids using the DLP method. Spa-
tial decay of sinusoidal wave trains are found compatible with
the inextensible free-surface model, δi model = √

2
√

νωiki/4.
Compared to the solution of TiO2, this solution has a lower
surface tension γ = 55 mN m−1 and a slightly higher viscosity
ν = 1.24 m s−2. We obtain this, for example, for f3 = 33 Hz,
vg3 = 0.316 m s−1 and δ3 = 4.83 s−1. Therefore, both liquids
used in this experimental study have analogous physical
properties and we observe the same behavior for the three-wave
resonance mechanism.
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