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Soliton gases represent large random soliton ensembles in physical systems that display integrable dynamics
at leading order. We report hydrodynamic experiments in which we investigate the interaction between two
beams or jets of soliton gases having nearly identical amplitudes but opposite velocities of the same magnitude.
The space-time evolution of the two interacting soliton gas jets is recorded in a 140-m-long water tank where
the dynamics is described at leading order by the focusing one-dimensional nonlinear Schrödinger equation.
Varying the relative initial velocity of the two species of soliton gas, we change their interaction strength and
we measure the macroscopic soliton gas density and velocity changes due to the interaction. Our experimental
results are found to be in good quantitative agreement with predictions of the spectral kinetic theory of soliton
gas despite the presence of perturbative higher-order effects that break the integrability of the wave dynamics.
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I. INTRODUCTION

Soliton gas (SG) is a concept in statistical mechanics
and nonlinear physics that was originally introduced by Za-
kharov [1] as a large random ensemble of interacting solitons
of the Korteweg–de Vries (KdV) equation. In the original
Zakharov model, the KdV SG is diluted with all solitons
being individually discernible in the physical space where
they occupy random positions and have random amplitudes.
The emergent dynamics of SG on a macroscopic (hydro-
dynamic) scale, significantly larger than the characteristic
soliton width, is determined by the fundamental properties of
the elementary interaction between individual solitons. Owing
to the integrable nature of the KdV equation, soliton collisions
are pairwise (multiparticle effects are absent) and elastic, so
the interaction does not change the soliton amplitudes and
velocities but produces only the additional position (phase)
shifts [2].

In Ref. [1] Zakharov introduced the kinetic equation for
a nonequilibrium diluted gas of weakly interacting solitons
of the KdV equation. The Zakharov kinetic equation was
generalized to the case of a dense (strongly interacting) KdV
SG in Ref. [3]. The kinetic theory of SG for the focusing one-
dimensional (1D) nonlinear Schrödinger equation (NLSE)
was developed in Refs. [4,5].

Due to the presence of an infinite number of conserved
quantities, random ensembles of nonlinear waves in inte-
grable systems do not reach the thermodynamic equilibrium
state characterized by an equipartition of energy leading
to the so-called Rayleigh-Jeans distribution of the modes.

*stephane.randoux@univ-lille.fr

Consequently, the properties of SGs are very different com-
pared to the properties of classical gases whose particle
interactions are nonelastic. The question of the thermody-
namic properties of SGs is addressed by invoking generalized
hydrodynamics, the hydrodynamic theory of many-body
quantum and classical integrable systems [6–9].

It is well known that a comprehensive description of soli-
tons and their interactions in physical systems described by
integrable equations like the KdV equation or the 1D NLSE is
achieved within the framework of the celebrated inverse scat-
tering transform (IST) method [2,10–13]. In the IST method,
each soliton is parametrized by a discrete eigenvalue of a
linear spectral problem associated with the nonlinear wave
equation under consideration [14]. The fundamental property
of integrable dynamics is isospectrality, i.e., the preservation
of the soliton spectrum (the eigenvalues) under evolution.

The central quantity of interest in SG theory is the density
of states (DOS), which represents the statistical distribu-
tion over the spectral (IST) eigenvalues. The spectral kinetic
description of nonuniform (nonequilibrium) SGs involves
the continuity equation for the DOS (associated with the
isospectrality condition) and the equation of state defining
the effective velocity of a tracer soliton inside a SG, which
differs from its velocity in the vacuum due to the pairwise
interactions with other solitons in the gas, accompanied by
the position or phase shifts.

Despite the significant developments of the SG the-
ory [5,8,15–23], the experimental and observational results
related to SGs are quite limited [24–30]. In recent works
it has been shown that SGs with controlled and measurable
DOSs can be generated in laboratory experiments made with
deep-water surface gravity waves [30]. An important step
towards the quantitative verification of the spectral kinetic
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theory of SG was recently made in optical fiber experiments
where the refraction of a soliton by a dense soliton gas was
demonstrated [31]. In this experiment, the velocity change
experienced by the tracer soliton in its interaction with an
optical SG was found to be in good quantitative agreement
with the results of the spectral kinetic theory of SG.

In this article we report further experiments to investigate
the physical validity of the kinetic theory of SG. Instead of
considering the interaction between a single tracer soliton and
a SG like in Ref. [31], we examine the interaction between two
SG beams or jets in hydrodynamic experiments performed
with deep-water surface gravity waves. By the SG jet we mean
a SG having a narrow distribution of the discrete IST eigen-
values around some given point in the complex spectral plane.
Sometimes such special SGs are called monochromatic, with
the DOS modeled by the Dirac δ function. Mathematically,
the introduction of a DOS in the form of a linear superposi-
tion of several δ functions (the polychromatic ansatz) leads
to a significant simplification of the kinetic equation and
the availability of analytical solutions describing various SG
interactions [4,15,20,32].

In our experiments we consider the interaction of two
monochromatic SG jets that are configured to have equal
amplitudes and opposite velocities. In physical space, each
jet has the form of a large ensemble of individual solitons,
with all the solitons having nearly the same amplitude and
velocity. This configuration was considered theoretically in
Ref. [4] by formulating an appropriate Riemann problem for
the SG kinetic equation. In this specific setting the DOS in the
interaction region represents a linear superposition of two δ

functions, which reduces the SG kinetic equation to two quasi-
linear partial differential equations of hydrodynamic type. As
shown in [4,15,22], the Riemann problem for the resulting
two-component hydrodynamic system admits a simple weak
solution consisting of three constant states (for each compo-
nent) separated by two propagating contact discontinuities.
This solution in particular describes the component density
and velocity changes resulting from the nonlinear interaction
between two SG jets. In this paper we present hydrodynamic
experiments where the theoretical predictions from the spec-
tral kinetic theory of SG are verified with good accuracy,
further confirming its physical validity.

This article is organized as follows. In Sec. II we present
the theoretical background from kinetic theory of SGs, which
is necessary to describe the interaction between SG jets in
the framework of the focusing 1D NLSE. We illustrate the
theoretical results with numerical simulations of the reduced
kinetic equation describing the evolution in space and time of
the densities of the two SG components. In Sec. III we show
how the IST method can be used to realize the implementation
of two interacting SG jets in direct numerical simulations of
the 1D NLSE. In Sec. IV we report our experimental results
and compare them with the predictions of the kinetic theory.
We summarize in Sec. V.

II. THEORETICAL BACKGROUND

In this section we provide a brief summary of the the-
oretical results from the SG theory that are relevant to
the description of the interaction between two spectrally

monochromatic SG jets. More details about this special class
of SGs can be found in Refs. [4,15,20,23,33]. We also illus-
trate the main theoretical results from the kinetic theory of
SGs with some numerical simulations of the simplified SG
kinetic equation describing the two-jet interactions.

A. Analytical results from the spectral kinetic theory of SG

We consider nonlinear wave systems described by the inte-
grable focusing 1D NLSE that reads

iψt + ψxx + 2|ψ |2ψ = 0. (1)

The fundamental soliton solution of Eq. (1) parametrized by
the complex IST eigenvalue λ = α + iγ (α ∈ R and γ ∈ R+)
reads

ψ (x, t ) = 2γ
exp[−2iαx − 4i(α2 − γ 2)t − iφ0]

cosh[2γ (x + 4αt − x0)]
, (2)

where x0 and φ0 represent the initial position and phase
parameters. The real part of the eigenvalue λ encodes the
velocity −4α of the soliton in the (x, t ) plane, while the imag-
inary part determines its amplitude 2γ [as a matter of fact,
the IST spectrum of (2) also includes the complex conjugate
λ∗ = α − iγ ].

In the spectral kinetic theory of 1D NLSE SG, the DOS
represents the distribution f (λ; x, t ) over the spectral eigen-
values, so f dαdγ dx is the number of soliton states found at
time t in the element of the 3D phase space [α, α + dα] ×
[γ , γ + dγ ] × [x, x + dx]. Due to the isospectrality condition
associated with the integrable nature of Eq. (2), the space-time
evolution of the DOS f (λ; x, t ) is governed by the continuity
equation

∂ f

∂t
+ ∂ (s f )

∂x
= 0, (3)

where s = s(λ; x, t ) represents the transport velocity of a
tracer soliton inside a SG. For the focusing 1D NLSE, the
equation of state connecting the SG transport velocity with
the DOS f (λ; x, t ) reads [4,5].

s(λ; x, t ) = −4 Re(λ) + 1

Im(λ)

∫∫
	+

ln

∣∣∣∣μ − λ∗

μ − λ

∣∣∣∣
× [s(λ; x, t ) − s(μ; x, t )] f (μ; x, t )dξ dζ , (4)

where μ = ξ + iζ and 	+ ⊂ C+ \ iR+ represents the 2D
compact domain or 1D curve in the upper complex half plane
where the discrete eigenvalues parametrizing the SG of inter-
est are located [it is sufficient to consider only the upper half
plane due to the complex-conjugate (Schwarz) symmetry of
the soliton spectrum].

Equations (3) and (4) form the general kinetic equation for
the focusing 1D NLSE SG (see [4,5]). It is a nonlinear integro-
differential equation describing the evolution in space and
time of the SG DOS f (λ, x, t ). The system of (3) and (4)
can be considerably simplified if it is assumed that the SG is
composed of a finite number of monochromatic components,
or SG jets, each characterized by a DOS in the form of a Dirac
δ function. Here we concentrate on the two-component case
involving two species of solitons with identical amplitudes
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and opposite velocities. The corresponding DOS has the form

f (λ; x, t ) = ρ1(x, t )δ(λ − λ1) + ρ2(x, t )δ(λ − λ2), (5)

with λ1 = −α + iγ and λ2 = α + iγ . Here ρ1,2(x, t ) are the
SG component densities.

Under the ansatz (5), Eqs. (3) and (4) reduce to the two-jet
hydrodynamic system [4]

∂ρ1(x, t )

∂t
+ ∂[s1(x, t )ρ1(x, t )]

∂x
= 0,

∂ρ2(x, t )

∂t
+ ∂[s2(x, t )ρ2(x, t )]

∂x
= 0, (6)

with the component transport velocities given by

s1 = 4α
1 − κ (ρ1 − ρ2)

1 − κ (ρ1 + ρ2)
,

s2 = −4α
1 + κ (ρ1 − ρ2)

1 − κ (ρ1 + ρ2)
. (7)

Here κ is the interaction parameter

κ = 1

2γ
ln

(
1 + γ 2

α2

)
, (8)

which represents the space shift due to the collision be-
tween two individual solitons with spectral parameters λ1 and
λ2 [34].

As observed in [4] (see also [33]), the system of (6) and (7)
is equivalent to the so-called Chaplygin gas equations, the
system of isentropic gas dynamics with the equation of state
p = −A/ρ, where p is the pressure, ρ is the gas density, and
A > 0 is a constant. The Chaplygin gas equations occur in
certain theories of cosmology (see, e.g., [35]) and are also
equivalent to the 1D Born-Infeld equation arising in nonlinear
electromagnetic field theory [36,37]. A fundamental property
of the system of (6) and (7) is its linear degeneracy. Indeed,
upon introducing the dependent variables s1,2(x, t ) instead of
ρ1,2(x, t ) in (6), one arrives at the diagonal system

∂s1

∂t
+ s2

∂s1

∂x
= 0,

∂s2

∂t
+ s1

∂s2

∂x
= 0, (9)

with the characteristic velocities not depending on the cor-
responding Riemann invariants. Linear degeneracy of the
system of (6) and (7) implies the principal absence of
wave-breaking effects accompanied by the classical shock
formation with the only admissible singularities being contact
discontinuities [38].

Following Ref. [4], we use the system of (6) and (7) to
describe the collision between two SG jets with spatially
uniform DOSs ρ10δ(λ − λ1) and ρ20δ(λ − λ2), which are
spatially separated at initial time. The corresponding initial
condition for Eq. (6) has the form

ρ1(x, 0) = ρ10, ρ2(x, 0) = 0 for x < 0,

ρ1(x, 0) = 0, ρ2(x, 0) = ρ20 for x > 0, (10)

and it is schematically shown in Fig. 1(a). This is a Rie-
mann or shock-tube problem for the system of hydrodynamic
conservation laws (6). Its solution, schematically shown
in Fig. 1(b), consists of three constant states for (ρ1, ρ2)

(a)

(b)

FIG. 1. (a) Initial condition (10) for the Riemann problem for
the two-jet hydrodynamic system (6) and (7) and (b) schematic of
the solution given by Eq. (11).

separated by two contact discontinuities [4]

(ρ1(x, t ), ρ2(x, t )) =

⎧⎪⎨
⎪⎩

(ρ10, 0), x < c−t

(ρ1c, ρ2c), c−t � x < c+t

(0, ρ20), c+t � x,

(11)

where the values of the component densities ρ1c and ρ2c in
the interaction region and the velocities c− and c+ of the
contact discontinuities are found from the Rankine-Hugoniot
conditions to be (see [4] for details)

ρ1c = ρ10(1 − κρ20)

1 − κ2ρ10ρ20
,

ρ2c = ρ20(1 − κρ10)

1 − κ2ρ10ρ20
, (12)

c− = s2c = −4α
1 + κ (ρ1c − ρ2c)

1 − κ (ρ1c + ρ2c)
,

c+ = s1c = 4α
1 − κ (ρ1c − ρ2c)

1 − κ (ρ1c + ρ2c)
. (13)

One should note that the denominators in (12) and (13)
never vanish due to fundamental restriction related to the
notion of critical, or condensate, DOS (see [5]). Moreover, it is
not difficult to show that the interaction between the two SGs
results in a dilution of each of the two species, i.e., ρ1c < ρ10

and ρ2c < ρ20.
Figure 2 shows the densities ρ1,2c and the velocities s1,2c in

the interaction region as functions of α, which is the parameter
that determines the relative velocities of the two SG species.
The parameter γ determining the amplitude of the solitons
has been fixed to unity. The initial densities are taken to be
ρ10 = ρ20 = 0.4 in Figs. 2(a) and 2(b) and ρ10 = ρ20 = 0.16
in Figs. 2(c) and 2(d). For the values of α that are large
enough (α � 0.7), the interaction parameter κ is relatively
small (κ � 1) and the kinetic theory predicts that the density
changes in the interaction region are relatively small (ρ1,2c ∼
ρ1,20). On the other hand, the interaction between the two
species increases when their initial relative velocity is small
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FIG. 2. Evolution of the densities ρ1,2c and of the velocities s1,2c

of the interacting SG jets as a function of α, the parameter determin-
ing the relative velocity of the two jets. (a) and (b) [(c) and (d)] Plots
computed from Eqs. (12) and (13) with parameters describing the
densities of the noninteracting SGs that are ρ10 = ρ20 = 0.4 (ρ10 =
ρ20 = 0.16) and γ = 1. The red dashed lines in (b) and (d) represent
the free velocities ±4α of the noninteracting SGs (κ = 0).

(α � 0.5). This results in the density changes that are more
significant for smaller values of α.

The dashed red lines with slopes ±4α in Figs. 2(b) and 2(d)
represent the velocities that each species of SG would have
in the (x, t ) plane without any interaction with the other one
[κ = 0 in Eq. (13)]. The black lines Figs. 2(b) and 2(d) indicate
the velocities s1,2c that are taken by each species as the result
of the interaction with the other one. The comparison between
Figs. 2(a) and 2(b) and Figs. 2(c) and 2(d) (black solid line)
shows that the velocity changes are more important when the
initial density of the SGs is large. One of the goals of this
paper is to compare the theoretical curves presented in Fig. 2
with the results of physical experiments (see Sec. IV).

We now present two series of numerical simulations where
we verify the weak solution (11) by (i) numerically solving
the two-jet kinetic equation (6) and (ii) performing direct sim-
ulations of the 1D NLSE (1). Both simulations are performed
for the initial data relevant to the physical experiments to be
discussed in Sec. IV.

B. Numerical simulations of the kinetic equations

Figure 3 shows numerical simulations of the kinetic equa-
tion illustrating the theoretical results presented in Sec. II A.
We consider two SG jets with the DOS being given by
Eq. (5) and λ1,2 = ∓0.5 + i (α = 0.5 and γ = 1), as shown
in Fig. 3(a). We have numerically integrated the two-jet ki-
netic equations (6) using a standard pseudospectral method
where the space derivatives are computed in Fourier space. To
avoid numerical problems associated with the finite size of the
numerical box and the discontinuities of the initial condition
used in the analytical calculations of Ref. [4] [Eq. (10)],

the initial condition taken in our numerical simulations is
composed of two boxes of large extents and uniform initial
densities ρ10 = ρ20 = 0.4, as shown in Fig. 3(b).

Figures 3(d) and 3(e) show the space-time evolutions of
the densities ρ1,2(x, t ) of the two SG jets that are initially
separated and start interacting from t ∼ 5. As a result of the
interaction, the density of each species falls from ρ10 = ρ20 =
0.4 to approximately 0.302; see the color scale that changes
from yellow to green in Figs. 3(d) and 3(e). The numerical
value of the densities computed in the interaction region is
in perfect agreement with theoretical predictions, as shown in
Fig. 3(c), where the green dotted line represents the densities
ρ1c = ρ2c that are computed using the analytical expressions
given by Eq. (12).

In addition to the density changes due to the interaction,
Figs. 3(d) and 3(e) show that the velocity changes found
in numerical simulations are also in perfect agreement with
theoretical predictions; see the white dashed lines parallel
to the boundaries of the SGs and associated with velocities
s1c ∼ 3.898 and s2c ∼ −3.898 that are given by Eq. (13).
Finally, Fig. 3(f) shows that despite the density of each species
decreasing due to the interaction, the total density ρ1c + ρ2c of
the SG in the interaction region is higher than the individual
densities ρ1,2(x, t ) = ρ10,20 of each gas outside the interaction
region. At the same time, [ρ1c + ρ2c] < [ρ10 + ρ20], i.e., the
SG component interaction leads to an overall dilution com-
pared to the noninteracting two-component gas. This feature
was already pointed out in Ref. [4].

Summarizing, the kinetic theory of SG predicts that the
interaction between two monochromatic SG jets having op-
posite mean velocities but identical mean amplitudes results
in density and velocity changes that are illustrated in Figs. 2
and 3. Our goal in this paper is to perform a hydrodynamic
experiment to quantitatively verify these theoretical predic-
tions. Before moving to experimental results, we present in
Sec. III direct numerical simulations of the 1D NLSE corre-
sponding to the numerical simulations of the two-jet kinetic
equations shown in Fig. 3.

III. INTERACTING SOLITON GAS JETS IN NUMERICAL
SIMULATIONS OF THE 1D NLSE

In this section we show how the IST method can be used
to realize the implementation of two interacting jets of SGs
not in numerical simulations of the kinetic equations but in
numerical simulations of the 1D NLSE.

A nonlinear wave field ψ (x, t ) satisfying Eq. (1) can be
characterized by the so-called scattering data (the IST spec-
trum). For localized wave fields decaying to zero as x → ∞,
the IST spectrum consists of a discrete part related to the
soliton content and a continuous part related to the dispersive
radiation. A special class of solutions, the N-soliton solu-
tions (NSSs), exhibits only a discrete spectrum consisting
of N complex-valued eigenvalues λn (n = 1, . . . , N) and N
complex parameters Cn = |Cn|e jφn , called norming constants,
defined for each λn. The complex discrete eigenvalues encode
the amplitudes and velocities of the solitons while the norm-
ing constants encode their phases and positions in physical
space [2].
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FIG. 3. Numerical simulations of the two-beam kinetic equations (6) showing the interaction between two jets of SGs. (a) Spectral (IST)
parameters of the two interacting SGs, with the DOS being defined by Eq. (5) with λ1 = −0.5 + i and λ2 = 0.5 + i. (b) Initial distribution
of the densities ρ1,2(x, t = 0). (c) Numerically computed distribution of the densities at t = 12. The green dotted line represents the densities
in the interaction region that are computed using Eq. (12) with ρ10 = ρ20 = 0.4 (α = 0.5 and γ = 1). (d) Space-time evolution of the density
ρ1(x, t ). The region in green is the interaction region where the density has decreased from ρ10 = 0.4 to ρ1c ∼ 0.302. (e) Same as (d) but for
the second species ρ2(x, t ). (f) Space-time evolution of the sum of the densities ρ1(x, t ) + ρ2(x, t ) showing that the total density has increased
in the interaction region despite the individual densities having decreased.

Using a recursive algorithm based on the Darboux trans-
form [39], we have built an NSS of Eq. (1) with N = 100.
The discrete eigenvalues associated with this NSS are par-
titioned into two random sets, each being linked to a given
SG. The first (second) SG is parametrized by 50 eigenval-
ues that are randomly distributed in a uniform way within
a small square region of the complex plane centered around
λ1 = −0.5 + i (λ2 = 0.5 + i) [see Fig. 4(e)]. Following the
approach described in Refs. [40,41], we have synthesized the
SG by implementing the Darboux recursive scheme in high-
precision arithmetics, a requirement due to the large number
of solitons composing the wave field. The wave field has
been synthesized at t = 0 and a standard NLSE solver based
on a pseudospectral method has been used to compute the
space-time evolution at longer time, as shown in Fig. 4(a). At
the initial time, the two SGs are separated without any spatial
overlap between the two species [see Fig. 4(c)]. Each of the
two SGs is composed of 50 solitons having approximately the
same amplitude while being individually discernible. The ran-
dom nature of each gas can be appreciated in physical space
by the fact that the distance between neighboring solitons is
not fixed but random.

Let us emphasize that the two SGs that we have realized
are as dense as possible. The Darboux method is a recursive
transformation scheme where a seeding solution of the focus-
ing 1D NLSE is used as a building block for the construction

of a higher-order solution through the addition of one dis-
crete eigenvalue. The Darboux transform machinery produces
NSSs in such as way that the smaller the distance between the
eigenvalues, the greater the physical separation between the
solitons in physical space. For our SG, the mean distance in
physical space between neighboring solitons of each species
is therefore determined by the size of the square regions
where the discrete eigenvalues are located [see Fig. 4(e)].
However, the mean distance between solitons depends not
only on the distance between the eigenvalues λn but also
on the norming constants Cn. In Fig. 4 the SG has been
made as dense as possible by setting the moduli |Cn| of the
norming constants to unity and by uniformly distributing their
phases φn between 0 and 2π , similarly to what was done in
Ref. [30]. The SG of Fig. 4 cannot be denser than it is, but
it could be diluted by randomly distributing the moduli of
the norming constants over some interval having a nonzero
extent. Note that the transverse extension of one given cloud
of discrete eigenvalues [see Fig. 4(e)] determines the rela-
tive velocities of the individual solitons in the corresponding
species of SG. The velocity difference between two neigh-
boring solitons in the same species can be sufficiently large
that some collisions might happen between solitons belonging
to the same species before the interaction region is reached
[see, e.g., the collision occurring at (x ∼ −130, t ∼ 8) in
Fig. 4(a)].
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FIG. 4. Numerical simulations of Eq. (1) with the initial condition being in the form of two monochromatic beams of SGs with opposite
velocities. At the initial time, each beam of SG is composed of 50 solitons with nearly identical amplitudes and opposite velocities (α = 0.5
and γ = 1). (a) Space-time plot showing velocity and density changes arising from the interaction between the two SGs. (b) Enlarged view of
the interaction region showing microscopic dynamics and multiple collisions between individual solitons. Each individual collision is elastic,
meaning that each soliton retains its shape, amplitude, and velocity after the collision or interaction. (c) Modulus |ψ (x, t = 0)| of the initial
condition. (d) Modulus of the field at time t = 48. (e) Discrete IST spectrum of the field composed of two separate clouds of 50 eigenvalues
centered around λ1,2 = ∓0.5 + i.

At time t = 0 each of the two species constitutes a uniform
SG whose density ρ0 represents the number n of solitons
relative to the interval of length l they occupy: ρ0 = n/l . In
Figs. 4(a) and 4(c) the initial densities ρ10 and ρ20 of each
of the two noninteracting species are n/l ∼ 50/320 ∼ 0.156,
which is the highest possible for the spectral parameters that
have been chosen [see Fig. 4(e)]. This means that the nu-
merical results presented in this section and their associated
experimental results presented in Sec. IV must be compared
with the theoretical predictions of the kinetic theory that are
plotted in Figs. 2(c) and 2(d) where ρ10 = ρ20 = 0.16.

Figure 4(a) shows that the interaction between the two
species results in a dilution associated with a drop in the
densities. In the center of the interaction region, at time t ∼ 75,
each of the two species containing n = 50 solitons now oc-
cupies a spatial domain having an extent that has increased
from l ∼ 320 to l ′ ∼ 362. This results in a decrease of the
densities that fall from ρ10 = ρ20 ∼ 0.156 to ρ1c = ρ2c =
n/l ′ = 50/362 ∼ 0.138, in good quantitative agreement with
the expressions (12) obtained within the framework of the
kinetic theory of SG. In addition to density changes, Fig. 4(a)
also shows that the interaction between the two species of SG
leads to changes in their relative velocities. Simulations of the
1D NLSE plotted in Fig. 4(a) show that the mean velocity
of the first species increases from 4α ∼ 2 to s1c ∼ 2.57 due
to the interaction, once again in good quantitative agreement
with the results from the kinetic theory [Eq. (13)].

Recent optical fiber experiments reported in Ref. [31] have
investigated the interaction between an individual tracer soli-
ton and a dense SG. It has been shown that the tracer soliton
experiences an effective velocity change due to its interaction
with the optical SG. The experimental features observed in
this optical fiber experiment are qualitatively similar to the
classical refraction phenomenon observed in ray optics at the
interface between two dielectric media having different refrac-
tive indices. Here the space-time evolution shown in Fig. 4(a)
for two SG jets is also reminiscent of ray optics with one beam
or jet of SG being shifted in space but not due to the propaga-
tion in a medium with another refractive index, but due to the
nonlinear interaction with another beam or jet of SG. Note that
the velocity and density changes measurable for each species
of SG at the macroscopic scale are the emergent effects due to
the numerous elementary elastic collisions between individual
solitons occurring at the microscopic, soliton, scale, as shown
in Fig. 4(b).

IV. EXPERIMENTS

A. Experimental setup and generation of the initial wave field

The experiments have been performed in a wave flume
at the Hydrodynamics, Energetics and Atmospheric Environ-
ment Laboratory at Ecole Centrale de Nantes (France). The
flume, which is 140 m long, 5 m wide, and 3 m deep, is
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FIG. 5. Schematic representation (not to scale) of the 1D water
tank used in the experiments. Twenty wave elevation gauges are
placed every 6 m, covering a measurement range of 114 m. The
typical extension of an envelope soliton is approximately 5 m. The
wavelength of the carrier wave is approximately 1.5 m. The nonlinear
length LNL is approximately 20 m, which is associated with a soliton
amplitude a ∼ 2.8 cm.

equipped with an absorbing beach that is approximately 8 m
long (see Fig. 5). With the addition of pool lanes arranged
in a W pattern in front of the beach, the measured ampli-
tude reflection coefficient is as low as 1%. Unidirectional
waves are generated with a computer-assisted flap-type wave
maker. As in the experiments reported in Refs. [30,42], the
setup comprises 20 equally spaced resistive wave gauges that
are installed along the basin at distances Zj = j × 6 m ( j =
1, 2, . . . , 20) from the wave maker located at Z = 0 m. This
provides an effective measuring range of 114 m.

In our experiments the water elevation at the wave maker
reads η(Z = 0, T ) = Re[A0(T )eiω0T ], where ω0 = 2π f0 is
the angular frequency of the carrier wave. In all the experi-
ments presented in our paper, the frequency of the carrier wave
is set to f0 = 1.01 Hz. Here A0(T ) represents the complex en-
velope of the initial condition. Our experiments are performed
in the deep-water regime and they are designed in such a way
that the observed dynamics is described at leading order by
the focusing 1D NLSE

∂A

∂Z
+ 1

Cg

∂A

∂T
= i

k0

ω2
0

∂2A

∂T 2
+ iβk3

0 |A|2A, (14)

where A(Z, T ) represents the complex envelope of the water
wave that changes in space Z and in time T [43]; k0 repre-
sents the wave number of the propagating wave (η(Z, T ) =
Re[A(Z, T )ei(ω0T −k0Z )]), which is linked to ω0 according to the
deep-water dispersion relation ω2

0 = k0g, with g the gravity
acceleration; and Cg = g/2ω0 represents the group velocity
of the wave packets and β 
 0.91 is a dimensionless term
describing the small finite-depth correction to the cubic non-
linearity (see Appendix B) for details about the mathematical
expression of the finite-depth corrective term β.

The first important step of the experiment consists in
generating an initial condition A0(T ) in the form of two
monochromatic beams of SGs, as illustrated in Fig. 4(c).
To achieve this, we have to convert the dimensionless fields
synthesized as initial conditions (see Sec. III) into physical
units. Connections between physical variables of Eq. (14) and
dimensionless variables in Eq. (1) are given by t = Z/2LNL

and x = (T − Z/Cg)
√

g/2LNL, with the nonlinear length be-
ing defined as LNL = 1/βk3

0a2, where a represents the mean

peak amplitude of solitons outside the interaction region
(a 
 2.8 cm in all our experiments).

Numerical simulations of Fig. 4(a) show that approxi-
mately 140 units of normalized time are needed for two
beams of SGs to overlap, interact, and separate. This large
normalized evolution time corresponds to an unrealistic phys-
ical propagation distance over 280 nonlinear lengths, with the
nonlinear length LNL typically being approximately 20 m in
the experiments that we are dealing with [30,42]. To take into
account the fact that our hydrodynamic experiments cannot
go beyond propagation distances longer than approximately
6LNL, we have designed our initial wave field in such a way
that it is composed of a total number of 100 solitons with one
central interaction region and two lateral regions where each
species does not interact with the other [see Fig. 6(b)]. Note
that the SGs outside the interaction region are uniform with
constant densities equal to ρ1,20 = 0.156.

B. Space-time evolution and measurement of the Fourier
and discrete IST spectra

Taking two beams of solitons with spectral (IST) param-
eters identical to those used to compute Fig. 4, Fig. 6(a)
shows the space-time diagram reconstructed from the signals
recorded by the 20 gauges. Note that our experiments deal
with envelope solitons. The signal recorded by the gauges
is therefore composed of a carrier wave at a frequency
f0 ∼ 1.01 Hz that is slowly modulated by a solitonic envelope
(see Appendix C). The first step in processing the experimen-
tal data consists in removing the carrier wave and in com-
puting the complex envelope A(Z, T ) of the measured wave
field, which is achieved by using standard Hilbert transform
techniques [43]. The space-time diagram of Fig. 6 is plotted
in a reference frame moving at the mean group velocity Cg of
the two monochromatic SG jets. In this reference frame, the
two SG jets have opposite velocities of the same magnitude.

Figures 6(a) and 6(b) show that the wave field is composed
of one central interacting region and two lateral regions where
each species does not interact with the other. Figure 6(c) is
an enlarged view into the interaction region. It shows that, de-
spite the relatively short propagation distance (approximately
6LNL) reached in the experiment, individual interactions occur
between pairs of solitons at random propagation distances
in the water tank. These paired interactions occurring at mi-
croscopic level are responsible for macroscopic density and
velocity changes that are measurable and will be discussed in
Sec. IV C.

Figure 6(d) shows the Fourier power spectra of the eleva-
tion of the wave fields that are measured at Z = 6 m, close to
the wave maker, and at Z = 120 m, far from the wave maker.
The propagation of the generated SGs is not accompanied by
any significant broadening of the Fourier power spectrum.

Figure 6(e) shows the discrete IST spectra measured at
Z = 6 and 120 m. The discrete IST spectrum measured at
Z = 6 m consists of two narrow clouds of eigenvalues cen-
tered around λ1,2 = ∓0.5 + i, in accordance with the initial
condition we have engineered (see Sec. III). Each cloud rep-
resents an ensemble of 50 discrete eigenvalues, with each of
these discrete eigenvalue being associated with one of the
solitons that propagates in the water tank [see Fig. 6(a)].
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FIG. 6. Experiments performed in the 140-m-long water tank with two interacting SG jets, each composed of 50 solitons with spectral
(IST) parameters α = ∓0.5 and γ = 1. (a) Space-time evolution of the two monochromatic SG jets with the central region being the interaction
region. In the two lateral regions of the space-time diagram, the two species of SGs propagate with opposite velocities without interacting.
(b) Modulus of the envelope of the wave field measured by the first gauge at Z = 6 m. (c) Enlarged view of the interaction region showing
individual collisions between solitons occurring at random positions inside the water tank. (d) Fourier power spectra of the elevation of the
wave field measured at Z = 6 m and at Z = 120 m. (e) Discrete IST spectra of the envelope of the wave field measured at Z = 6 m and at
Z = 120 m. Experiments are made for a carrier frequency f0 = 1.01 Hz and a steepness k0a 
 0.115 (LNL 
 20.3 m).

The discrete IST spectrum measured at Z = 120 m [red
points in Fig. 6(e)] is not identical to the discrete IST spectrum
measured at Z = 6 m. This means that the experiment is not
perfectly described by the integrable 1D NLSE (14) and that
the space-time dynamics is weakly perturbed by higher-order
effects, a feature that we already observed and discussed in
some of our previous experiments [30,42,44]. A discussion
about the higher-order effects breaking the integrability of
the wave dynamics is given in Appendix A. The important
point here is that the IST analysis reveals that two separate
clouds, each containing 50 eigenvalues, retain a finite and
limited extension in the complex plane during the nonlinear
evolution. As a result, we can now examine the extent to which
the predictions of the kinetic theory of SG remain robust
in an experiment that cannot be inherently described by an
integrable equation.

C. Measurement of the densities and velocities
of the hydrodynamic SGs

In order to verify the predictions of the kinetic theory of
SG, we carried out experiments to examine the validity of
the velocity and density evolutions plotted in Fig. 2 using

Eqs. (12) and (13). We have made an ensemble of nine exper-
iments similar to the one depicted in Fig. 6 by changing the
value of α between approximately 0.2 and approximately 0.9
in nine steps. In each of the nine experiments, we have used
the IST-based methodology described in Sec. III to synthe-
size two interacting SGs with the parameter α being changed
between approximately 0.2 and approximately 0.9, the param-
eter γ being kept at one. We have recorded the associated
space-time evolutions and we have checked that discrete IST
spectra measured close to and far from the wave maker consist
of two separate clouds composed of 50 eigenvalues similar to
those shown in Fig. 6(e).

The easiest macroscopic observables to measure in the
experiment are the densities of each species ρ1,2c in the inter-
action region. To measure ρ1,2c, we first convert the signals
recorded in physical variables into dimensionless form by
using relations given in Sec. IV A. With this conversion [t =
Z/2LNL and x = (T − Z/Cg)

√
g/2LNL], the retarded time

T − Z/Cg measured in physical space is changed into a di-
mensionless spatial variable x and the measured wave field is
converted to a dimensionless field [ψ = A/(a/2)]. Taking the
dimensionless wave field measured at the last gauge, we just
count the number of solitons n that we find for each species in
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FIG. 7. Comparison between the experiments and kinetic theory
of SG. (a) Evolution of the densities ρ1,2c as a function of α in the
interaction region. Green points represent experimental measurement
points, while the solid black line is computed using Eq. (12) with
ρ1,20 = 0.156 and γ = 1. (b) Same as (a) but for the velocities s1,2c of
the interacting SGs. The red dashed lines represent the free velocities
±4α of the noninteracting SGs. All the experiments have been made
with f0 = 1.01 Hz and for a steepness k0a 
 0.115. Error bars in
(a) are associated with the uncertainty in the measurement of the
space interval occupied by the SGs. Error bars in (b) represent the
standard deviations associated with the velocity measurements [see
Fig. 8(b)].

the interaction region and we measure the space interval l that
these solitons occupy. As discussed in Sec. III, the measured
density of the SGs is given by ρ1,2c = n/l .

Figure 7(a) shows that we obtain very good quantitative
agreement between experiments and the kinetic theory of SG.
The density of each species in the interaction region decreases
from approximately 0.15 to approximately 0.125 when the
value of α is changed from approximately 0.9 to approxi-
mately 0.2. In the experiment, there was no meaning in trying
to further increase the interaction between the two SGs by
reducing the value of α below approximately 0.2. For values
of α smaller than 0.2 the relative velocity of the two species
is indeed so small that there is no significant interaction or
collision between the two species over the relatively short
propagation distance (approximately 6LNL) that is accessible
in the experiment.

Looking at the evolution pattern measured in the experi-
ment [see Figs. 6(a) and 6(c)], it can be considered at first
sight that it is difficult, if not impossible, to determine the
velocity of the SGs inside and even outside the interaction
region. Following the approach proposed in Ref. [45] to sep-
arate right- and left-propagating solitons in a shallow-water
bidirectional SG, we have found that the Radon transform
can be used to measure the velocities of the solitons in the
space-time diagrams recorded in our experiments.
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FIG. 8. (a) Radon transform R(r, θ ) of the experimental space-
time diagram of Fig. 6(a) for α = ∓0.5. The white points indicate
the positions at which a maximum of the function R(r, θ ) is found.
(b) Simplified diagrammatic view of the results obtained in (a) using
the Radon transform. Two sets each containing eight free (nonin-
teracting) solitons are found with mean velocities of approximately
1.69 and approximately −1.69 (black squares). Two other sets each
containing 25 solitons are found in the interaction region with mean
velocities of approximately 2.34 (blue open circles) and approxi-
mately −2.34 (orange closed circles).

The two-dimensional Radon transform is an integral trans-
form that maps a function to its integral over radial lines
parametrized by an angle θ and by a distance r to an origin
point. The Radon transform R(r, θ ) of the normalized space-
time plots |ψ (x, t )| recorded in the experiment reads

R(r, θ ) =
∫∫

|ψ (x, t )|δ(x cos θ + t sin θ − r)dx dt, (15)

where δ is the Dirac function and r = √
x2 + t2 is the distance

to an origin point located in the center of the (x, t ) domain.
Figure 8(a) represents the Radon transform of the ex-

perimental space-time diagram of Fig. 6(a), which has
been normalized to dimensionless variables of Eq. (1) us-
ing variable transformations given in Sec. IV A [ψ (x, t ) =
A/(a/2), t = Z/2LNL, and x = (T − Z/Cg)

√
g/2LNL]. The

Radon transform R(r, θ ) immediately reveals the existence
of several distinct classes of solitons being parametrized by
their position r relative to the origin point and by an angle
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parameter θ related to their velocity in the (x, t ) plane. The
angle θ measured using the Radon transform is converted into
a velocity parameter s using the relation s = −�x/�t tan(θ ),
where �x (�t) represents the spatial (time) extension of the
space-time plot in which the measurement of velocity is made.
After isolating the local maxima associated with each soliton
in the Radon transform, we end up with the simple plot pre-
sented in Fig. 8(b).

Figure 8(b) represents the velocities of the solitons that
have been unambiguously detected using the Radon transform
of the space-time diagram of Fig. 6. Depending on the initial
phase, position, and precise velocity of each soliton, certain
interaction patterns measured in physical space can produce
signatures in the Radon transform, such as double peaks,
which do not allow us to conclude unambiguously about the
velocity taken by the solitons. Note that the spectral signatures
computed using the Radon transform are also significantly in-
fluenced by the presence of perturbative higher-order effects,
as discussed in Appendix A. All the ambiguous measurement
points are ignored and we finally obtain two sets, each con-
taining not 50 but 35 solitons, for which we have a correct
velocity measurement performed using the Radon transform.

Figure 8(b) shows that eight isolated (noninteracting) soli-
tons are detected with a velocity of approximately 1.69 and
eight other noninteracting solitons are detected with a nearly
opposite velocity of approximately −1.69. In the interaction
region, the solitons with positive velocities have their mean
velocity that increases to approximately 2.34, while the soli-
tons with negative velocities have their mean velocity that
decreases to approximately −2.34. Note that the dispersion
of the velocities around the mean value is significantly larger
in the interaction region as compared with the region where
solitons do not interact. This is due to the fact that each paired
interaction occurs at different random positions in the water
tank, which results in a collection of microscopic interaction
patterns associated with a larger dispersion of the values of
velocities measured using the Radon transform.

Figure 7(b) synthesizes all the measurements of the mean
velocities that have been made in the interaction region of
our nine experiments where the value of α has been changed
between approximately 0.2 and approximately 0.9. Despite
the existence of higher-order effects and the fact that the
experiments are not perfectly described by the integrable 1D
NLSE, Fig. 7(b) shows that the theoretical predictions of the
kinetic theory in terms of velocity changes of the SGs are
quantitatively well verified in the experiment.

V. CONCLUSION

In this paper we have reported hydrodynamic experiments
in which we investigated the interaction between two SG jets
having identical mean amplitudes but opposite mean veloci-
ties. The two jets of interacting SGs were synthesized using
the IST method. Their IST spectrum was composed of two
clusters of discrete eigenvalues centered around two specific
points of the complex spectral plane. We recorded the space-
time evolution of the interacting SGs in a 140-m-long water
tank. We varied the interaction strength between the two in-
teracting species by changing their relative initial velocity. We
measured the macroscopic density and velocity changes due

to the interaction between the two SG jets. Our experimental
results were found to be in good quantitative agreement with
predictions of the kinetic theory of SG despite the fact that the
experiment was not perfectly described by the integrable 1D
NLSE.

We believe that our experimental results provide an impor-
tant step towards the physical validation of the fundamental
theoretical principles behind the spectral theory of SGs. We
hope that they will stimulate new research in the field of statis-
tical mechanics of nonlinear waves and integrable turbulence.

ACKNOWLEDGMENTS

This work was partially supported by the Agence Na-
tionale de la Recherche through the StormWave (Grant No.
ANR-21-CE30-0009) and SOGOOD (Grant No. ANR-21-
CE30-0061) projects, the LABEX CEMPI project (Grant No.
ANR-11-LABX-0007), the Simons Foundation MPS Project
No. 651463, the Ministry of Higher Education and Research,
Hauts de France Council, and European Regional Develop-
ment Fund through Contrat de Projets Etat-Région (CPER
Photonics for Society P4S). The authors would like to thank
the Isaac Newton Institute for Mathematical Sciences for sup-
port. The work of G.E. and G. Roberti was also supported by
EPSRC Grant No. EP/W032759/1. G. Roberti thanks Simons
Foundation for partial support.

APPENDIX A: INFLUENCE OF HIGHER-ORDER EFFECTS

In this Appendix we use numerical simulations of the
focusing 1D NLSE and of a modified (nonintegrable) 1D
NLSE to show the role of higher-order effects on the observed
space-time dynamics and on the discrete IST spectra of the
two jets of interacting SGs. Following the work reported in
Ref. [46], higher-order effects in 1D water wave experiments
can be described by a modified NLSE written in the form of a
spatial evolution equation

∂A

∂Z
+ 1

Cg

∂A

∂T
= i

k0

ω2
0

∂2A

∂T 2
+ iβk3

0 |A|2A

− k3
0

ω0

(
6|A|2 ∂A

∂T
+ 2A

∂|A|2
∂T

− 2iAH
[
∂|A|2
∂T

])
, (A1)

where A(Z, T ) represents the complex envelope of the wave
field and H is the Hilbert transform defined by H[ f ] =
(1/π )

∫ +∞
−∞ f (ξ )/(ξ − T )dξ .

When the last three terms in Eq. (A1) are neglected, the
integrable 1D NLSE (14) is recovered. Figures 9(a) and 9(d)
show space-time diagrams in which the dynamics of the
interaction between the two jets of SG is governed by the
integrable focusing 1D NLSE. Figure 9(g) shows that the
discrete IST spectra of the two interacting SGs consist of two
narrow clouds centered around λ1,2 = ∓0.5 + i. Because of
the isospectrality condition underlying the integrable nature
of the focusing NLSE, these IST spectra do no change with
the propagation distance.

Figures 9(c) and 9(f) show space-time diagrams computed
from the numerical integration of Eq. (A1) that takes into
account the influence of higher-order terms. The space-time
evolution plotted in Figs. 9(c) and 9(f) is very similar to
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FIG. 9. Comparison between experiments and numerical simulations of the focusing 1D NLSE and of Eq. (A1) for the interaction between
two jets of SG, each containing 50 solitons. (a) Space-time diagram showing the space-time evolution described by the integrable 1D NLSE.
(d) Close-up of the interaction region. (g) Discrete IST spectra computed at Z = 0 m and at Z = 120 m. (b), (e), and (h) same as (a), (d), and
(g), respectively, but in the experiment. (c), (f), and (i) same as (a), (d), and (g) but in numerical simulations of Eq. (A1). The parameters used
in numerical simulations are f0 = 1.01 Hz, k0a = 0.115, g = 9.81 m s−2, and β = 0.91.

that observed in the experiments [see Figs. 9(b) and 9(e)]. In
particular, it can be clearly seen in Figs. 9(e) and 9(f) that
solitary waves emit some radiation, which in not the case
in Fig. 9(d). Note that the perturbative higher-order effects
described by Eq. (A1) are also at the origin of some distortion
of the Radon spectral signatures, which can translate into
some difficulties in measuring the velocity of solitons in the
experimental interaction region, as discussed in Sec. IV C.

The discrete IST spectra computed at Z = 6 and 120 m
show that the isospectrality condition is not fulfilled in the
experiment and in the numerical simulation of Eq. (A1) [com-
pare Figs. 9(h) and 9(i) with Fig. 9(g)]. Higher-order effects
produce some spreading (or diffusion) of the discrete eigen-
values, which nevertheless remain confined to two distinct
clouds. Note that numerical simulations of Eq. (A1) do not
describe the fact that the imaginary parts of the centers of
mass of the two clouds of discrete eigenvalues decay between
z = 6 and 120 m [compare Figs. 9(h) and 9(i)]. This decay is
due to a small wave damping associated with viscosity effects
occurring during propagation, mostly due to sidewall friction.
In our experiments, the wave damping coefficient is estimated
to be approximately 6 × 10−4 m−1, which is associated with
a typical length for viscous damping being around 1.7 km.

APPENDIX B: MATHEMATICAL EXPRESSION
OF THE FINITE-DEPTH CORRECTIVE TERM β

The coefficient β in Eq. (14) is a finite-depth corrective
term to the cubic nonlinearity. The expression for β was
derived in Refs. [47,48]. With h being the water depth, it is
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FIG. 10. (a) Typical soliton recorded in the experiment at Z =
6 m. The amplitude of the envelope is approximately 2.8 cm. The
period of the carrier wave is 0.99 s. The associated wavelength is
approximately 1.5 m. The spatial extension (FWHM) of the soliton is
approximately 5 m. (b) Solitons envelope profiles measured at Z = 6
and 120 m in experiment. The steepness is k0a ∼ 0.115.
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given by

β = κ

ν
, (B1)

where

ν = 1 + 2
k0h

sinh(2k0h)
, (B2)

� = −ν2 + 2 + 8(k0h)2 cosh(2k0h)

sinh(2k0h)
, (B3)

κ = cosh(4k0h) + 8 − 2 tanh2(k0h)

8 sinh2(k0h)

− (2 cosh2(k0h) + 0.5ν)2

sinh2(2k0h)
[ k0h

tanh(k0h) − (
ν
2

)2] . (B4)

In our experiments made with a carrier frequency
f0 = 1.01 Hz, we have k0h ∼ 5, which yields β = 0.91.
Note that there also exists a finite-depth correction to linear
dispersive effects but it is fully negligible in our experiment
(see also Ref. [42]).

APPENDIX C: SOLITON PROFILES IN THE EXPERIMENT

Figure 10(a) shows one isolated envelope soliton recorded
at Z = 6 m. The black solid line represents the signal recorded
by the resistive gauge and the red dashed line is the modulus of
the envelope that is reconstructed using the Hilbert transform.
Figure 10(b) represents the modulus of the envelope of a few
solitons belonging to one given species of SG that is recorded
at Z = 6 m (blue dashed line) and at Z = 120 m (orange solid
line). In our experiment the steepness k0a is approximately
0.115 and higher-order effects produce only small distortions
(fore-aft asymmetry) of the solitons’ envelopes.
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