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Statistics of a two-dimensional immersed granular gas magnetically forced in volume
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We present an experimental study of the dynamics of a set of magnets within a fluid in which a remote
torque applied by a vertical oscillating magnetic field transfers angular momentum to individual magnets. This
system differs from previous experimental studies of granular gas where the energy is injected by vibrating
the boundaries. Here, we do not observe any cluster formation, orientational correlation and equipartition of
the energy. The magnets’ linear velocity distributions are stretched exponentials, similar to three-dimensional
boundary-forced dry granular gas systems, but the exponent does not depend on the number of magnets. The
value of the exponent of the stretched exponential distributions is close to the value of 3/2 previously derived
theoretically. Our results also show that the conversion rate of angular momentum into linear momentum during
the collisions controls the dynamics of this homogenously forced granular gas. We report the differences among
this homogeneously forced granular gas, ideal gas, and nonequilibrium boundary-forced dissipative granular gas.

DOI: 10.1103/PhysRevE.107.034903

I. INTRODUCTION

Granular gases are many-particle systems in which indi-
vidual particles undergo random motions and whose dynamic
differs from molecular gases due to the energy loss during col-
lisions [1,2]. Granular gases are complex out-of-equilibrium
systems and show unique properties compared to molecular
gases as they can violate the time-reversal symmetry [3,4]
and show nonequipartition of energy [5–9]. The inelastic col-
lisions between the particles imply that granular gases are
dissipative and require a constant input of energy to compen-
sate for the loss of kinetic energy. They are usually boundary
driven, for example, by vibrating the boundary of the
container.

The theoretical framework of granular gases assumes a
homogeneous forcing and a high-energy tail velocity distri-
bution of the particles P(v) ∼ exp(−av3/2), where v is the
dimensionless velocity and a is a constant involving the resti-
tution coefficient ε [10]. Many experimental measurements
have shown that the value of the exponent in the stretched
exponential depends on the number of particles [11–20]. The
dissipation of the kinetic energy in these boundary-driven
granular gases leads to spatial inhomogeneity such as clus-
tering of monodispersed particles [21–27] and segregation of
bidisperse particles [28–33].

Recently, a new experimental forcing technique was devel-
oped to inject energy directly into the volume of a granular gas
instead of at the boundaries [34]. A pair of Helmholtz coils
generates a vertical oscillating magnetic field, which transfers
kinetic energy to magnetic stirrers by imposing a magnetic
torque. In the gaslike regime, N magnets initially sitting at
the bottom of a container receive angular momentum, which
is converted into linear momentum when the magnets collide
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with the side, top boundaries, or other magnets. No clustering
is observed in this granular gas. The equation of state is
measured in three dimensions (3D) using an accelerometer
clamped on the top lid and differs from the equation of state of
molecular gases by a geometric correction [34]. The velocity
statistics have an exponential tail independent of the number
of the magnets [34]. When the particles are immersed in a
liquid medium, the random motions of the magnets within the
liquid reservoir generate hydrodynamic turbulence [35,36].

However, the relationship between the dynamics of the
magnets and the way the energy is injected is unclear because
few experimental studies focused on measuring the angu-
lar velocities of granular gases. In boundary-driven granular
gases, the angular velocity distributions are either stretched
exponential [37,38], Gaussian [20,39], or non-Gaussian in
2D [40]. Here, we investigate the dynamics of a gas of mag-
nets using Lagrangian tracking techniques to understand how
the magnets convert their angular momentum into linear mo-
mentum and how the kinetic energy is distributed between the
degree of freedom in the gas.

II. EXPERIMENTAL SETUP AND RESULTS

Figures 1(a) and 1(b) show a schematic of the experimental
setup. The fluid container is a quasi-2D transparent Plexi-
glas container of dimensions 15 × 1.4 × 8 cm3 and a volume
V = 168 cm3 filled with distilled water. The aim of studying
the motions of the magnets in a quasi-2D liquid reservoir
is to focus solely on 3 degrees of freedom, which are the
horizontal and vertical coordinates (x, y) and the angle θ

between the horizontal axis and the magnet dipolar moment.
The fluid container is fitted within a pair of Helmholtz coils
with an inner diameter of 18 cm and an outer diameter of
40 cm. A sinusoidal current is supplied to the coils pair
via a power amplifier (Qualitysource PA 2000AB), and a
waveform generator (Agilent 33220A) controls the intensity
B ∈ [0.0135, 0.0216] T and frequency fB ∈ [5, 50] Hz of the
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FIG. 1. [(a), (b)] Schematic of the experimental setup for the 2D
granular gas of magnets immersed in water and remotely energized
by a vertical oscillating magnetic. The vertical magnetic field is
generated by a pair of Helmholtz coils. The magnets are illuminated
from the rear by a light-emitting diode (LED) panel, and a high-speed
camera records time series of images. (c) Trajectories of N = 13
magnets (φ = 0.06) in the fluid reservoir (red). The black cores are
neodymium magnets surrounded by transparent Plexiglas shells.

applied vertical magnetic field. The magnets are neodymium
disks encapsulated in cylindrical shells of diameter of 1 cm,
height of 1 cm, and of volume Vm = 0.78 cm3. The Plexiglass
shell aims to reduce the dipolar interaction between adja-
cent magnets [34,41]. The number of magnets is N ∈ [2, 50],
which corresponds to the volume fractions φ = NVm/V ∈
[0.01, 0.25]. The mass of each magnet is m = 1 g, and its
moment of inertia is I = 0.14 g cm2. The magnets have a
density of ρ = 1.28 g/cm3 and are immersed in water to
decrease the effect of gravity. The dynamic is therefore closer
to 3D boundary-forced granular gases in microgravity [42]
than to dry granular gases. A high-speed camera (Phantom
v10 2 Mpixel, 1 kHz) records a time series of images and
Fig. 1(c) shows the erratic trajectories of the magnets in the
liquid container (see also Supplemental Material [43]).

A. Angular velocity distributions

Assuming the magnets are in a liquid medium and at a high
Reynolds number, the injection of energy to the magnets can
be mathematically expressed using the equation of the angular
momentum,

I θ̈ = −λθ̇ |θ̇ | + mB sin (ωBt ) sin θ, θ̇ = dθ/dt, (1)

where I is the moment of inertia of the magnet, θ is the angle
between the vertical magnetic field and the magnetic moment
m of a magnet, λ = πρCrR5/I = 0.007 is the damping co-
efficient, B is the intensity, and ωB = 2π fB is the angular
frequency of the magnetic field. Cr = 0.01 is the coefficient
of rotational drag; its value is assumed to be equal to the one
of a sphere of radius R [41].

We first measure the distributions of the angular velocity
of the magnets as a function of the frequency of the magnetic
field fB. We define ω = θ̇ as the angular velocity of a mag-
net and its standard deviation as σω = √〈ω2〉t,N . Figure 2(a)
shows the rescaled angular velocity distributions of ω/σω for
different frequencies fB. In this graphic, one can observe that
the shape of the distributions strongly depends on fB, similar
to the one of a vibration-driven disk [44]. For a low fB, the
angular velocity is erratic and its probability density function
is well fitted by a stretched exponential.

The angular velocity distribution is different from the
stretched exponential distributions measured in boundary-
driven rod-shaped grains in microgravity [38] or the Gaussian
distribution observed for rolling magnetic spheres [39]. The
distribution of the angular velocity of the granular gas strongly
depends on the forcing frequency. Indeed, a sharp transition
is observed when the frequency of the magnetic field is in-
creased above 20 Hz, as illustrated by the shape of yellow and
red curves in Fig. 2(a). In particular, two humps are observed
in the distribution of the angular velocity at ω/σω ≈ ±1.5
for fB = 50 Hz. Those humps have also been reported in
numerical studies [9,45]. The humps measured in the present
paper are linked to the synchronization of the magnets, while
the humps observed in Refs. [9,45] depend on the roughness
of the particles.

The erratic rotations observed at low fB become time-
dependent rotations, with reversals, at high fB, which is
illustrated by the temporal signals of the angular velocity in
Figs. 2(b) and 2(c). Figures 2(b) and 2(c) show the influence
of the magnetic field frequency fB. At low frequency fB, the
nondeterministic behavior of the angular velocity is observed
in Fig. 2(b). At high frequency fB, Fig. 2(c) illustrates that
the angular velocity is sometimes equal to the frequency of
the magnetic field (dashed lines). One can understand this
transition using Eq. (1) with λ = 0. If the frequency of the
magnetic field fB is high, the ratio of the dipolar magnetic
energy mB and the rotational kinetic energy Iω2

B/2 becomes
small. For fB = 50 Hz and B = 0.0162 T, this ratio is equal to
0.02. Therefore, one can approximate θ̈ ≈ 0 for fB = 50 Hz,
leading to time-dependent rotation of the angular coordinate
θ = C1t + C2, where C1 and C2 are either positive or negative
constants. When the ratio of the dipolar magnetic energy mB
and the rotational kinetic energy Iω2/2 is of order unity, the
angular velocity is erratic [46,47]. This ratio is equal to 0.78
for fB = 7 Hz and B = 0.0162 T, which explains why the
angular velocity is erratic. Such measurements emphasize the
influence of rotational inertia on the magnets’ dynamics. If
the rotational inertia is low compared to the magnetic torque,
the magnets are more likely to follow the externally imposed
magnetic, and the rotations are erratic. However, high inertia
implies that the magnets persist in their rotation while the
magnetic torque constantly changes sign. This explains the
difference in the shape of the probability density functions
observed in Fig. 2(a).

B. Rotational kinetic energy

Measurements of the standard deviation of the angular ve-
locity σω suggest that the relationship between the rotational
kinetic energy and the control parameters fB, B, and N is
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FIG. 2. (a) Probability density functions (PDFs) of the rescaled angular velocity ω/σω for different frequencies fB of the oscillating
magnetic field: 7, 20, 30, and 50 Hz (cold to hot colors). The number of magnets is equal to N = 25 (φ = 0.12) and the intensity of the
magnetic field to B = 0.0162 T. The equation of the solid line is y = aωe−bωx , with aω = 0.58 and bω = 1.1. (b) Temporal signal of the angular
velocity ω/2π of a magnet for fB = 7 Hz. (c) Temporal signal of the angular velocity ω/2π of a magnet for fB = 50 Hz. In both (b) and (c),
the solid lines represent the standard deviation σω of the signal and the dashed lines represent the frequency of the magnetic field fB.

FIG. 3. (a) Standard deviation of the rescaled angular frequency σω/(2π ) as a function of the frequency of the oscillating magnetic field
fB for B = 0.0162 T and N = 25 (φ = 0.12). The dashed line represents a power law fit of σω/(2π ). (b) Standard deviation of the angular
velocity σω/(2π ) as a function of the intensity of the oscillating magnetic field B for fB = 50 Hz and N = 25 (φ = 0.12). The dashed line
represents a power law fit of σω/(2π ). (c) Standard deviation of the angular velocity σω/(2π ) as a function of the number of magnets N or the
volume fraction φ. (d) Diffusion constant D of the magnets as a function of the number of magnets N or the volume fraction φ. In both (c) and
(d), the values of the control parameters are B = 0.0162 T and fB = 50 Hz.
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FIG. 4. (a) Probability density functions (PDFs) of the rescaled horizontal velocity vx/σvx for different frequencies of the magnetic field
fB: 7, 10, 40, and 50 Hz (cold to hot colors). The equation of the dashed line is y = avx e−bvx x1.6

, with avx = 0.45 and bvx = 0.7 and the
dotted line represents a Gaussian distribution. (b) PDFs of the rescaled modulus of the velocity v/σv for different frequencies of the magnetic
field fB. The colors are the same as in panel (a). The equation of the dashed line is y = avx1.3e−bvx1.35

, with av = 0.9 and bv = 0.75, and
the dotted line represents a Rayleigh distribution. In both (a) and (b), the control parameters are B = 0.0162 T and N = 25. (c) PDFs of the
rescaled horizontal velocity vx/σvx for a different number of magnets N : 10, 20, 30, and 40 (cold to hot colors). The corresponding volume
fractions φ are equal to 0.045, 0.09, 0.135, and 0.18. The equations of the dashed and dotted lines are the same as in panel (a).

complex. As shown in Figs. 3(a) and 3(b), σω is proportional
to f 0.2B0.5 for our range of parameters and illustrates that the
energy injected into the magnets is an increasing function of
the energy stored in the pair of coils.

While σω is monotonically increasing as a function of fB

and B, the dependence on N is nontrivial. Indeed, Fig. 3(c)
illustrates that σω increases up to a maximum value at N = 16,
which corresponds to a volume fraction φ = 0.07 and then
decreases. We can understand the regime N < 16 by assuming
that the number of collisions between the magnets increases,
which consequently increases the fluctuations of the angular
velocity. When N is larger than 16, the steric effects within the
reservoir become important, and the high number of collisions
decreases the fluctuations of the angular velocity, thus leading
to a decrease in the angular kinetic energy.

To evaluate the influence of the steric effect on the gas’ dy-
namics, one can measure the diffusion constant D defined by
〈|ri(t ) − ri(0)|2〉N = 4Dt , where ri(t ) = xi(t )x + yi(t )y are
the coordinates of the magnet i at a time t . Figure 3(d) il-
lustrates that the diffusion constant D increases when N is
smaller than 16, then decreases when the number of magnets
N is larger than 16 (φ = 0.07), and stresses the role of the
steric effect in the gas when N is larger than 16. The shape
of the curves also indicates that one can link the rotational
kinetic energy to the diffusion of the magnets in the reservoir.
Therefore, one can assume that the collisions between the
magnets control the conversion of the rotational kinetic energy
into linear kinetic energy.

C. Linear velocity distributions

Since the dynamics of the magnets are driven by the ex-
ternally imposed magnetic field, it is therefore important to
estimate how the angular velocity is converted into linear
velocity. Figure 4 illustrates that the probability density func-
tions of the horizontal vx velocities of the magnets are very

well fitted by the expression

P(vx ) = avx exp

[
−bvx

(
vx

σvx

)1.6
]

(2)

with σvx = √〈v2
x 〉t,N , avx = 0.45 and bvx = 0.7.

The stretched exponential distributions are consistently ob-
served for an increasing value of the magnetic field frequency
fB as shown in Fig. 4(a). No transition in the shape of the
distributions of the linear velocity is measured, conversely to
the shape of the distributions of the angular velocity. This im-
plies that the frequency of the magnetic field fB solely changes
the standard deviation of the velocity without affecting the
shape of the probability density functions. Measurements of
the vertical vy velocities are also very well fitted by the same
expression, stressing the absence of the effect of gravity.
Stretched exponential distributions have been reported in dif-
ferent granular systems, but are different from the Gaussian
distribution observed in ideal gases because of the dissipa-
tion and inelastic collisions in out-of-equilibrium systems. As
shown in Fig. 4(c), the exponent 1.6 in the stretched exponen-
tial is independent of N and is close to the theoretical value
3/2 [10]. This differs from many experimental studies of 3D
boundary-driven dry granular gases in which the value of this
exponent depends on N [11–20].

Measurements of the probability density functions of the

modulus of the velocity v =
√

v2
x + v2

y in Fig. 4(b) illustrate

that the distribution of v is very well fitted by the expression

P(v) = av

(
v

σv

)1.3

exp

[
−bv

(
v

σv

)1.35
]

(3)

with σv = √〈v2〉t,N , av = 0.9, and bv = 0.75. Equation (3)
differs from the Rayleigh distribution observed in 2D ideal
gases, which is likely linked to the dissipation and the inelastic
collisions in this system.
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FIG. 5. (a) Probability density functions of the angle difference 
 for different frequencies of the magnetic field fB: 7, 10, 40, and 50 Hz
(cold to hot colors) for B = 0.0162 T and N = 25. (b) Main figure: Standard deviation of the linear velocity σv as a function of the control
parameters ( fB, B, N ). Top inset: σv as a function of the number of magnets N . The dashed line represents a power law fit of σv as a function
of N . Bottom inset: σv as a function of the frequency of the oscillating magnetic field fB. The dashed line represents a power law fit of σv as
a function of fB. Red squares correspond to B = 0.0162 T and N = 25, green circles correspond to B = 0.0162 T and fB = 50 Hz, and blue
diamonds correspond to fB = 50 Hz and N = 25.

To understand the coupling between the translational and
rotational motion of the magnets, we compute the angle dif-
ference 
 between v and θ . In the absence of correlations
between v and θ , the PDF of 
 has to be flat. Figure 5(a) illus-
trates that the PDF of 
 is indeed flat for different frequencies
of the magnetic field fB. The absence of an orientational
correlation is due to the energy injection mechanism. The
transfer of linear momentum during a collision between two
magnets depends on the angular and linear velocity of the
magnets before the collision. However, the angular momen-
tum statistics are independent of the energy transfer during
collisions, because the magnets constantly receive a magnetic
torque and therefore quickly lose the information about the
angular momentum transferred after a collision. This explains
why the angular velocity is uncorrelated to the linear veloc-
ity and why the collisions between the magnets control the
conversion of the rotational kinetic energy into linear kinetic
energy.

D. Linear kinetic energy

The measurements of the standard deviation of the
modulus of the velocity σv suggest that the relationship be-
tween the linear kinetic energy and the control parameters
( fB, N, and B) is less complex than for the standard devia-
tion of the angular velocity σω. Indeed, Fig. 5(b) shows the
dependence of the translational kinetic energy as a function of
the control parameters ( fB, N, B). The top inset in Fig. 5(b)
shows the dependence of σv on N0.15 and the bottom inset
in Fig. 5(b) shows the dependence of σv on f 0.2

B . The linear
energy kinetic σ 2

v is an increasing function of fB, B, similar to
the rotational kinetic energy. The power law σv ∼ B1/2 is con-
sistent with the power law measured in a 3D homogeneously
forced granular gas without liquid in the container [34]. The
measurements also illustrate that σv increases as a function of
N . This suggests that a high number of collisions between the

magnets convert more efficiently the rotational kinetic energy
into translational kinetic energy.

E. Nonequipartition of energy

It is also important to note that no equipartition of energy
is observed in this volume-forced granular gas. The measured
ratio of the rotational and linear kinetic energy is equal to 5
because the dynamics of the magnets are driven by the input
of angular momentum. This means that the magnets do not
fully convert their angular momentum into linear momentum
and that the kinetic energy is not equally distributed to the
degree of freedom of the gas. Figure 3(c) also suggests that
the conversion of the rotational kinetic energy to linear kinetic
energy is maximal at N = 16, which corresponds to φ = 0.07.
We do not observe equipartition of energy here because the
energy is directly injected into the magnets, which is an ex-
pected numerical result [9,16].

F. Collision statistics

Since the linear kinetic energy depends on the number
of magnets N , one can assume that the collision frequency
also controls the dynamics of the magnets. We therefore mea-
sure the frequency of the collisions between the magnets, to
compare the volume-forced granular gas with ideal gases or
boundary-driven granular systems. Different dependencies on
N were reported. The collision frequency is proportional to N
in the case of ideal gases and proportional to N1/2 in vibrated
granular gases in low gravity [48].

Figure 6(a) shows that the collision frequency fcol solely
depends on the number of magnets N . The relationship be-
tween the collision frequency and the number of magnets is
fcol ∼ N1.15, as illustrated by the dashed line in Fig. 6(a). This
result is slightly different from the linear relationship between
fcol and N in the case of ideal gases. The top and bottom
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FIG. 6. (a) Collision frequency fcol as a function of the number of magnets N . The equation of the dashed line is y = 0.87x. Top inset:
Collision frequency fcol as a function of the intensity of the magnetic field B. Bottom inset: Collision frequency fcol as a function of the
frequency of the oscillating magnetic field fB. (b) Mean free path l as a function of the number of magnets N . The equation of the dashed line
is y = 22/x. Top inset: mean free path l as a function of the intensity of the magnetic field B. Bottom inset: mean free path l as a function of the
frequency of the oscillating magnetic field fB. In both figures, red squares correspond to B = 0.0162 T and N = 25, green circles correspond
to B = 0.0162 T and fB = 50 Hz, and blue diamonds correspond to fB = 50 Hz and N = 25.

insets in Fig. 6(a) show that the collision frequency fcol is
independent of both fB and B. Such measurements imply that
any change in the kinetic energy does not affect the frequency
of the collision. This quantity is therefore solely controlled by
the number of magnets.

The average distance a particle travels between collisions
with other moving particles, the mean free path l , can be
estimated from the following expression:

l = σv/ fcol. (4)

One would expect the mean free path to be proportionate to
l = f 0.2

B B0.5/N because σv is proportionate to f 0.2
B N0.15B0.5

[Fig. 5(b)], and fcol ∼ N1.15 [Fig. 6(a)]. Figure 6(b) shows that
the mean free path l is indeed inversely proportionate to the
number of magnets N , as illustrated by the dashed line. The

top and bottom insets in Fig. 6(b) show the weak dependences
of the mean free path l on fB and B. The Knudsen number
can be defined as K = l/L, with L = √

dh ≈ 11 cm with
d = 15 cm the length of the container and h = 8 cm the height
of the container. The measurements show that the Knudsen
number is in the range of [0.05, 0.64] and is inversely pro-
portional to N for our range of parameters, implying that the
gas is in a kinetic regime. However, a slight departure from
the dashed line is observed for N < 10 (φ < 0.045) in Fig. 5.
The value of the Knudsen number illustrates that the dynamics
of the gas are solely dominated by the collisions between the
magnets and not by the collisions between the magnets and
the boundaries. This confirms that the collisions between the
magnets transfer linear kinetic energy to the gas and control
the dynamics. In addition, Fig. 4(c) illustrates that the shape

TABLE I. Comparison between volume-forced gases of magnets (3D or 2D), the ideal gas, and boundary-forced granular gases. Volume-
forced 3D gas: measurements performed using an accelerometer clamped on the lid of a 3D granular gas [34]. Volume-forced 2D gas (present
study): measurements using Lagrangian tracking techniques in a quasi-2D water-filled cell. For boundary-forced granular gases (fourth column)
α(N ) ∈ [0, 2] is a coefficient that depends on the number of particles N in the granular gas. Vwall = 2πFA is the velocity of the walls of the
container, with A being the amplitude of the oscillations and F being their frequency.

Volume forced Volume forced 2D gas Boundary forced
3D gas (dissipative) Ideal gas granular gases

(dissipative) [34] Present Study (nondissipative) [49] (dissipative) [24,48]

Injection of energy Volume Volume – Surface (Vwall)
Kinetic energy σ 2

v Ek ∼ B Ek ∼ f 0.4
B N0.3B Ek ∼ T Ek ∼ Vα(N )

wall
Equation of state PV ∼ NEkVp/V – PV ∼ NEk PV ∼ Ek

Equipartition of energy No No Yes Sometimes
Clustering No No No Yes

Linear velocity Exponential Stretched exponential Maxwell-Boltzmann Stretched exponential
distributions Independent of N with α = 1.6 Independent of N with α(N ) ∈ [0, 2]

Independent of N Depends on N

Collision frequency fcol NB1/2 N1.15 NT 1/2
√

NVwall

Mean free path l – 1/N 1/N 1/
√

N
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of the distribution of the horizontal velocity is independent of
N and also suggests no transition toward a Knudsen regime.

III. DISCUSSION

The results of the measurements performed using La-
grangian tracking techniques in this volume-forced granular
gas are fundamentally different from the ones performed us-
ing other 3D dry granular gas systems, as summarized in
Table I. The results strongly emphasize the difference in the
dependence on the number of particles N between differ-
ent experimental systems, such as boundary-driven granular
gases. Here, even though the shape of the distribution of the
angular velocity changes as a function of the magnetic field
frequency, the shape of the distribution of the linear velocity
does not change. The kinetic energy in the volume-forced
granular gas depends on N and the linear velocity distributions
also resemble the heavy-tailed distributions seen in boundary-
forced granular gases. The collision frequency depends on N
with a larger exponent in the volume forced granular gas than
for ideal gases or boundary-driven gases, probably because
the kinetic energy depends on N . The mean free path is mea-
sured using the relationship between the linear kinetic energy
and the collision frequency and implies that the mean free path
depends on N but also on fB and B. However, we do not have
an equation of state in this system because we did not measure
the pressure independently from the trajectories.

IV. CONCLUSION

We present the first statistical measurements of a 2D ho-
mogeneously forced granular gas driven stochastically by
injecting rotational kinetic energy into magnets, extending
the measurements performed in 3D [34]. This system differs
from previous experimental studies of granular gas where the
energy is injected by vibrating the boundaries. We report the
differences between this homogeneously forced granular gas,
ideal gas, and nonequilibrium boundary-forced dissipative
granular gas. Here, we do not observe any cluster formation,
even for a large volume fraction φ = 0.21, nor the equipar-
tition of the energy. The velocity distributions are stretched
exponentials, as for other 3D boundary-forced dry granular
gas systems, but the exponent does not depend on N and is
close to the value of 3/2 derived theoretically [10].

Even though the shape of the distributions of the angular
velocities changes, the gas dynamics are solely controlled by
the average linear kinetic energy. The homogeneously forced
granular gas studied here presents interesting physical proper-
ties which can be useful in medical applications if the magnets

are scaled down to a nanometric scale [50,51]. The generated
flow also offers opportunities for improved chemical mixing
or studying the pair dispersion and diffusion of passive scalars
in turbulent flows [35,36].
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APPENDIX: ANGULAR VELOCITY DISTRIBUTIONS
FOR DIFFERENT N

Measurements of the distributions of the angular velocity
of the magnets as a function of the number of magnets N
are shown in Fig. 7. The double humps are observed for
N = 30 (φ = 0.135) but not for N = 45 (φ = 0.21). This
can be explained because of the high density of magnets for
N = 45, and, therefore, the high number of collisions
[Fig. 6(a)], prevents the magnets from synchronizing with the
vertical oscillating magnetic field.

FIG. 7. Probability density functions (PDFs) of the rescaled an-
gular velocity ω/σω for different number of magnets N : 11, 20, 30,
and 45 (cold to hot colors). The frequency of the magnetic field
is equal to f = 50 Hz and the intensity of the magnetic field to
B = 0.0162 T.
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