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Solitary waves in a chain of beads under Hertz contact
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We study experimentally the propagation of high-amplitude compressional waves in a chain of beads in
contact, submitted or not to a small static force. In such a system, solitary waves have been theoretically
predicted by Nesterenkpl. Appl. Mech. Tech. PhysSUSSR 5, 733 (1984]. We have built an impact
generator in order to create high-amplitude waves in the chain. We observe the propagation of isolated
nonlinear pulses, measure their velocity as a function of their maximum amplitude, for different applied static
forces, and record their shape. In all experiments, we find good agreement between our observations and the
theoretical predictions of the above reference, without uamgadjustable parameter in the data analysis. We
also show that the velocity measurements taken at three different nonzero applied static forces all lie on a
single curve, when expressed in rescaled variables. The size of the pulses is typically one-tenth the total length
of the chain. All the measurements support the identification of these isolated nonlinear pulses with the solitary
waves predicted by NesterenK&1063-651X97)04211-6

PACS numbds): 03.40.Kf, 46.10+z, 43.25:+y

I. INTRODUCTION to study the propagation afhock wavesn the chain, for
several nonlinear interaction lawgl1-13. Nesterenko
Granular materials are widely spread in both geophysical14,15 gave an analytical solution to the problem for Hertz's
and industrial contexts. Acoustic waves are frequently usethw. He showed that strong compressional waves, that is,
as nondestructive testing tools in the laboratory and argith an amplitude much greater than the applied static force,
sometimes the only accessible way to get information in geomay propagate as isolatsdlitary wavesn the chain. Later,
physical investigations. Thus the acoustic behavior of granuexperimental evidence of the existence of such waves was
lar materials has been Wlde|y investigated for a Iong tim%i\/en by Nesterenko and Lazariﬂlﬁ_la_ A Strong|y re-
[1,2]. lated problem, if not exactly identical, is the propagation of
The shape of the grains, the details of the contact lawyaves in a vertical column of grains subjected to gravity,
between adjacent grains, the geometry of the contact latticgyhich is crucial to the understanding of the details of the
and hence the dimensionality of the grain piling all affect thewhole column dynamics after an impddi9,20Q.
propagation of sound in granular material. This variety of |n this paper we report quantitative experiments on non-
phenomena makes the problem difficult and many opeminear wave propagation in a chain of identical elastic beads,
questions subsigtee[3] for a recent review Many experi-  allowing a comparison of the shape and the velocity of the
mental investigations were concerned with the propagatiovaves with the theoretical predictions of REf4]. We ob-
of seismic waves in materials submitted to very high presserve the propagation of nonlinear isolated pulses and a de-
sures[4-6], where all those problems are somewhat mixed+aijled analysis, in which no free adjustable parameter is used,
Recent works on sound propagation in sand focus on geastrongly supports their identification with the solitary waves
metrical effects due to the disorder of the pilifig8]. In this  described by Nesterenka4]. Our experimental setup allows
paper we are concerned with the effect of the contact lawg systematic study of the waves in a large range of ampli-
between adjacent grains and the resulting nonlinear and digudes for several applied static forces. This is in contrast with
persive behaviors. the work of Refs[16, 17, in which the excitation of the
The interaction law between two adjacent elastic spheregaves cannot be varied and only indirect velocity measure-
is an exact solution of linear elasticity, known as Hertz's lawments were performed.
[9]. Because of purely geometrical effects, the relation be- The paper is organized as follows. In Sec. Il we review
tween the forcd=, exerted on the spheres and the distance othe calculations of Nesterenko for convenience and further
approach of their centerd, is nonlinear,Fox832. As a  reference. Section Il A is devoted to the presentation of our
consequence of Hertz's interaction law, the velocity of linearexperimental apparatus and Sec. Ill B to the analysis of the
sound waves in one-dimensional systems scalégdsthis  data and a comparison with the theoretical predictions. The
classical result, experimentally demonstrated long [dg®]  experimental results are presented in Sec. IV. We display the
(for more recent results s¢&0]), does not seem to be veri- experimental shape of the nonlinear pulses in Sec. IV A for a
fied in higher dimensions because of geometrical eff®lts  chain submitted to moderate static for¢@9.4 and 167 \
To get rid of such problems, a one-dimensional ordered sydn Sec. IV B we report on measurements of the velocity of
tem such as a chain of identical elastic beads is a good capropagation of the nonlinear pulses for three different ap-
didate to study the nonlinear regime. plied static force$9.8, 29.4, and 167 NWe show that when
The nonlinear behavior of a chain of beads was originallythe velocity is rescaled by tHaear sound velocity and the
investigated with the help of numerical simulations, in ordermaximum amplitude of the pulses is rescaled by the applied
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static force, the previous measurements all lie on a singleetical predictions, which do not take dissipative phenomena
curve. Section IV C is devoted to the behavior of a chain ininto account, and the observatiofsee Sec. IV.

the absence of any static force because the theoretical statusThe linear approximation of Eq2), obtained in the limit

of this case is somewhat singular. In Sec. IV D we discuss$u,—u,_1|< 8y, gives for the linearized spring constant

our results in the light of previous work46—14. Our con-

clusions are given in Sec. V. 38\ "1 3 (aFq)'3
=loF,) Ta e ®

Il. THEORETICAL ANALYSIS

and we recover the well-known results for a chain of identi-
cal point masses linked by identical linear springs. The dis-
persion relation between the wave numigeand the pulsa-

When two identical elastic spheres of radaare in con-
tact and submitted to atatic force F, the distance of ap-
proachd, of their centers reads

tion w is
2(0F)?® 3(1-1?)
50=W3— with HET, 1) k
0=2 E|S|n(qa)|, (4)

whereE is Young’s modulus and Poisson’s ratio of the
bead material. This is an exact result lofear elasticity,  the cutoff frequencyf, of the chain reads
known as Hertz's solutiof@], and the nonlinear relationship

betweens, andF is a purely geometrical effect. 1 K 3 |:$/6
This solution is expected to remain valid when the force fc=; m= 277 IR, (5)

F and hence the distance of approaghare both slowly

varying functions of time. The variations may be considered . .
as slow if every typical time scale involved in the motion is and the sound velocitg of the chain, not to be confused

much greater than the time needed by a bulk Iongitudina;IVith the velocities of acoustic waves in the bulk material of

acoustic wave to travel across the diameter of a bead. For t Ee beads, is given by

stainless-steel beads used in our experiments, which are 8 16

mm in diameter, this condition is fulfilled when all time c.= lim 2=2a\ﬁ=i Fo ®
scales are much greater thanu8 or all frequencies much s m 2z 0%l

less than 500 kHz. Figures 6—8 and 13—-15 below show that

it is inde_ed the case in a_II our expe_riments. Moreqver, the The simple results5) and (6) are of course well known
deformation of the beads in contact is strongly confined 10 @gee e.g[3]) and were recently tested for an actual chain of
very small region near the contact point; it is thus possible (Qyentical elastic beade0]. They both have been confirmed
model a chain of identical beads in contact as a chain ofynerimentally with a great accuracy; this constitutes a clear
point massesn=4mpa’l3, wherep is the density of each experimental proof of the validity of the approximations

bead, linked by nonlinear springs governed by Bg. The  |g54ing to Eq.(2), which are otherwise rather uncontrolled.
dynamics of the chain, at sufficiently low frequencies, is thusyse will return to the same tests in the nonlinear regime in
described by the system of coupled nonlinear differentialgg. v/,

qHO

equations An interesting feature displayed by E®) is that without
Jai2 any static forcéd=,=0, no linear acoustic waves propagate in
Un:m{[50_(un_unfl)]3/2_[50_(un+l_un)]alz}a the chain:c,=0. Nesterenkd14] called this situation the

sonic vacuumHe also showed that strongly nonlinear waves
2 do propagate, even when the beads are just in contact, but in
the absence of any static force. For convenience and further

whereu, is the displacement of theth bead from its equi- reference, we reproduce below his analysis, which may be

librium position andu,, its second time derivative. .
Two other approximations are hidden in E@). First, found in[14]. . _

plastic deformation of the beads is neglected. The nonlinear The strongly nonlinear limit corre_spon_ds FDn—l{nfll

waves are generated by impacting the first bead of the chain %- !N the long-wavelength approximation, that is, when

; : the characteristic size of the perturbation is much greater
with a bead of maximum speed roughly 0.5 nigge Sec.
o iiid than the radius of a bead, we may writg(t) =u(x,t),

Il A). For steel beads, plastic deformation is negligible if the 3 /
relative speed of the impacting bodies is less than 1.3 m/&Nerex represent the abscissa along the chain, and proceed

[21], so that this effect is actually not relevant to our experi-1© the development
mental situation. Dissipation of the waves may also occur
because of the viscoelastic behavior of the bead material
[22], but this effect is presumably very small for steel beads,
and we neglect it too. The validity of those approximations is 4

checked experimentallya posteriori In the limit of very + Zi Unoo = e @)
small amplitude waves, for which the plastic effects are not 3 oo '

relevant, the behavior of the chain is very well accounted for

by the dissipationless mod€&2) [10]. In the strongly nonlin-  whereu,= du/dx. Inserting this development in EQ), we
ear regime, there is very good agreement between the theget

3
Ups1(t)=u(x*2a,t)=u=*2au,+ ZaZUXXiT Usx
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FIG. 1. (a) Graph of the functiotW(y), illustrating the mechanical analogy between the solutions of Etj.and the motion of a point
particle of unit mass in a potenti®¥(y); the parameter of the graphys=0.128, which meang,,= 1.007. The motion of the particle with
energyE..=0.011 corresponds to the solitary wave solution of @d). Also shown is a particle of enerdy=0.005, corresponding to a
nonlinear periodic wave solution of E(L1). (b) Same aga), but the respective motions are shown in the phase phaiygX; the homoclinic
orbit (solid line) corresponds to the solitary wave, the periodic ofbitshed lingto the nonlinear periodic wavéc) Shape of the solitary
wave corresponding to the motion of the particle with endfgy (d) Shape of the nonlinear periodic wave corresponding to the motion of
the particle with energ¥.

2

a a Uy U
l.lt'[:C2 E (—uy) 1/2Uxx+ ? (—u x) uxxxx Z(Xﬁs;il).(% Y=~ @ W(y)
Ca? (uyy)® w0, = 2a® @ With
16 (—u,)3?’ mé’

W(y) _ 5 8/5+ + 4(y4/5 6/5)y4/5 (11)

where u is now thetotal displacement of the bead center h is th | ken by wh v The i

from its position when no static force is applied. Equatign ~ Wherey- Is the value t? eﬁ y w fg”ﬂh._ao' € 'ntﬁ'

is valid up to order &/L)2. Looking for progressive waves gration qonsta}nt is such that,,|...=0, which means that
u(é=x—Vt), where the wave velocity remains to be de- the solution will have the form of a localized excitation. The

termined, and setting= —u;, we transform Eq(8) into functionW(y) has a maximum foy=y., and a minimum for

=(2[1-y2*+ V(-2 1+ 3y (12)

3
et 2 2 ¢ 16y defined for O<y.<1; moreover, y,=y, for 0<y,

<(%)%2 Thus, whery.. belongs to this last range, the curve
This equation may be integrated and put in dimensionlesgy(y) has the shape displayed in Figal

form with the help of successive changes of variables Equation (11), in an obvious mechanical analogy, de-
scribes the motion of a particle of unit mass at positiorin
V|5 > the potentiaW(y), during the timex. If the particle is ini-
Y=z, ZZ(E) y, & \[5 anz, (10) tially at the positiony.,, with energyE.., it leaves its un-

stable equilibrium position up to position,, defined by

so that we finally get a particularly simple expression W(Yn) —W(Y.)=0, (13
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FIG. 2. Evolution of the forcdin N) as a function of timin Izéiﬁ;wr e ar?l‘gﬁrﬁeg

us) for a maximum amplitude of 100 N and, respectively, a static 7T

force of 1 N(solid line) [the wave profile is determined by E@3)]

and no static forcédashed ling[the wave profile is determined by ~ FIG. 3. Sketch of the experimental apparatust to scalg. The

Eqg. (28)]. The similarity of the two curves is striking; the choosen framework of PTFE consists of two parts, each one 30 mm high, 40

value d 1 N roughly corresponds to the available resolution on the™m wide and 400 mm long, with a straight channel of squared
static force(see Sec. Il A. cross section, 8.02-mm sides, milled in the lower part, that contains

the beads. A very small clearance of 2/100 mm is managed in the

. infinite ti b is the locati f . channel, so that the beads move freely along the axis but not in the
In an infinite ime becausg... 1S the location o a maximum perpendicular direction. Only two of the sensors perpendicular to

of the potential, and then returns to positign again in an  he chain axis are shown as well as the one that is parallel to the
infinite time; the corresponding trajectory in the phase plangnain axis; they are all piezoelectric quartz transducers with charge
(y.y,) is a homoclinic orbi{see Fig. 1b)]. Returning to our  ampiifiers included hence the need of a stabilized electrical alimen-
wave problem, this describes the propagation of a solitaryation. The impact generator is described in Fig. 4. Two mechanical
wave of amplitudey.. at »— *o and of maximum ampli- devices, not represented here, ensure longitudirel parallel to
tudey,, at =0, say; the shape of a typical wave profile is the chain axisdisplacement of both the dynamometer and the vi-
displayed in Fig. {c). Also shown in Fig. 1d) is a solution  bration exciter.
of energyE<E.,, represented by the dashed closed orbit in ) o . i i
the phase plane, and corresponding to a nonlinear period;@ose'nonlmear perlodlc'wave in Sec. Il B and discuss their
wave. experimental relevance in Sec. IV C.

Those conclusions are valid fgr,>0 because the change
of variables(10) is singular fory=0. The solution fory., IIl. MEASUREMENT METHODS
=0, which corresponds physically #©,=0, is a nonlinear A. Experimental apparatus
periodic wave train[14] with an analytic expression that
reads, in the original variableg and &,

The experimental apparatus is sketched in Fig. 3. The
system under study is a chain of 51 identical stainless-steel
beads[Association Frammise de NormalisatiofAFNOR)

2\2 ¢ norm Z 100 C 17, each 8 mm in diameter, with a tolerance
Y(§)= (Z ?) cos' T (14 of 4 um on the diameter and 2m on the sphericity, and a
a maximal roughness of 0.0am. The physical properties of
the beads are summarized in Table |I. The beads are sur-
This solution is mathematically singular because it does notounded by a framework of polytetrafluoroethylei®TFB);
fulfill the inequality ¢y=—u,>0 [see (8)]. On the other this material is chosen because of its high density and low
hand, those nonlinear periodic waves am®dulationally rigidity, leading to a velocity of 400 m/s for bulk acoustic
stable as shown in Refl23], so that they may be relevant to waves, smaller than the velocity of the nonlinear waves ob-
the actual behavior of the chain. Experimentally, it seemsserved in our experiments, which is greater than
:gzﬁlzog';;%(\;vgg[els&efﬁsgﬁgos\évgelr\llrgh) ﬁtitl(\:/ef?;cf n'|?k2|F;/P“ed TABLE I. Relevant physical _properties of the beads u_sed in the
L . chain; they are made of stainless steel, corresponding to the
that a qualitative change suddenly appears at zero static forgAq:NOR norm 7 100 C 17
because solitary waves exist at any infinitesimal applie i

static _force. The shgpg of a solitary wave with a _smaII staticSymbol Signification Value
force is extremely similar to one arch of the nonlinear wave

(14), as shown by Fig. 2. This behavior is confirmed bya bead radius 4 mm2 um
numerical simulations of Nesterenko and Lazafitif,1§, E Young’s modulus 2.28 10** N/m?
who found the same properties for a wave of maximum amy Poisson’s ratio 0.3
plitude 200 N propagating either under a static force of 2 Np density 7650 kg/mh
or in an uncompressed chain. Moreover, the wave velocity see Eq(1) 3.02<10 2 m3N
also tends continuously toward its zero static force limit, ag see Eq(8) 4.55<10° m/s

shown in Sec. Il B. We return to the theoretical status of




6108 C. COSTE, E. FALCON, AND S. FAUVE 56

(@
Al ®
—pl

Vibration
exciter

Duralumin

PTFE

g

"
FIG. 4. (@) General sketch of the impact generator. The impacting lisee Table Il for detai)smoves freely in a hole drilled in a

cylinder of duralumin, between the first bead of the chain and a piston mounted on a vibration éxcieoss section of the cylinder along

the planeAA’ normal to its axis; this sketch emphasizes the inlet ensuring quick air evacuation, thus a great reduction of air friction on the

bead. In the stationary regime, this apparatus send periodically, with the period of the piston fatti@s) identical nonlinear pulses in

the chain.

500 m/s(see Secs. IV B and IV C The observation of the alumin piston held on a Bruel&Kjaer™ vibration exciter.
wave is thus not perturbed by a quicker wave propagating iWhen the piston oscillates, the moving bead successively
the surrounding medium. The static force is controlled by ampacts the piston and the first bead of the chain; for piston
dynamometer, and ranges from 0 to 170 N, with a precisiomscillation frequencies ranging from 70 to 110 Hz and a free
of =2 N. path of several millimeters for the moving bead, the succes-
Three force sensorfDytran™, sensitivity 50 mV/LbF  sive impacts occur in a regular fashion. Since the duration of
are held with their axis perpendicular to the chain axis, ovepp, impact is very smalltypically 50 us; this duration is
beads 6, 26, and 46, allowing the measurement of the wavigevertheless sufficient for the quasistatic approximation to be
flight time, but not of its shape. Indeed, those sensors arGalid; cf. the beginning of Sec.)ll a great amount of mo-
sensible to theéransversedeformation of a bead, perpendicu- entum may be transferred, generating a maximum ampli-
lar to the direction of propagation of the wave, which is,de of the wave up to 1200 {$ee Sec. IV, In the stationary
related in a rather complicated manner to the force exertepegime, the period of successive impacts is the same as the
on the bead by its two neighbors, in the direction of propa-yne of the piston and is much greater than both the duration
gation(see[24]). Moreover, the total fprce is th@lgebrai¢ o an impact(typically 50 us) and the time taken by the
sum of the forces exerted on each side of the bead and thyg,ye to travel along the chain, which is at least 1 ms in the
related to thegradient of the deformationyy=—u, in the \yorst case. The wave is thus completely damped between
continuous limit. The wave profile is ob_tfil_ned with the help o successive impacts, mostly because of the very small
of a fourth force sensofDytran™, sensitivity 10 mV/LbF  yeflection coefficient at the beginning of the chain, so that
held at the end of the chain, with its own axis parallel to theyyg syccessive pulses do not interact. The amount of impul-
chain axis. In this configuration, the force measured by thigjon transferred during the impact increases with the ampli-
sensor is related in a simple way to the deformation wavgyge of the piston oscillations, their frequency, the length of
that propagates along the chasee Eq(20)]. As shown in  the moving bead free path, the restitution coefficient for both
Fig. 3, the sensors are linked to a digital scope, suitable fofmpacts experienced by the moving bead, and the density of
the observation of nonrepetitive pulses; the signal may bene moving bead material. Although in a strictly empirical
transferred to an Apple™ computer for further analysis, tofashion, a proper choice of the parameters listed above al-
compare the experimental wave profile to the theoretical ongyys us to set the amplitude of the traveling pulse to a con-
(see Secs. IVA and IV _ __ venient value. In most cases, the moving bead was made of
The three sensors perpendicular to the chain axis arfingsten carbide and 8 mm in diameterass 4 g and a very

mounted on brass supports and we monitor the mountingig restitution coefficient but we also used other impacting
torque with a torque wrench. The last sensor is centered 0fea(s listed in Table II.

the chain axis, with its contact surface normal to this axis,

and is mounted on a brass cylinder in the same manner as the . _ ) _
other three. The cylinder is guided in order to allow the. TABLE Il. Characteristics of the different impacting beads used

longitudinal displacement of the sensor along the chain axiég Ou”;if;?\z'rslenr;;'eI&ﬁgﬁfg:}lﬁﬁéﬁf;gg? $hieg_r§i??gj";ten
required by the settlement of the static force. The dynamom- qus ' n twng

eter mav press on the brass cviinder. to exert a lon itudinaqarblde bead was the most frequently used one. This variety of
y P ) y s 9 Impacting beads allows a large-amplitude range for the pulses sent
force on the chain, but the contact is not a permanent one aqﬁi the chain

may be broken when no static force has to be applied on the

chgin. The relevan_t device, together yvith the one t_hat fi"owﬂnpacting bead material Diametémm) Mass(g)
adjustment of the impact generator, is not shown in Fig. 3.

In order to send high-amplitude compressional waves irungsten carbide 8 3.91
the chain, we have built an impact generator sketched in Figungsten carbide 12 13.54
4. A bead, contained in a carefully adjusted bore drilled in aronze 7.95 2.33
duralumin cylinder(an inlet for air evacuation is milled in stainless steel 8 2.05
the cylinder in order to reduce air friction on the bgad duralumin 8 0.71

moves freely between the first bead of the chain and a due
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B. Data analysis ~ 923 " 9
In our experiments we have access to the velocity of the P(t)= PR {[2F (t)+2F 7P~ (2F)*3}. (20

wave, by performing time of flight measurements, and to the
time evolution of the force experienced by the sensor held aiVe thus get
the end of the chain. The static force applied on the chain is

set to a known value with the help of the dynamometer. The Ym  (2Fm+2F)?P— (2F )P+ F23

actual value of the static force gives the distance of approach v = g273 : (21)
&y between two adjacent beads, with the help of @g, so 0

that

The knowledge of the applied static forég, together
S. 23 with the measurement of the maximum fofeg experienced
¢m:_°:m|:§/3, (15) by the sensor, gives the experimental value of the ratio
2a a Wl from Eq. (21). This value is inserted in Eq17),
) . ) ) which is solved numerically to obtain the experimental value
Using Eq.(10) we derive a relationship between the un-ofy_- the numerical root finding is particularly simple here

known quantities/.. andV, because we know the existence of one and only one root in
V4 the rangey..<[0,(2)%?] [see in Sec. Il the discussion fol-
= <_> yi/S, (16) lowing Eg.(12)]. We then deduce from E§16) the valueV
¢ of the velocity of the solitary wave predicted by the theory,

which may be compared to the observed gex Sec. IV B
where the reader is reminded that the constamtepends Introducing thelinear sound velocitycg, given by Eq.
only on the physical properties of the bead material. Thge), we may rewrite Eq(16) as
maximum amplitude of the solitary wawg, is a solution of
Eq. (13). The definition ofW(y) is given by Eq(11) and we v 2
see that Eq(13) is an algebraic equation of fifth order in the P \[g [Yo(Fm/Fo)]™ ™,

unknowny?®: y_=vy. is of course one of the roots and

sincedW/dy|, =0 itis a double root. We thus have to solve \yhere we have emphasized the fact that through E2.

only a third-order algebraic equation, and we obtain explic-and(17), y.. is a function of the ratid-,/F only. Thus Eq.
itly [25] the functiony(y.). The unknowry., is thus given  (22) means that all the velocity measurements, taken at dif-

(22

by ferent applied static forces, may be displayed on a single
curve in properly rescaled variables. This is experimentally

YY) ¥ ¢ demonstrated below in Fig. 12.
Vo :%’ (17) The theoretical shape of the wave, as measured by the

force sensor, may be computed with the help of E1),

where i, is related toy,, by the change of variableg0). ~ Which also gives the relationship betwegfit) = i(t) + ¢,
The measurement of the maximum force experienced by thandF(t), and Eq.(10), and reads
force sensor at the end of the chain gives the experimental

value of y,,. The quantitys is the gradient of theotal Vit 415 32
displacement of the bead center and is the sum of the con- Fo y \/ﬁ

stant value at equilibriung.,= 5y/2a and a time varying part F(t)= > —— ] —1+2%3| -2],
(t), which is the only part measured by the force sensor. Yoo 23

We have to take into account that the contact between the

sensor and the last bead of the chain is between a plane apgere the functiory(7) is obtained by a numerical integra-

a sphere, so th4e] tion of Eq.(11). The wave shape predicted by E83) may
then be compared to the experimental observations; this is
done in Sec. IV A. Note that onde, andF ,, are known, the
theoretical shape of the wave and the theoretical value of its
velocity are given without any adjustable parameter.
Moreover, the contact surface is at a distaacérom the The case without static force is formally somewhat sim-
center of the bead. Let, be the position of the sensor and Pler, in the sense that there is an analytical solutb#) to

8, the distance of approach between the sensor and the Ia5€l- (11). However, the physical situation is less clear, and
bead; we thus have this case deserves particular discussion because the theory

predicts propagation of nonlineperiodic waves rather than
solitary waves like in the previous case. The analytic solu-
=aiy. (19 tion (14), together with the relatiori20) for the particular
W caseF =0, gives an explicit relation between the velocity of
the wave and its maximum amplitude,
From this equation we deduce the relationship between the 4)1/2

_ 5sphere—sphere
5plane—sphere_ 217§ . (18)

Ju

Ow=U(Xy—a)—u(x,)=—a X

X,

20F | M°
a?

signal given by the senséi(t), of maximum value=,, and

#(t), which reads V|F0°:C(§ 24
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The scaling ofV with F,, may be understood in a very
simple fashion. Let us drop in E@8) the highest derivated 300
terms; we obtain

2 200
u ~§CZ(—U Yy (25) 3
tt 2 X XX "g
2 100
o . . . = .-’\
which is a wave equation with an amplitude-dependent wave g o B YN M W
velocity V~C(—u,) Y% using Hertz’s law(1), we may write w ;i 7 J \\/ TN VY
(—uy)~(6F,)¥¥a*? so that we get Wi N v
-100 83
Vv g\ L6 v
2] gue 26) 0 100 200 300 400
c \a® m - Time (us)

In the general case, the velocity depends on both the static FIG. 5. The dotted curve displays a time recording of the force
force F and the maximal amplitude of the waffg,, so that  experienced by the sensor at the end of the chain during a long time,

this too simple expression has to be corrected to typically 10 times the duration of the first pulse. The abscissa is the

time in us, the ordinate the force in N; the experimental condition
1/6

\% 0 e Fo are a static force of 167 N and a nonlinear parametgr ¢..
E: a2 Fmf E | (27 =2.74. The first positive pulse is identical below with Nesterenko’s
m

[14] solitary wave; the solid line shows the theoretical shape of a

where the functiorf is only implicitly known, through Eqgs. Solitary wave of the same amplitude, derived from E2§). Apart
(21), (17, and (16). Formula (24) states thatf(0)  from resonant oscillations of the sensor, we observe an isolated

— (£)12218 and the opposite limit is given by E¢5), which "'

states, using the definiton ofC in Eg. (8), that _
limFmHOF%Gf(FO/Fm):'/3/2':%/6- due to the resonant response of the ser{#ierresonance

When no static force is applied on the chain, formi@8) per_iod.is 13us, not too far fro.m the dur{:\tion.of the pulse,
is exact up to a numerical constant. It expresses the fact th¥fhich is about Squs) and multiple reflections in the differ-
the Hertz interaction between adjacent beads is responsibfd't Parts of the apparatus at the end of the chain. _
for the propagation of the wave and is a common feature of [ Figs. 6-8 we show the experimental shape of the soli-
all waves propagating in that type of medium. For examplef@ry wave recc_)rded by the forpe sensor at the end of the chain
the same scaling exists for step way8] propagating up- and compare itto the .theoretlca_l prediction derl\(ed from Eq.
ward in a chain of beads in contact. TIR&/® scaling is (23). The static force is 29.4 N in the case of Figs. 6 and 7

clearly consistent with experimental observations in Fig. 1621d 167 N for Fig. 8; the available values of the nonlinear

which emphasize that the basic approximations leading tBarameteyn/y., are thus much smaller in this case. Indeed,
the nonlinear spring-point masses model of E&).are also e nonlinear parameter ranges from 3.7 in Fig) & 17.0
valid in the nonlinear regime. in Fig. 7(d), whereas it ranges from 2.5 in Fig@to 5.2 in

We also stress that although the lirfig—0 is singular Fig. 8d), for a range of maximal force experienced by the

for the shape of the wave, because the solitary wave solutiop®nSor that is essentially the same for both applied static

disappears, the velocity continuously tends toward expredorces. All the figures exhibit very good agreement with the
sion (24). Indeed, Eq(11) impliesy..(y..=0)=(2)%2 from theory, although the arrival of the pulse seems sometimes
. 1 m [} 4 L]

, X : ) slightly different from the theoretical expectations. It is im-
which we deduce the velocity as a function f, with Eq.

_ . : portant to note that in this test of the theamg adjustable
(10) and finally as a function df,, with the help of Eq(20), parameter is involved.

thus recovering Eq(24). Most probably Eq(24) is a very The typical duration of a pulse is about 30—-46 and its
good approximation of the solitary wave velocity in the ab-e|acity is about 1000 m/s; the typical length scale of a pulse
sence of a static force. The §hape of the wave, as predicted s 3—4 cm or 4—5 beads. The long-wavelength approxi-
by this theory, is accurately given by the shape of one arch gf,aion (7) is thus fulfilled and the pulse propagates on a
the nonlinear periodic wavel4) (see Fig. 2 and the discus- (3nge much greater than its spatial extension, so that we can

sion at the end of Sec.)land reads indeed call it a solitary wave. Another general conclusion
that may be drawn is that in all cases the duration of the

E(h)=F S V|Fo:0t o8 pulse is much greater than the time taken by a bulk acoustic

()=Fpm co J10a (28) wave to travel across a bead diameter, which is a necessary

condition to apply Hertz's theory to a nonstatic situation.
IV. EXPERIMENTAL OBSERVATIONS B. Velocity of the wave for nonzero static force

A. Shape of the wave for nonzero static force We give below experimental results on pulse propagation

Figure 5 shows a long time recording of the force expedn the chain for three different values of the applied static
rienced by the sensor. The pulse corresponds to a compreforce: 9.8-1, 29.4+1, and 1671 N. An important pa-
sional wave and exerts only a positive force on the sensorameter to consider is the ratifa,,/ .., given by Eq.(21) in
the oscillations appearing after the arrival of the pulse aréerm of the static and dynamic forces, which characterize the
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FIG. 6. Shape of four different solitary waves recorded at the end of the chain, for a static force of 29.7 N. Each graph displays the
evolution of the forcein N) with time (in us). The dots are experimental points, whereas the solid lines are the theoretical predictions
derived from Eq(23). We give in each case the maximum amplitigg, the velocityV, and the nonlinear parametgy,/ 4., of each wave:

(& Fn=100 N, V=895 m/s, ¢,/ ..=3.7; (b) F,=138 N, V=921 m/s, .,/ 4.,=4.5; (c) F,=209 N, V=960 m/s, ¥,/ 1/..,=5.8; and(d)
Fn=290 N, V=994 m/s, ¢,/ ¢p..=7.2.

nonlinearity of the wave. This ratio must be much greaterthe chain(see the details on the experimental apparatus in
than 1 in order that Eq8) be valid; in our experiments, we Sec. Il A). As we stressed before, the three force sensors
have that are held perpendicularly to the chain are well suited for
such types of measurements, although they give no informa-

Ymlh-€[1.9,17.0 for Fo=9.8 N, tion about the actual shape of the wave. The theoretical value

_ of the wave velocity is derived as explained in Sec. Il B,
Ymlihc[14,169 for Fo=29.4 N, (29 with no free parameter once the applied static force and the
Ul €[1.5,5.2 for Fo=167 N maximal amplitude of the wave are both known.
m o] Iy .

We show in Figs. 9-11 the results of wave velocity mea-
We obtain the wave velocity very simply from time-of- surements for static forces of, respectively, 9.8, 29.7, and
flight measurements between the four sensors available alordg7 N. For the two smallest static forces, there is good agree-
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FIG. 7. Same as Fig. 6, with the same notations, but for greater valugg /af... The respective characteristics of each pulse(are
Fn=503 N, V=1060 m/s,,/.,=10.4; (b) F,=608 N, V=1086 m/s,,/ .,=11.8; (c) F,,=705 N, V=1106 m/s,,/ .= 13.0; and
(d) F,,=1060 N,V=1168 m/s, /.= 17.0.
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FIG. 8. Same as Fig. 6, with the same notations, but for a static force of 167 N. The respective characteristics of each(pulse are
Fn=274 N,V=1131 m/s,y,/ .= 2.5; (b) F,=474 N,V=1178 m/s,y,/ .= 3.3; (¢) F,= 842 N, V=1239 m/s,i,/ .= 4.7; and(d)
Fn=1005N,V=1260 m/s,y,/..=5.2.

ment between the theoretical predictions and the measurdars of the graphs. The accuracy of the data is not sufficient
ments. In each case the nonlinear parameter ranges betweienobserve a systematic evolution of the velocity, which
the same limits, as shown by E@9). A small discrepancy seems rather constant during the pulse propagation, even for
is shown by the measurements at 167 N; a possible explana-static force of 167 N.
tion is an increase of energy transfer between the wave and As we explained above, in the paragraph following Eq.
the framework containing the beads, due to the high stati€22), the measurements of Figs. 9—11 may be displayed on a
force. A wave arriving at the end of the chain has lost energyingle curve when expressed in rescaled varialWes and
and has thus propagated quicker than what is predicted frofm/Fo. This is demonstrated in Figs. (8 and 12b). Fig-
its final amplitude; this interpretation is supported by theure 12a) shows that all the previous data lie on a single
good agreement of the experimental and theoretical shape 6firve, when expressed in the variabltcs and Fr,/Fg.
the wave at the same static force shown in Fig. 8. If theéFigure 12b) shows that, as predicted by E®2), V/c; is
discrepancy was due to the smallness of the nonlinear pararitdeed a linear function ofy..(F,/Fo)]~ . A fit of the
eter[see Eq.(29)], it should have been exhibited in Fig. 8 proportionality constant gives 0.84, which compares well
too. The successive time-of-flight measurements along thwith the expected valug2/3~0.8165. Note also that Fig. 12
chain do display some scattering of the data, hence the errsiearly shows that the nonlinear waves atgersonica re-
sult predicted by NesterenKad4].
1000

C. The case of zero static force

9507 In order to be experimentally as close as possible to the

case of zero static force, we proceed in the following man-
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FIG. 9. Evolution of the wave velocitfin m/s) with the maxi-

mum amplitude of the wavén N) for an applied force of 9.8 N.

The solid line is the theoretical prediction, derived from E@4), FIG. 10. Same as Fig. 9, but for an applied static force of 29.7
(17), and(16). N.
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FIG. 11. Same as Figs. 9 and 10, but for an applied static force
of 167 N.
ner. We exert a static force on the chain in order to set the 1.7
beads into contact and then we relax this force until the con-
tact between the dynamometer and the brass cylinder that 1.67
support the longitudinal force sensor is broken. There is al- 151
most no adhesion between the steel beads, but there may beQ )
some uncontrolled friction with the walls of the channel con- g 144
taining the beads. We expect this friction to be small for ~—
smooth steel beads in contact with PTFE. Experimentally, 2 1.31
the static force between two adjacent beads is certainly very 2
small, but we cannot be sure that it is strictly zero. In that % 127
sense, the singularity of the zero static force case is rather a > |
mathematical oddity than an actual physical effect. L1
When no static force is applied to the chain, the theory L0 : : :
predicts the propagation of nonlinear periodic waves rather 1.2 1.4 1.6 1.8 2.0
than solitary waves as in the previous case. We have re- 1/5
corded the shape of the pulses arriving at the end of the chain 1/yoo

in a large range of amplitudes, from 40 to 700 N. Experi- _ _ _

mentally, the comparison of the Figs. 6—8 with Figs. 13—15 _ FIG._ 12. (a) Plot _of the dimensionless ratiw/cg versus t_he
proves that there is no qualitative difference between th menspnless quantity,/Fo. Th.e data are repre§ented by circles
cases of zero and nonzero static force. Concerning the shalfii 2 Static force of 29.7 N, by triangles for a static force of 9.8 N,

of the wave, as it is clearly demonstrated in Fig. 2, it is not nd by squares for a static force of 167 N. All the experimental
! . points lie on a single curve. The solid line is the curve const

possible t(.) distinguish a solitary wave in thg limit of \./ery x[yx(Fm/Fo)]’l’S, where the experimental value of the constant is

small statl_c force from an arch of the non_Ilnear perIOdIC0 84. This is to be compared with the theoretical predict®) in

wave. In Figs. 13-15 we compare the experimental s_hape %hich const=/2/3~0.8165. (b) Plot of the dimensionless ratio

a puI;e to one qrch of a solutigd8) with the_ same memmal V/c, versus the dimensionless quanfisy.(F,/Fo)]~ Y5, with the

amplitude for different values of the maximal amplitude of ¢4 e symbols as before. The data all lie on a sifigar curve,

the pulse. The agreement between the observed shape of tigose slope is found to be condd.84.

pulse and the theoretical prediction is striking, except for the

smallest amplitude pulses displayed in Fig. 13. The duration i

[26] of the pulse is about 3@s and its velocity is about 900 for the dlscrepancy between the observed 'sh.ape of the pulses

m/s. The spatial extension of the pulse is then about 30 mm"}”d the predicted one could be that the friction of the beads

roughly four beads, which is enough to ensure the validityon the walls causes a residual static fofg>0. But any

the long-wavelength approximatia(@). Indeed, one knows order of magnitude derived from Fig. 8, e.g., will give f&§

from numerical simulation$27] that in discrete nonlinear a value much too high to be accepted. Another possibility is

chains, the excitations are perfectly described by the continuthat, at low impact amplitude, it takes too much time for the

ous approximation if their size is greater than or equal to fivgpulse to reach its asymptotic shafiee., the solitary wave

particles. This length is also much less than the total lengtiprofile) from the initial wave profile. Unfortunately, there is

of the chain, which means that the pulse has kept its shap#0o theoretical information about the times taken by a given

over a great distance, as a solitary wave should. The differprofile to reach its asymptotic shape and we are unable to test

ence from the previous case of Sec. IV A is that we are in théhis interpretation. We stress that the amplitudes of the

fully nonlinear regime, so that the developmé8j is cer- waves in those experiments are much smaller than in the

tainly correct. experiments reported in Sec. IV A, in which this effect was
As shown in Fig. 13, the agreement between the shape dfot observed.

the pulse and the theoretical prediction becomes poor for an From the pulse velocity measurements, we can first verify

amplitude roughly less than 70 N. A possible interpretatiorthatvlpozo scales a$:r1,f6; Fig. 16 shows that this is indeed
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FIG. 13. Shape of the pulse at the end of the chain, when no static force is applied to the chain. Each graph displays the evolution of the
force (in N) with time (in us). Dots are experimental values recorded by the digital scope and solid lines the theoretical prézztion
a wave of the same maximal amplitude. The velocities and amplitudes of the pulses are, respéativeh629 m/s,F,,=36.7 N; (b)
V=659 m/s,F,=48.5N; (¢c) V=685 m/s,F,=61.4 N; and(d) V=725m/s,F,,=86.4 N. The pulses are of small amplitude and the
agreement with the theory is rather poor, except for the highest amplitude pulse displdggd in

the case. This result indicates that the Hertz interadtion Even in the case of zero static force applied to the chain,
in the quasistatic approximatiof8), fully accounts for the we observe pulses that propagate over a great distance, with
propagation of the pulse in the nonlinear regime teee the a constant velocity and shape, so that they may be identified
discussion above Eq26)]. Like in the previous case, no with solitary wavesTheir velocity and shape are both in fair
systematic evolution of the velocity with the travel time of agreement with the theoretical predictions of Nesterenko
the pulse is observed. In Fig. 17 we show that form(@4 [14,15 if we forget that in this singular limit nonlinear pe-
gives rather accurately the velocity of the pulse. This behavriodic waves are predicted rather than solitary waves. Of
ior is linked to the fact that the solitary wave velocity tendscourse the impact generator is not well suited to generate
continuously toward Eq(24) in the F;—0 limit, as we periodic waves and we cannot expect this type of wave to

showed in Sec. Il B. appear spontaneously. Within the precision of our measure-
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FIG. 14. Same as Fig. 13, but for waves of greater amplitudes. The velocities and amplitudes of the pulses are, redpgdtively,
=811 m/s,F,,=168.5 N; (b) V=845 m/s,F,,=216.2 N; (c) V=877 m/s,F,,=269.7 N; andd) V=919 m/s,F,,=356.4 N. The negative
part of the force signal at the back of the pulsesgh)i-(d) is the signature of the sensor resonance. The agreement with the theory is very
satisfactory and much better than for the pulses of Fig. 13.
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FIG. 15. Same as Figs. 13 and 14, but for waves of greater amplitudes. The velocities and amplitudes of the pulses are, rdgpectively,
V=963 m/s,F,=473.1 N; (b) V=1000 m/s,F,,=594.0 N; (¢) V=1014 m/s,F,,=646.1 N; and(d) V=1029 m/s,F,,=704.6 N. The
negative part of the force signal at the back of the pulse is the signature of the sensor resonance. As in Fig. 14, the agreement with the theory
is very good.

ments, the pulses are able to travel more than ten times thesolitary waves were generated. Moreover, they did not vary
length while keeping their shape and velocity, which meanghe intensity of the first impact. They have also conducted

that they are rather stable. similar experiment§17,18 with applied static forces of 2
and 20 N. An interesting result is that the pulses observed
D. Discussion with a static force 62 N are almost identical to the ones

observed without static compression of the chain; moreover,
Yhis behavior is confirmed by numerical simulations.

They recorded the arrival of the wave train at the end of
the chain and compared its shape with numerical simulations
that includedthe impact on the first bead of the chairth
the colliding mass used to generate the wave train. The ve-
locity of the first pulse was not measured, but the time inter-
&vals between successive pulses, together with their respective
amplitudes, compared well with the theoretical expectations
for a short chain of 20 beads; the agreement was only quali-

In this section, we compare our results to the previou
experiments of Nesterenko and Lazafitii—1§. They have
observed the propagation of wave trains, built of several soli
tary waves, in chains of steel beads with zero applied stati
force. The initial impact was much more violent in their
experiments(the impacting mass was five times that of a
bead in the chain and its velocity 1 m/s, more than twic
what we get in our experimentsavhich explains that several

1100 tative for a longer chain of 40 beads. In either cases, the
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FIG. 16. Graph of the wave velocit§in m/s) as a function of Fm(]\/')

F¥6 (in NY®), whereF, is the maximum amplitude of the wave,

when no static force is applied on the chain; the relation is clearly FIG. 17. Evolution of the wave velocitiin m/s) with the maxi-
linear, which simply states that the Hertz interaction between adjamum amplitude of the wavg,, (in N) for no applied static force.
cent beads is responsible for wave propagation. The solid line is the theoretical predictig@4).
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comparison between the shape of the pulses was only quali- At the end of the chain, we recorded the time evolution of
tative. the force exerted on a dynamic force sensor and compared
Our experimental setup allows the exploration of a largethis experimental shape of the pulse with the theoretical pre-
range in the amplitude of the pulses, roughly from 1 to 20dictions of Nesterenkd14,15. The agreement was very
and permits a systematic study of the shape and velocity a§ood when no static force was applied on the chain, except
the waves as functions of their maximum amplitude. In ouffor excitations of very small amplitude; with a nonzero static
experiments, the chain contains 51 beads, and we find excelyrce, excellent agreement was found between theoretical
lent agreement with the theory for either the velocity of thep agictions and experimental observations. In all cases, no
pulses or theicompleteshape. We do not confirm the strong o i stable parameter was involved in the data analysis.
attenuation of the wave reported by Nesterenko and Lazaridi 11,4 velocity of the pulse seems to be accurately predicted

for ;heolsosnglghr?tlgrO:eétlgt'gﬁa(;jfst.h's discrenancy is as follows by the theory, either with or without static force applied on
possibie Interp : IS di pancy 1s as IolowS.. o chain. Velocity measurements for different nonzero ap-

In their experiments, the beads are 4.75 mm in diameter,,. : . . .
plied static forces may be displayed on a single curve with

contained in a quartz tube with an inside diameter of 5 mm. . )
The beads are thus allowed to move rather easily away frorRroper rescaling of the variables. We stress that, as for the

the tube axis and presumably they lose a lot of energy iff!S€ shape, no adjustable parameter has been used.
impacting the tube; this effect is reinforced if the length of [N @ll cases, the typical size of the excitation is about four
the chain is increased. In our experiments, the beads are cofit five beads, which is sufficient to ensure the validity of a
tained in a channel drilled in a framework of PTFE, with a long-wavelength approximation. This size is also about one-
very small clearance of2; mm. Impacts on the walls are tenth of the total length of the chain, which means that the
suppressed and, moreover, the acoustic coupling betwedltlses propagate over a large distance while keeping their
steel and PTFE is much smaller than between steel andelocity and shape. This is strong experimental evidence of
quartz. nonlinear solitary wave propagation in a chain of beads in

Hertzian contact, even in the limit of zero applied static

V. CONCLUSIONS force.

We have conducted experiments on a chain of identical
beads in contact with either moderate static forces or zero
static force applied to the chain. With the help of an impact
generator, we were able to generate high-amplitude pulses in We thank S. Gavrilyuk for many interesting discussions
the chain, that is, with a dynamical amplitude much higherand for an introduction to the Russian literature on the sub-
than the static force. ject. We thank V. Nesterenko for kindly sending us his work

With our experimental setup we were able to vary theon the subject, with commentaries about some papers written
static force applied on the chain, together with the pulsesn Russian. We gratefully acknowledge D. Bouraya for tech-
amplitude. We added to the previous work of Nesterenkaical assistance in the building of the experimental setup. We
and Lazaridi[16—18 a systematic and quantitative study of thank the MESR, through the Beau de Laboratoires GEO,
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