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Tuning the resonant frequencies of a drop by a magnetic field
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We report an experimental study of a magnetic liquid drop deposited on a superhy-
drophobic substrate and subjected to vertical vibrations in the presence of a static magnetic
field. It is well known that a flattened drop of usual liquid displays oscillating lobes at
its periphery when vibrated. By adding ferromagnetic nanoparticles to a water drop and
varying the strength of the magnetic field, we are experimentally able to efficiently tune the
resonant frequencies of the drop. By using conservation energy arguments, we show that
the magnetic field contribution is equivalent to adding an effective negative surface tension
to the drop. Our model is found to be in good agreement with the experiments with no
fitting parameter.
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When a drop of liquid is dynamically driven by an external force, its free surface generally displays
an oscillating pattern at the drop resonant frequency. At a fundamental level, the dynamical study of
such an oscillating drop occurs in various domains at different scales. Indeed, liquid drop behavior
is used to model stellar mass collisions or neutron-star oscillations in astrophysics [1] and nuclei in
nuclear fission [2,3] or in cellular biology [4]. It is also involved in metrology for measuring viscosity
of liquids [5] or surface tension of molten materials [6,7]. At a more practical level, it includes printing
(ink drop generation), mixing of drop clouds, and droplet manipulations in microfluidic, optofluidic,
and pharmaceutical industry [8]. Since the pioneer works of Rayleigh [9], the resonant frequencies
of a drop have been studied experimentally by means of different forcing mechanisms: a water drop
on a vibrating plate [10–13] or on a vibrating bath [14], in microgravity [15], by acoustic or air-flow
levitation [16,17], by levitating it on its own vapor (Leidenfrost drops) [18–20], or by Lorentz force
for a metal liquid drop [21,22]. A new challenge would be to accurately control and tune the free
oscillations of a drop in a nonintrusive way. Notably, it would be of primary interest to be able to
shift the resonant frequencies of the drop to avoid, for instance, some annoying frequency bands in
practical situations.

In this Rapid Communication we study the dynamics of a flattened drop of magnetic fluid
deposited on a superhydrophobic substrate vertically vibrated in the presence of a weak magnetic field
of tunable amplitude. The fluid used is a ferrofluid consisting of a stable suspension of nanometric
magnetic particles diluted in a carrier liquid (water). Above a critical acceleration of vibrations, the
drop undergoes a parametric instability leading to an azimuthal pattern around the drop that oscillates
at half the forcing frequency. A star-shaped drop is then observed made of several oscillating lobes.
We observe that the resonant frequencies of the drop depend on the strength of the field. We show
quantitatively and theoretically that we are able to shift these frequencies by tuning the effective
surface tension of the drop through the field. Indeed, the contribution of the magnetic field is
equivalent to the one of a negative surface tension. Including nanometric magnetic particles within
a drop appears thus as a first step in being able to control and tune the free oscillations of a drop,
such a magnetic fluid being known to shift the onsets of usual hydrodynamics instabilities (such as
Kelvin-Helmholtz, Rayleigh-Taylor, or Rayleigh-Plateau ones) [23,24]. Finally, note that ferrofluid
drop manipulation with a magnet is also an important task in microfluidics or laboratory on-chip
technology [25–27] and in dynamic self-assembly phenomena [28].
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FIG. 1. Experimental setup. The bottom inset shows a schematic of the puddle at two phases of the vibration.
The top inset shows the top view of the ferrofluid puddle at rest.

The experimental setup is shown in Fig. 1. A volume of ferrofluid (V = 1 mL) is put on a
plate. Due to gravity, the drop is flattened and looks like a puddle (radius R = 9.7 mm and thickness
h = 3.4 mm; see the insets of Fig. 1). The plate was coated with a spray [29] to obtain a contact angle
between the drop and the substrate measured of roughly 165◦. Such a superhydrophobic substrate is
crucial to minimize the pinning force of the drop at the contact line and thus to obtain much better
reproducible experiments [30,31]. The plate is then subjected to vertical sinusoidal vibrations by
means of an electromagnetic shaker. The frequency and amplitude of vibrations are in the ranges
0 � fe � 52 Hz and 0 � A � 3 mm, respectively. An accelerometer is fixed below the plate to
measure the normalized acceleration of vibrations � = Aω2

e/g with ωe = 2πfe and g = 9.81 m s−2

the acceleration of gravity. One has 0 � � � 4. The ferrofluid puddle on the plate is placed between
two horizontal coils (38 cm in mean diameter), generating a vertical static magnetic field B in the
range 0 � B � 100 G, 99% homogeneous in the horizontal plane [32]. The drop oscillations are
recorded by means of a high-speed camera (PhantomV10) located above the drop, with a 1000
frames/s sampling and a 1600 × 1200 pixel resolution.

The ferrofluid used is an ionic aqueous suspension synthesized with 12.4% by volume of
maghemite particles (Fe2O3, 7 ± 0.3 nm in diameter) [33]. The nanoparticle diameter and magnetic
field values are small enough to avoid sedimentation or agglomeration due to vibrations, gravity,
and magnetic fields [23]. The ferrofluid properties are density ρ = 1550 kg m−3, surface tension
γ = 43 ± 3 mN m−1, magnetic susceptibility χ (B) ≈ χ (B = 0) = 1.0 [34], magnetic saturation,
Msat = 36 × 103 A m−1, and dynamic viscosity 1.4 × 10−3 N s m−2. Its capillary length is then
lc = √

γ /ρg = 1.7 mm.
To accurately measure azimuthal drop oscillations, we use large flattened drops (R � lc; see

the bottom inset of Fig. 1). The Bond number, quantifying the ratio between gravity and capillary
forces acting on the drop, is Bo ≡ (R/lc)2 � 33. The ratio between magnetic and capillary forces
is quantified by the magnetic Bond number Bom ≡ B2R/μ0γ , with R the puddle radius and
μ0 = 4π × 10−7 H m−1 the magnetic permeability of the vacuum. For our range of B, one has
Bom � 2. Moreover, the magnetic effect is much smaller than that of gravity (Bom/Bo � 0.06),
meaning that the strength of B is weak enough to not deform the flattened region of the puddle at rest.

We first carry out experiments with no magnetic field (B = 0). Figure 2 shows the parametric
instability of a ferrofluid puddle subjected to vertical sinusoidal vibrations. Above a critical
acceleration of vibration �c, an azimuthal pattern is observed in the horizontal plane at the drop
periphery: Lobes oscillate radially at half the forcing frequency fe/2. When fe is increased, the
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FIG. 2. Top view of the azimuthal pattern displayed around the drop as a function of fe. Above a critical
acceleration of vibration, an azimuthal pattern is observed normal to the vibration direction. When the forcing
frequency fe is increased (0 � fe � 52 Hz), the number n of lobes, oscillating radially at fe/2, increases from
n = 2 to 9 (from left to right and top to bottom). See a movie in the Supplemental Material [35]. The magnetic
field and the ferrofluid volume are B = 0 and V ≈ 1 mL, respectively.

number n of oscillating lobes (mode number) increases from n = 2 to 9 as shown in Fig. 2 and the
movie in the Supplemental Material [35].

The resonant frequencies fn of such an inviscid drop are independent of the nature of the forcing
and arise from an interplay between inertia and surface tension effects. In the limit 2R � h, the
flattened drop shape (see the inset of Fig. 1) is approximated by a cylindrical column of fluid.
The radial amplitude of the lobes an(t) is then governed by a harmonic oscillator equation of
eigenfrequency fn [9,36],

d2an(t)

dt2
+ ω2

nan(t) = 0, ω2
n = γ

ρR3
n(n2 − 1), (1)

with ωn = 2πfn.
A vertical sinusoidal vibration of the substrate is now applied to force the drop parametrically

by modulating gravity g → g(t) = g[1 + � cos(ωet)] with � = Aω2
e/g. In addition, the thickness

h of the puddle is usually given [10,13] by the quasistatic balance between gravity and capillary
energies per unit volume (2γ /h � ρgh/2), i.e., h � 2lc = 2

√
γ /ρg. The hypothesis of a constant

volume of the puddle V = πR2h then gives its radius R = √
V/πh. Thus, a temporal modulation of

gravity g(t) induces those of the puddle thickness h(t) ∼ g(t)−1/2, radius R(t) ∼ h(t)−1/2 ∼ g(t)1/4,
and eigenfrequencies ω2

n(t) ∼ R(t)−3 ∼ g(t)−3/4 using Eq. (1). For weak acceleration of vibrations
� 
 1, the parametric oscillator equation governing the amplitude of the lobes an(t) then
reads [10]

d2an(t)

dt2
+ ω2

n

[
1 − 3

4
� cos(ωet)

]
an(t) = 0. (2)

Equation (2) is the Mathieu equation whose solutions are marginality curves (or instability
tongues) separating stable zones (no deformation of the drop) and unstable zones where azimuthal
standing waves at the drop periphery oscillate at half the forcing frequency fe/2, near the resonant
frequencies fn [37]. This corresponds to the parametric instability shown in Fig. 2.

These tongues of instability are displayed in Fig. 3 in an acceleration-frequency phase space
(�c/�min

c vs fe) for B = 0 (open symbols). Data are obtained experimentally for various fe by
increasing � until we observe lobes at critical acceleration �c; �min

c is the minimum critical
acceleration of each tongue. Equation (2) predicts that the minimum of each marginality curve
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FIG. 3. Phase diagram of normalized rescaled critical acceleration �c/�min
c vs fe. Curves are marginality

curves separating stable and unstable zones for different mode numbers n = 3 (♦), 4 (�), and 5 (◦). No
instability occurs for � � �c, whereas an azimuthal pattern around the puddle occurs within tongues. Open
symbols corresponds to B = 0, closed symbols to B �= 0: B = 44 [red (dark gray)], 77 (black), and 99 G [green
(light gray)]. When B is increased (see arrows), the tongue are shifted towards a lower frequency, for each
mode n.

occurs at twice the eigenmode fe = 2fn. Notice that experimental values for fn are smaller than
values given by Eq. (1). This difference (<18%) may be explained by the fact that the quasistatic
approximation yielding Eq. (2) is valid only for a low-frequency forcing. At higher frequency, the
existence of axisymmetric modes shifts the minima of the marginality curves [38,39]. Indeed, we
checked that this difference becomes negligible when we remove these axisymmetric modes by
performing a control experiment with a superhydrophobic steady plate in contact with the drop
top [40]. One can now wonder how an applied vertical magnetic field B affects the drop dynamics.

When B is increased for a fixed n, we observe that the instability tongue is shifted towards a lower
frequency (see arrows in Fig. 3). The minimum of this curve and thus the eigenfrequency fn(B) are
found to decrease with B. For n = 5, a relative shift of fn of 16% is observed between extreme values
of B used. One defines the absolute shift of the eigenfrequency as �	n(B) ≡ ω2

n(B = 0) − ω2
n(B),

taking thus positive values. We plot in the inset of Fig. 4 the frequency shift �	n(B) as a function of
B for different n. We find that �	n(B) ∼ B2 for our range of B regardless of n. All data in the inset
of Fig. 4 are found to collapse on a single curve when plotting �	n(B) as a function of B2n3 (not
shown). In order to compare with the model described below, �	n(B) is then displayed in Fig. 4 as
a function of B2n(n2 − 1), noting that n(n2 − 1) ≈ n3 for n � 3.

This frequency shift is not due to a geometrical effect mediated by B such as a drop lengthening
along the field direction [24,41,42]. Indeed, using Eq. (1), a decrease of the puddle radius R with
B (up to 6% here) would lead to an increase of the resonant frequency, a situation opposite to our
observations (see Fig. 3). Moreover, the results of Fig. 4 are found again when adding a steady
plate above the drop. Finally, note that no clear dependence of the critical acceleration �min

c on B is
observed.

An elegant way to understand the physical origin of the drop eigenfrequency shift with B is to
balance energies involved in this system. In a first step, we assume B = 0 and follow Rayleigh
model [9]. The flattened drop shape is approximated by a cylinder of fluid [see Fig. 5(a)]. We denote
by S⊥ its surface area normal to gravity and magnetic field (i.e., top plus bottom areas) and by S‖
the peripheral surface area. At rest, they are denoted by S⊥,0 and S‖,0, respectively. We consider
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FIG. 4. Eigenfrequency shift ω2
n(B = 0) − ω2

n(B) as a function of B2n(n2 − 1) for different modes n = 3
(�), 4 (�), 5 (•), and 7 (�). The solid line is the prediction from the model of Eq. (10) with no fitting parameter.
The inset shows an unrescaled frequency shift vs B. Dashed lines have a slope 2.

small radial deformations of the peripheral surface of amplitude an(t) 
 R around an instantaneous
radius R̄(t). In polar coordinates, this reads r(θ,t) = R̄(t) + an(t) cos(nθ ) [see Fig. 5(b)]. Here h

is assumed constant with time and thus also S⊥ due to volume conservation. It is known, since
Rayleigh [9], that the radial deformation an induces an increase in S‖ [see Figs. 5(a) and 5(b)] as

�S‖(t) ≡ S‖(t) − S‖,0 = πha2
n(t)(n2 − 1)

2R
. (3)

Thus, capillary energy increases by

�Ec(t) = γ�S‖(t). (4)

(a) (b)

(c) (d)

FIG. 5. Schematic view of the puddle. (a) At rest, the puddle is considered as a cylinder of liquid. (b) When
lobes appear, the peripheral surface S‖ increases as well as the capillary energy. Magnetization is illustrated
within a ferrofluid film (c) parallel or (d) normal to B.

021901-5



RAPID COMMUNICATIONS

JAMIN, DJAMA, BACRI, AND FALCON

0 0.2 0.4 0.6 0.8 1

D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B

FIG. 6. Theoretical demagnetizing factors D vs surface ratio rS . The black line is computed from the model
in [43] for a cylinder of axis aligned with B; the red line (light gray) is computed from [44] for a square rod
aligned with B; � is for a cube (D = rS = 1/3 [44]); � is for an infinitely elongated square rod normal to B
(D = rS = 1/2 [44]). The dashed line represents D = rS (slope 1).

In addition, the kinetic energy of the liquid reads

Ek(t) =
(

dan

dt

)2
πρhR2

2n
. (5)

The conservation of energy d(Ek + Ec)/dt = 0 then leads to Eq. (1) [9].
Let us now introduce the magnetic energy Em in the Rayleigh model. For a linearly permeable

ferrofluid of volume V [34], one has Em = −B.
∫
V

MdV/2, with B the external magnetic field and
M the local ferrofluid magnetization [23]. The determination of M needs to take into account the
ferrofluid boundary conditions. For instance, for a plane parallel to B, one has Em = −χV B2/2μ0

[see Fig. 5(c)] and for a plane normal to B, Em = −χV B2/2μ0(1 + χ ) [see Fig. 5(d)]. Thus, the
magnetic energy of a ferrofluid layer is smaller when B is parallel rather than normal to its surface.

For an arbitrary ferrofluid shape, M is nonuniform and an effective demagnetizing factor D is
usually defined, with 0 � D � 1 (depending on the shape), such that [23]

Em = − χV B2

2μ0(1 + χD)
. (6)

For volumes bounded by surfaces either parallel or normal to B, we can define the ratio between the
surface area normal to B and the total surface area as rS ≡ S⊥/(S⊥ + S‖). Using known theoretical
values of D for different geometries [43,44], we show in Fig. 6 that D ≈ rS over the whole range of
aspect ratios. This means that Em decreases when the aspect ratio favors surfaces parallel to B, i.e.,
D → 0 when rs → 0.

We can then replace the demagnetizing factor D by rS in Eq. (6). The variation of S‖ due to
the presence of peripheral lobes induces a variation of Em through rS . Noticing that S⊥,0 = 2πR2

and S‖,0 = 2πRh at rest, a first-order Taylor expansion in �S‖ for small deformations (an 
 R)
leads to

�Em(t) = γm�S‖(t) (7)
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with

γm = − χ2hB2

4μ0(1 + χ + h/R)2
, (8)

a quantity always negative. Then, using �S‖ from Eq. (3) and energies from Eqs (4), (5), and (7),
the conservation of energy d(Ek + Ec + Em)/dt = 0 finally leads to the resonant frequencies of the
ferrofluid drop

ω2
n(B) = γ + γm(B2)

ρR3
n(n2 − 1). (9)

Using Eq. (1) then leads to

ω2
n(B = 0) − ω2

n(B) = −γm(B2)

ρR3
n(n2 − 1). (10)

The B2n(n2 − 1) scaling is in good agreement with the one found experimentally (see Fig. 4) as
well as for the theoretical prefactor with no fitting parameter.

Notice that Eq. (9) includes the usual capillary contribution γ and a magnetic one γm that depends
on B. The magnetic term thus plays the role of a negative surface tension (γm < 0) that thus reduces
the drop resonant frequencies. The magnetic field can be then used to tune the effective surface
tension γeff ≡ γ + γm and thus ωn. For our ranges of B, using ferrofluid properties and geometry,
one has γm ∈ [−8.5,0] mN m−1, which is up to 20% of γ . The analogy with surface tension arises
from �Em = γm(B2)�S‖. This means that an increase of the drop surface area parallel to B favors
its magnetization and thus decreases Em since γm < 0. Consequently, B has a stabilizing effect on
the lobes. Finally, note that a model of the dynamics of a ferrofluid drop confined between two
plates [45,46] mentioned such a possible negative surface tension effect, but requires χ 
 1 and
thus cannot apply here where χ = 1.

To conclude, we have studied the dynamics of parametric oscillations of a centimetric ferrofluid
drop on a superhydrophobic plate subjected to vertical sinusoidal vibrations and a constant magnetic
field. By adding ferromagnetic nanoparticles to a water drop, we are able to shift significantly its
eigenfrequencies by tuning the magnetic field strength. Using energy conservation, we extend the
Rayleigh model and show that the resonant frequency shift is well captured by our model with no
fitting parameter. We also show that the magnetic field acts as a negative surface tension and is a
way to tune the effective surface tension of the drop. Finally, the weakness of the field strength
and the small size of ferromagnetic particles are favorable to miniaturization to plan to control the
oscillations of centimeter-to-microscale drop in a new nonintrusive way for potential applications.

We thank D. Talbot for the ferrofluid synthesis, M. Berhanu, P. Brunet, M. Costalonga, and C.
Laroche for fruitful discussions, and A. Lantheaume, Y. Le Goas, and M.-A. Guedeau-Boudeville
for technical help. T.J. was supported by the DGA-CNRS Ph.D. program. This work was partially
financed by ANR Turbulon Grant No. 12-BS04-0005.
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