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Experimental observation of hydroelastic three-wave interactions
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We study experimentally three-wave interactions between hydroelastic waves propa-
gating on the surface of a fluid covered by an elastic sheet (where both tension and
bending are important). We observe the generation of a resonant daughter wave by nonlinear
interaction among two mother waves of almost perpendicular directions. By using local and
spatiotemporal wave-height measurements, the frequency and wave vector of the daughter
wave are found to satisfy the resonance conditions within the measurement accuracy. Its
amplitude is also found to be reasonably well described by the resonant wave interaction
theory. Finally, a phase-locking among interacting waves is also observed, as expected
theoretically.
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I. INTRODUCTION

Nonlinear interactions are of fundamental interest to understand energy exchanges in wave
systems. The first step in building a statistical theory of weakly nonlinear interactions such as weak
turbulence is to identify the dominant type of interaction, i.e., the minimal number N of wave modes
in the resonant interaction process [1,2].

Three-wave resonant interaction is the simplest weakly nonlinear process implying energy
exchange between waves since it involves the smallest possible number of waves [3]. This
type of nonlinear interaction has therefore been the subject of numerous theoretical studies
in various physical contexts: plasma physics, nonlinear optics [4,5], and hydrodynamics [6–9].
Recent experiments have confirmed the occurrence of three-wave interaction for internal waves
in a stratified flow [10–12] and in a rotating flow [13]. The case of capillary waves at a liquid
surface has been widely studied, both experimentally and theoretically [14–17]. Occurrence of
three-wave interactions at wave scales close to the gravity-capillary transition have also been
reported [18–20]. Surface gravity waves have been the scope of numerous studies related to their
importance in oceanography and it was shown experimentally and theoretically that three-wave
interactions are forbidden by the dispersion relation (the resonant conditions cannot be fulfilled) and
consequently the leading nonlinear process is four-wave interactions [6,7,21–23]. For elastic waves
on a thin plate, the symmetry of the system also forbids three-wave interactions, and four-wave
interactions are theoretically expected [24]. In real experimental systems, defaults and d-cones
on the plate can lead to a mixture of three- and four-wave interactions [25]. Finally, more exotic
systems, such as one-dimensional surface gravity waves, nonlinear optics, or Kelvin waves on
vortex filaments are expected to have N = 5 or N = 6 as dominant resonant interaction processes
[1].

Here, we present an experimental investigation of three-wave interactions on a floating elastic
sheet that follows a previous study on nonlinear hydroelastic waves [26], where tension waves and
flexural (or bending) waves are present, resulting from the coupling of the elastic sheet with the
underneath fluid [6,7,14,27]. Hydroelasticity is defined by the coupling of the elastic medium (here
the elastic sheet) with the hydrodynamics of the surrounding fluid. The results of the present study
are discussed in the framework of resonant wave interaction theory. Hydroelastic waves are found
in various domains: biomedical applications such as heart valves [28], flapping flags [29], very large
floating structures [30], and on the surface of lakes or oceans covered by ice [31–33].
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In the context of hydroelastic waves, three-wave interactions are expected due to the form of the
nonlinear boundary conditions [26,34] and were studied theoretically in Refs. [35,36]. We present
an experimental confirmation of this prediction by using a simple, specifically designed experiment:
two mother wave trains at slightly different angular frequencies ω1 and ω2 are generated in order
to observe the formation of a daughter wave at the expected resonant frequency ω3 = ω1 + ω2. The
geometrical resonant condition on the wave vectors k3 = k1 + k2 is also observed experimentally
within some broadening. The time evolution of the daughter wave is recorded to access both its phase
and its amplitude as a function of the amplitude of the mother waves. Its growth rate is discussed
in the framework of resonant wave interaction theory. We conclude on the existence of three-wave
interactions in hydroelastic waves in the range of scales where tension and bending are important.

This paper is organized as follows: Section II recalls the basics of wave interaction theory in the
context of hydroelastic waves. The experimental setup is described in Sec. III. The experimental
results of three-wave interactions are presented in Sec. IV, before drawing our conclusions in Sec. V.

II. RESONANT WAVE INTERACTION THEORY FOR HYDROELASTIC WAVES

A. Nonlinearity of system and dispersion relation

We consider a floating elastic sheet subjected to a uniform and isotropic tension T . The properties
of the sheet are density ρe, Young’s modulus E, Poisson modulus ν, and thickness h. The fluid
density is ρ and its depth beneath the sheet at rest is H . The momentum equation of the thin elastic
sheet is then given by [37–39]

D∇4η − T ∇2η + ρeh
∂2η

∂t2
= p, (1)

where η is the vertical sheet deformation, p is the pressure due to the liquid on the elastic sheet,
D ≡ Eh3

12(1−ν2) is the bending modulus of the elastic sheet, and ∇2 ≡ ∂2/∂x2 + ∂2/∂y2 and ∇4 ≡
∂4/∂x4 + ∂4/∂y4 + 2∂4/∂x2∂y2 are the Laplacian and bi-Laplacian operators, respectively. We
consider an irrotational flow of velocity potential φ(x,y,z,t); the pressure equation on the surface
z = η is

p(x,y,t) = ρgη + ∂φ

∂t
+ ρ

v2

2
, (2)

with v ≡ ∂η/∂t being the vertical velocity. For a plane-wave solution for η, using the kinematic
boundary condition on the sheet surface ∂η

∂t
= ∂φ

∂z z=η
= tanh kH (φ)z=η, and assuming negligible

sheet inertia (ρekh/ρ � 1) and infinite depth (kH � 1), the linear dispersion relation is

ω2 = gk + T

ρ
k3 + D

ρ
k5. (3)

It involves three terms: a gravity term and two elastic terms. The second term of the right-hand
member of Eq. (3) is a tension term structurally analogous to a capillary term, whereas the third
term corresponds to bending. Note that the dispersion relation for pure elastic waves on a plate is
ω2 ∼ T k2 + Dk4 [37], Eq. (3) coming from the coupling of the sheet elasticity with the underneath
liquid. As discussed in Ref. [26], in our experiment, the crossover between gravity and tension waves
is λgT = 2π

√
T/(gρ) � 10 cm; and between bending and tension waves, λTD = 2π

√
D/T � 1 cm.

Note that, for ice floes, the bending elastic term prevails over the tension term, and the order of
magnitude of the flexural-gravity transition is λgD = 2π [D
/(gρ)]1/4 � 100 m for a typical ice
bending modulus D
 ≈ 109 N m [38,39]. Given the size of our experimental setup (40 cm) and
the observation window (25 × 18 cm2), gravity effects will be almost negligible (see Ref. [26] and
Sec. III), and the dispersion relation thus reads [26]

ω2 = T

ρ
k3 + D

ρ
k5. (4)
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Thus the dispersion relation of tensional and bending waves is of decay type, i.e., ω ∼ kμ with μ > 1
(as for capillary waves), and therefore fulfills the three-wave resonance conditions on the frequency
and the wave vectors [1]. As discussed in Ref. [26], while studying nonlinear hydroelastic waves in a
wave turbulence regime, three-wave interactions occur when quadratic nonlinearities are present in
the system whereas four-wave interactions have to be considered in the case of cubic nonlinearities
[1]. The dynamics of wave interactions is dominated by the lowest nonlinear order in the weakly
nonlinear limit [1]; thus, when three-wave and four-wave interactions occur, four-wave interactions
can be neglected at leading order.

Nonlinearities involved in the system can be introduced either in the equations of the elastic
plate, or in those of the fluid, or in the boundary condition between the fluid and the plate [34].
Although the equation for a single elastic plate involves cubic nonlinearities, the pressure term and
the boundary condition between the fluid and the plate involves quadratic nonlinearities, with the
pressure p. Therefore, as done by Ref. [36] in a Hamiltonian framework, three-wave interactions are
expected to be dominant for any kind of hydroelastic wave and we consider them in the following.

Note that, in the case of pure flexural wave turbulence on an elastic plate (without water),
four-wave interactions are considered since the nonlinearity of the plate are cubic [24]. For pure
gravity waves, nonlinearities are quadratic but three-wave interactions are not possible since the
resonant conditions are not satisfied due to the geometry of the dispersion relation (μ < 1), and only
four-wave interactions have to be considered [21].

B. General equations of three-wave interaction theory

We introduce the wave resonant interaction theory developed in the context of progressive
capillary waves by McGoldrick [14] and generalized by Simmons [27], while the pioneer ideas
were developed for ocean gravity surface wave by Phillips [6] and first observed in laboratory
experiments by McGoldrick et al. [21], Longuet-Higgins and Smith [22], and more recently by
Bonnefoy et al. [23]. The starting point is to consider resonant interactions between progressive
wave modes as the leading energy exchange process for weak nonlinearity. In the case of quadratic
nonlinearities, the leading interaction process involves three waves, and energy exchange between
wave modes occurs if the spatial and temporal resonance conditions are fulfilled:

ω1 + ω2 − ω3 = 0,

k1 + k2 − k3 = 0.
(5)

The wave vectors and frequencies are linked by the dispersion relation (4) in the case of hydroelastic
waves with negligible gravity effects. Theoretically, the dispersion relation and the resonant
conditions impose the angle between kl and kl+1 for given frequencies.

We consider a generic wave system where three-wave interactions are possible, with two initial
mother waves at frequency ω1 and ω2. Their resonant interactions gives birth to a daughter wave at
frequency ω3 = ω2 + ω1. The general equation for a wave system containing three weakly nonlinear
modes is given by [3,4,16,27](

∂

∂t
+ Uj · ∇

)
Aj + δjAj = iA∗

j+1A
∗
j+2γj , (6)

where i is the imaginary unit constant, δj is the temporal damping rate of wave j (assumed real),
Aj is the complex amplitude (complex conjugates are denoted by ∗), Uj , is the group velocity,
j = 1,2,3 is the circular array, and γj is the interaction coefficient. The interaction coefficient for
gravity-capillary waves is given by [27]

γj = − kj

4ωj

3∑
l=1

ωlωl+1

(
1 + kl · kl+1

klkl+1

)
. (7)
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The interaction coefficient depends on the structure of the nonlinear term, the wave geometry
(through the scalar product kl · kl+1), frequencies, and wave numbers, and thus implicitly on the
physical properties of the wave propagation medium. The equations for gravity-capillary waves
and gravity-tensional waves on a floating elastic sheet are exactly the same, surface tension being
replaced by the sheet tension, so the work from Ref. [27] can be applied directly and the interaction
coefficient is given by Eq. (7). In the weakly nonlinear approach, the bending term is linear with
wave amplitude. The nonlinear terms due to the kinematic and dynamic boundary conditions are
thus not modified by taking in account the bending waves. So we assume that we can use Eq. (7)
for tension-bending waves, too. Note that adding bending changes the dispersion relation, which
is taken into account in the interaction coefficient. Theoretically, the dispersion relation and the
resonant conditions impose the angle between kl and kl+1. Let us denote by aj (x,t)eiφj (x,t) a wave
of amplitude aj and phase φj ≡ kj ·x − ωj t + φ0

j , with φ0
j being an initial arbitrary phase. The

evolution equations for the real amplitudes aj and phases φj are, then, from Eq. (6),

∂aj

∂t
+ δjaj + ∇ · (Ujaj ) = aj+1aj+2γj sin(φ),

∂φj

∂t
+ ∇ · (Ujφj ) = aj+1aj+2

aj

γj cos(φ). (8)

Note that we have introduced the total phase φ(x,t) ≡ φ1 + φ2 − φ3. When the resonance conditions
of Eq. (5) are satisfied, φ is reduced to the constant φ0

1 + φ0
2 − φ0

3 . We now discuss stationary solutions
of Eq. (8) under various hypotheses.

C. Theoretical daughter-wave amplitude and phase locking

We now focus on practical cases where two mother waves are forced at frequency ω1 and ω2 at
a constant amplitude a1 and a2. The daughter wave has initially a zero amplitude and is expected
to grow by pumping energy from the mother waves. We assume that the amplitude of the daughter
wave remains small compared with the amplitude of the mother waves, a3 � a1,a2, and that a1 and
a2 are independent of time.

With no dissipation, and homogeneous wave field in Eqs. (8), the equations for the amplitude a3

and phase 
3 of the daughter wave thus read

∂a3

∂t
= a1a2γ3 sin (φ), (9)

a3
∂φ3

∂t
= a1a2γ3 cos (φ). (10)

A phase locking between waves is expected since Eq. (10) reduces to a3∂tφ3 = 0 at the early stage
of the resonance (a3 ≈ 0), and thus one should have φ = ±π/2. The total phase φ between waves
is thus independent of time and is phase locked. Equation (9) then predicts that the amplitude a3

of the daughter wave grows linearly in time at short times (i.e., for a3 � a1, a2), and its growth
rate is maximum when φ = −π/2 since γ3 < 0. The daughter initial phase is naturally set to
φ0

3 = −π/2 + φ0
1 + φ0

2 .
In presence of dissipation, and still with no spatial gradient term in Eqs. (8), a stationary solution

of Eqs. (8) for the daughter-wave amplitude thus reads aS
3 = a1a2γ3 sin φ/δ3. We now take into

account the spatial term in Eqs. (8). A stationary solution for a3 in the expected direction of the
daughter wave, defined by Oξ , given by k3/||k3|| (see sketch in Fig. 1), thus reads from Eq. (8)

U3
∂aS

3

∂ξ
= a1a2γ3 sin φ − δ3a

S
3 (ξ ), (11)
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H=20cm H=20cm

FIG. 1. Experimental setup: (a) side, (b) top view, and (c) wave interaction principle.

with U3 = ∂ω3/∂k3 being the group velocity of the daughter wave. Noting that φ is independent of
ξ for resonance conditions, an integration of Eq. (11) finally leads to

aS
3 (ξ ) = a1a2

γ3 sin φ

δ3
K(ξ ), (12)

where K(ξ ) = 1 − exp [−δ3(ξ − ξ0)/U3] and ξ0 is the coordinate defined by a3(ξ0) = 0. This factor
K(ξ ) simply expresses the damping of the daughter-wave amplitude with distance ξ from its
origin ξ0. Note that this solution was first obtained in the context of three-wave interactions among
capillary waves by Haudin et al. [20]. Equation (12) will be used afterwards to make a quantitative
comparison with the experimental data of Sec. IV. This relation between wave amplitudes will be
tested experimentally, as well as the occurrence of a phase locking (total phase φ independent of
time).

III. EXPERIMENTAL SETUP

The experimental setup is similar to that described by Deike et al. [26] and is shown in Figs. 1(a)
and 1(b). It consists of a cylindrical vessel of radius R = 20 cm filled with water up to a height
H = 20 cm. An elastic latex sheet is stuck on the top circular side of the container. We carefully
checked that no air bubbles were trapped between the sheet and the water. The measured physical
properties of the latex sheet are thickness h = 0.35 mm, Young’s modulus E = 1.05 106 N/m2, and
Poisson modulus ν ≈ 0.5 (industrial latex was provided by Eurocatsuits) and the bending modulus is
D = Eh3/12(1 − ν2). It was shown previously that the pressure only due to the weight of the elastic
sheet with no water beneath yields to a static tension T 0

s = 5 N/m of the elastic sheet due to its
sticking on the vessel [26]. The transition between gravity and tensional waves is then λgT � 10 cm,
of the order of the vessel size and the observation window. Moreover, bending waves will occur for
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wavelengths smaller than λTD � 1 cm, leading to a transition fTD ≈ 250 Hz. Thus, only tension and
bending waves are observed here.

Waves on the sheet are generated by the vertical motion of two rectangular wave makers (186 ×
10 mm2) driven by an electromagnetic shaker (LDS V201), as shown in Fig. 1(b). The two wave
makers are making an angle of approximately 95◦, as shown in Fig. 1(b), the angle being fixed by
experimental constraints. Both wave makers are started at the same time t = 0 s by a sinusoidal
forcing at a given frequency fj . Thus the displacement of each wave maker is aj = a0

j sin(ωj t),
with j = 1,2. The wave maker acceleration is measured by an accelerometer (BK 4393) fixed on
the wave maker. In all the experiments presented here, the amplitude of the two mother waves are
chosen to be the same, equal to a0,j = a0, j = 1,2; therefore a0 is the forcing amplitude. The forcing
frequencies are chosen as fj = ωj/(2π ) ∈ [35 : 100] Hz, with �f = |f2 − f1| ∈ [8 : 16] Hz.

We perform two types of wave field measurements. (i) The full three-dimensional (3D) spacetime-
resolved wave field is measured by using a fast Fourier profilometry technique [40] recently used on
hydroelastic waves [26], elastic waves on a metallic plate [41], or for gravity-capillary waves on a fluid
surface [42]. Fringes with interfranges of 1 mm are projected on the sheet surface by a high-resolution
video projector (Epson TW3000), and the spacetime evolution of the fringe deformations enable
us to reconstruct the velocity normal to the free surface v(x,y,t) with a fast camera (Phantom V9)
recording at 1000 fps during T = 4 s. The size of the recorded images, centered in the middle of
the sheet, is 25 × 18 cm2. From the movie of v(x,y,t), one computes the power spectrum density of
transverse velocity Sv(kx,ky,f ) from multidimensional Fourier transform. By integrating Sv(k,f )
over all directions of the wave vector k, we also obtain Sv(k = ||k||,f ), with k ≡ (k2

x + k2
y)1/2 the

wave number. (ii) The temporal one-point measure of the normal velocity is achieved with a Doppler
velocimeter (Polytech OPV 506), sampled at 10 kHz. The location of the spatial measurement
window and the vibrometer location are indicated on Fig. 1 b. Both measurements are not performed
simultaneously for technical reasons. The spatial measurement allows us to characterize the wave
propagation geometry and lasts 4 s, while the one-point measurement is used to perform a time-
frequency analysis and lasts 10 s. In both cases, the measure starts at t = 0 when the wave makers are
turned on in order to capture the beginning of the forcing and the transient regimes. The stationary
regime is reached in about 1s. The same experiment is repeated N = 10 times in the vibrometer case
in order to realize ensemble average (denoted by 〈·〉). This protocol increases the statistics, reduces
the signal-to-noise ratio, and improves the time-frequency analysis.

Forcing amplitudes are between a0 ∈ [0.01,0.1] mm in order to observe weakly nonlinear effects.
The very high sensibility of the laser vibrometer allows us to capture a daughter wave amplitude of
the order of 0.1–1 μm. Extreme care is thus necessary when these experiments are performed. Note
that we measure vertical velocities v = ∂η/∂t . The theoretical results are given as function of the
wave height η and the link for an angular frequency ωi between η̂(ω) and v̂(ω) in Fourier space is
|v̂(ωj )| = ωj |η̂(ωj )|.

IV. EXPERIMENTAL RESULTS

A. Spatial observations of three-wave resonant interactions

The analysis of the temporal v(t) and spatial v(x,y,t) wave-field data, as well as the spacetime
spectrum Sv(k,f ) allows us to analyze the appearance of a daughter wave from a couple of mother
waves, satisfying both resonant conditions of Eq. (5). We present these observations for a given
couple of initial frequencies, f1 = 35 Hz and f2 = 43 Hz but the presented phenomenology is valid
for all studied cases.

Figures 2(a) and 2(b) show observation of the wave field v(x,y,t), at the beginning of the
experiment, measured by the spatial method. Two wave trains are observed, coming from the two
wave makers [Fig. 2(a)], close to a 95◦ angle, and with wave vectors k1 and k2, respectively. The two
waves meet in the middle of the observation window [Fig. 2(b)]. When the two wave trains meet,
they generate a modulated wave field, with crests and troughs in the surface-velocity distribution
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(a) (b)

FIG. 2. (a), (b) Wave vertical velocity v(x,y,t) (linear color scale is v in m/s) just after (a) the forcing is
started and (b) later on. Two quasi plane waves (a) are first seen and (b) interact, leading to a more complex
field. f1 = 35 Hz and f2 = 43 Hz.

corresponding mainly to wave superposition. An analysis in the Fourier space is necessary to properly
identify wave interaction and detect the daughter wave at the resonant frequency.

Figure 3(a) shows the spacetime spectrum of the wave velocity Sv(k,f ) integrated over the angles
and over the total time measurement. The two mother-wave frequencies f1 and f2 as well as the
daughter-wave frequency f3 are clearly visible and are indicated with dashed lines as well as the
wave-numbers kj . The first harmonics 2f1 and 2f2 are also clearly visible. These modes are all
localized around the curve corresponding to the dispersion relation [Eq. (4)], with T = Ts the static
tension of the sheet, showing that hydroelastic waves propagates following the linear dispersion
relation. Note that the spot visible around 60 Hz at low wave number is the blinking of the video
projector. Note also that the harmonics of the forcing frequency are observed on the dispersion
relation [2ωi , k(2ωi)], and not as bound waves [2ωi , 2k(ωi)] as for pure gravity waves [23,42,43].
The resonant interaction mechanism for gravity waves involve four-wave interaction and the bound
waves appear as three-wave nonresonant interaction in this system [43]. In the case of capillary
waves, or hydroelastic waves, the resonant mechanism involves three-wave interactions, and no
bound waves are observed; see also Refs. [20,26,44]. It is possible that the occurrence of three-wave
resonant interaction masks, or prevents, the development of bound waves.

To discuss the propagation directions, we compute the spatial spectrum at given frequencies fj ,
Sv(kx,ky,fj ), as shown on Figs. 3(b)–3(d), for (b), (c) the two mother waves and (d) the daughter
wave. Figure 3(b) shows the spatial spectrum at the first mother wave frequency Sv(kx,ky,f1). The
propagation direction clearly appears, the energy is mainly localized in the y > 0 direction, which
is given by the forcing. The wave vector k1 is indicated in Fig. 3(b). Energy is also observed for
other directions due to wave reflection and wave interactions (the spectrum being calculated over
the total time of the experiment). Similar observations are made for the second mother wave, as
shown in Fig. 3(c), with Sv(kx,ky,f2). Here, the main direction is x < 0 (as defined by the forcing
direction in Fig. 2) and k2 is identified. Finally, the spatial spectrum at the daughter-wave frequency
Sv(kx,ky,f3) and its wave vector k3 is identified in Fig. 3(d): energy is localized in the direction
given by k3 = k1 + k2, within the measurement accuracy.

Note that a slight difference is observed in Fig. 3(d) between the experimental and theoretical
values of the wave number 1/λ3, respectively, 51 m−1 (white arrow) and 56 m−1 (radius of the
black circle). This difference of 5 m−1 is within the nonlinear broadening of the dispersion relation.
Indeed, the typical width [δ(λ−1

3 ), δf3] of the dispersion relation [Fig. 3(a)] centered on the point
(λ−1

3 , f3) is roughly (14 m−1, 4.5 Hz). This spectrum broadening is usually ascribed to the typical
nonlinear scale of interacting waves [42]. However, one should be careful since this difference is
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FIG. 3. (a): Angle-integrated spacetime vertical velocity spectrum Sv(1/λ,f ). White solid line is the linear
dispersion relation (4), ω2 = T

ρ
k3 + D

ρ
k5, with T = 5 N/m. White dashed lines are the frequencies f1, f2, and

f3, respectively, and the corresponding wave numbers. (b) Spatial spectrum at frequency f1: Sv(kx,ky,f1). (c)
Spatial spectrum at frequency f2: Sv(kx,ky,f2). (f) Spatial spectrum at frequency f3: Sv(kx,ky,f3).In panel (d)
the relation k3 = k1 + k2 is shown. In panels (b)–(d), the solid black circle has a radius |kj | given by the linear
dispersion relation |kj |(ωj ). The white arrow shows the wave vector kj . f1 = 35 Hz and f2 = 43 Hz. The color
bar is the spectrum amplitude log scaled.

also close to our spatial spectral resolution [defined as �k/(2π ) = the inverse of the image size;
∼5 m−1]. Finally, this slight difference may be also attributed to the near-resonance conditions of
our experiments. Indeed, the crossing angle between the two mother waves is close to 95◦, whereas
the theoretical angle for exact resonance is close to 75◦ by using Eqs. (4) and (5).

Thus, the frequency and wave vector of the daughter wave are found to satisfy the reso-
nance conditions within the spatial resolution, i.e., k1 + k2 = k3 + �k with �k/k3 < 0.1, and
ω1 + ω2 = ω3.

B. Time-frequency spectrum

We now compute the time-frequency spectrum Sv(t,f ) by using the one-point vibrometer data,
which is possible thanks to the high-frequency sampling rate.

Figure 4 shows the time-frequency spectrum 〈Sv(t,f )〉, for one typical experiment, with the
forcing frequencies f1 and f2 clearly visible and present from the beginning of the experiment (t = 0
when the wave makers are started). After a short transient regime, their amplitudes remain roughly
constant. The resonant frequency created by three-wave interaction is also visible at f3 = f1 + f2 as
well as the forcing first harmonics at 2f1 and 2f2, appearing shortly after the forcing starts (≈0.1 s).
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FIG. 4. Time-frequency spectrum 〈Sv(t,f )〉; color is log scaled. f1 = 35 Hz and f2 = 43 Hz are visible
from t = 0 while a slight delay is observed before the appearance of the daughter wave at f3. The amplitude
at f3 remains much smaller than that at f1 and f2. Energy at the harmonics of the forcing; 2f1 and 2f2 is also
visible. (b), (c) Frequency spectrum 〈Sv(f )〉 for different mother-wave forcing amplitudes, and for two couples
of mother-wave frequencies [left of panel (b)] f1 = 35 Hz and f2 = 43 Hz and [right of panel (c)] f1 = 85 Hz,
f2 = 100 Hz. f1 and f2 are indicated by solid vertical lines. Dashed lines are 2f1, f3 = f1 + f2, and 2f2 (from
left to right).

Figures 4(b) and 4(c) show the frequency spectrum 〈Sv(f )〉, from the time integration of the
time-frequency spectrum over the total experimental time (10 s), with increasing forcing amplitude
of the mother waves, a0, for two couples of frequencies. The mother-wave frequencies, as well
as their harmonics, and the daughter-wave frequency are clearly identified. The two mother waves
have comparable amplitudes a1 ≈ a2, which are much larger than the daughter-wave amplitude,
a1,a2 � a3 or than the amplitude of the forcing harmonics. The daughter-wave amplitude is found
to increase when the mother-wave amplitudes are increased. Note that harmonics of the forcing
at 2f1 and 2f2 are nonlinearly generated by the wave makers forcing. A peak at f1 − f2 is also
observed with a smaller amplitude (not shown). Although its generation is also related to a three-wave
mechanism, the corresponding wavelength (around 9 cm for 8 Hz and 6 cm for 15 Hz) is close to
the tank dimensions.

C. Evidence of phase locking

The mother- and daughter-wave phases φj (t) = kj ·xp − ωj t + ϕj are estimated by band passing
the amplitude signal η(t), recorded at the probe position xp, around the target frequency fj (bandpass
filter is ±1 Hz), and by then performing an Hilbert transform. The Hilbert transform gives us an
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FIG. 5. Temporal evolution of the sine of the total phase φ(t) = φ1(t) + φ2(t) − φ3(t) for two couples of
mother-wave frequencies. A phase locking is observed with φ ≈ −π/2, as predicted theoretically. Inset shows
ensemble- and time-averaged value of the sine of the total phase, 〈sin φ〉, for different mother-wave amplitudes.
Phase locking is observed in all experiments.

estimate of the wave amplitude aj and the wave phase φj at frequency fj . The phase of each
wave φj (t) obviously changes with time. On the contrary, the signed sum of the phases defined
by φ(t) = φ1(t) + φ2(t) − φ3(t) is found to be independent of time, as shown in Fig. 5 where the
temporal evolution of sin φ(t) is displayed for two couples of mother waves. After the wavefront
has passed the probe, the total phase is found to be locked at −π/2 (i.e., sin φ ≈ −1). The phase
locking observed here is in very good agreement with the prediction in Sec. II C. The −π/2 value
means that the energy transfer to the daughter wave is maximum [see Eq. (9)]. As shown in the inset
of Fig. 5, a similar phase locking is observed regardless of the mother-wave amplitudes (provided
that a3 � a1, a2), and for the two tested couples of mother-wave frequencies. Note that, here, the
time- and ensemble-averaged value of the phase is plotted. Phase locking is a second evidence of
the generation of a daughter wave by resonant interactions.

D. Temporal evolution of daughter- and mother-wave amplitudes

The amplitude of the wave at frequency fj can also be evaluated from the time-frequency spectrum
of the velocity,

ai(t) = vi(ωi,t)/ωi, (13)

vi(ωi,t) =
√

2
∫ ωi+κω

ωi−κω

〈Sv(u,t)〉du, (14)

and κω is the width at half amplitude of the spectrum of the peak at frequency ωj (typically
κω ≈ 2π rad−1). We have checked that evaluating the wave amplitude either by Hilbert transform
or by the spectrum is equivalent. The time evolution of the mother-wave amplitudes a1(t) and
a2(t), as well as the daughter-wave amplitude a3(t) are shown in Figs. 6(a) and 6(b) for a given
initial mother-wave amplitude a0 ≡ a1(t = 0) = a2(t = 0). For all frequencies, a stationary value is
reached after roughly one second. We observe that a1,a2 � a3 is true for all times. However, the
amplitudes of the mother waves are not constant with time during the growing of the daughter wave.
Note that the growth of the forcing harmonics 2f1 and 2f2 is similar to that of the daughter wave
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FIG. 6. (a), (b) Temporal evolution of the amplitudes of mother waves a1 (�), a2 (�), of daughter-wave a3

(◦), and of mother-wave harmonics at 2f1 (�), 2f2 (�) for fixed initial mother-wave amplitude a0 = a1(t = 0) =
a2(t = 0), and for two couples of mother-wave frequencies (a) f1 = 35 Hz, f2 = 43 Hz and (b) f1 = 85 Hz,
f2 = 100 Hz. (c), (d) Temporal evolution of the daughter-wave amplitude a3(t) for different initial amplitudes
a0 (from bottom to top). f1 = 35 Hz and f2 = 43 Hz (g); f1 = 85 Hz and f2 = 100 Hz (h). Dashed lines
correspond to the stationary values aS

3 .

f3. Finally, Figs. 6(c) and 6(d) show a3(t) for increasing mother-wave amplitudes a0. For all values
of a0, a3 first grows rapidly, and then reaches a stationary value aS

3 .

E. Scaling of daughter-wave amplitude

Previously, by using local and spatiotemporal measurements, we obtained evidence of the
formation of a daughter wave due to the three-wave resonant interaction. Spatial observations reveal
that the resonance conditions [Eq. (5)] are fulfilled within the measurement accuracy. After the early
stage of the interaction where the mother and daughter wave grow rapidly, they reach a stationary
value, while the total phase of the system experiences phase locking, as expected theoretically.

We now perform a quantitative comparison between the experimental data and the theoretical
relation between stationary wave amplitudes [Eq. (12)]. To wit, we plot in Fig. 7 the experimental
value of the rescaled daughter-wave amplitude aS

3 δ3/[γ3 sin (φ)K(ξ )] as a function of the forcing
parameters, i.e., the product of the stationary mother-wave amplitudes a1a2, for all experiments
performed. This rescaling uses the measurements of aS

3 , of the total wave phase φ of the damping
rate δ3, the experimental estimation of the interaction coefficient γ3 by using Eq. (7), and the spatial
factor K(ξ ). K(ξ ) = 1 − exp [−δ3(ξ − ξ0)/U3] is estimated by using the group velocity of the
daughter wave, U3 = ∂ω3/∂k3 computed from the linear dispersion of Eq. (4), and ξ inferred from

064803-11



LUC DEIKE, MICHAEL BERHANU, AND ERIC FALCON

(a
1
a

2
) (m 2)

10 -12 10 -11 10 -10 10 -9 10 -8 10 -7 10 -6

a
3
δ 3

/[(
si

n(
φ

)γ
3
 K

(ξ
))

] (
m

2
)

10 -11

10 -10

10 -9

10 -8

10 -7

10 -6

FIG. 7. Rescaled daughter-wave amplitude aS
3 δ3/[γ3 sin (φ)K(ξ )], as a function of a1a2. Experimentally,

sin (φ) = −1, and δ(k3), γ3 and K(ξ ) are estimated as explained in the text. Various couples of mother-wave
frequencies: (�) f1 = 35, f2 = 51 Hz; (◦) f1 = 35, f2 = 43 Hz; (�) f1 = 55, f2 = 63 Hz; (�) f1 = 85,
f2 = 100 Hz. Solid line has a slope 1 and corresponds to the theoretical prediction of Eq. (12). Dashed line has
a slope one with a prefactor of four. The full and open symbols are, respectively, for the theoretical (90o) and
observed (75o) angle between the mother waves and cannot be distinguish on the figure.

the probe location from the origin ξ0. The damping rate of hydroelastic waves had already been
measured in a previous study [26] and is given by δ(k) = k/(4πC) with C = 3.2 s/m.

This dissipation rate was measured in Ref. [26] up to 1/λ ≈ 80 m−1, corresponding to f ≈
150 Hz, while the highest tested daughter-wave frequency in the present experiment is f = 185 Hz.
In a recent study, Ref. [45] measured the attenuation of flexural gravity waves by using a similar
elastic sheet as the one considered here and reported decay rates compatible with the model from
Ref. [46] for a surface boundary layer under an inelastic sheet. However, in Ref. [45], the sheet is
free to move at the boundary while our sheet is clamped on the side of the tank. When we compare
the measured decay rate extrapolated at higher frequencies with the decay rate in a surface boundary
layer from Refs. [45–48], we observe that the surface boundary layer dissipation from Refs. [45–47]
only becomes larger than our extrapolated dissipation for very high frequencies 1/λ > 200 m−1

(f > 800 Hz), which are not reached in the present experiment. This means that other sources of
dissipation are necessary to explain the observed dissipation, as already discussed in Ref. [26]:
dissipation at the boundaries due to the clamping of the sheet (similar to the case of flexural waves
on an elastic plate discussed by Refs. [49,50]), or viscoelastic dissipation.

According to the resonant wave interaction theory of Eq. (12), all data in Fig. 7 should collapse
onto the straight line of slope one (solid line). Indeed, this prediction is in good agreement with
the experimental data over more than one order of magnitude in a1a2 and with no fitting parameter.
Note that a significant departure is observed for the highest tested frequency couple (offset of a
factor of four shown by the dashed line), which could be attributed to an additional dissipation at
high frequency. Moreover, for the extreme values of the forcing, some discrepancies are visible. For
strong amplitude, this may be ascribed to the growth of other modes in the system (harmonics and
other interactions) while, at low amplitude, there might not be enough energy to permit nonlinear
exchanges between the modes. Finally, the interaction coefficient γ3 has been estimated by using
the values of the crossing angle between mother waves either experimental, 95o (open symbols in
Fig. 7) or predicted theoretically to be at exact resonance, i.e., 75o, (solid symbols), with no visible
difference in Fig. 7. The open and full symbols are also superposed on the figure. To sum up, the
scaling of the daughter-wave amplitude with the mother-wave amplitudes is found to be in reasonable
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agreement with the prediction of resonant wave interaction theory with no fitting parameter, while
the geometry of the mother waves do not perfectly match the resonance conditions.

V. CONCLUSIONS

We have experimentally studied three-wave interactions in a system of hydroelastic waves
propagating over a floating elastic sheet. We observe a daughter wave generated from the nonlinear
interaction among two mother waves of almost perpendicular directions. The frequency and the wave
vector of the daughter wave are found to satisfy the resonance conditions within the measurement
accuracy. The daughter-wave amplitude is also found to be reasonably well described by the resonant
wave interaction theory with no fitting parameter. This three-wave resonant interaction mechanism
is observed in a range of scales where both tension and bending are necessary to described the wave
dynamics. Further experimental works will be focused on changing the crossing angle between
mother waves to describe wave interactions from in-resonance to off-resonance conditions.

This work also opens further research prospects. Experiments on the spatial growth of these
hydroelastic waves would be of interest together with experiments to investigate wave interactions
in the case of flexural-gravity wave and purely flexural waves. Both cases are indeed of importance
for ocean applications when describing the dynamics of floating ice sheets. Finally, a major challenge
is to experimentally study the development of resonant interactions, when the forcing amplitude is
further increased, to observe the transition to a wave turbulence regime.
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