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We report measurements of global dissipated power within a turbulent flow homoge-
neously forced at small scale by an original forcing technique. The forcing is random in both
time and space within the fluid by using magnetic particles in an alternating magnetic field.
By measuring the growth rate of the fluid temperature, we show how the dissipated power is
governed by the external control parameters (magnetic field and number N of particles). We
experimentally found that the mean dissipated power scales linearly with these parameters,
as expected from the magnetic injected power scalings. These experimental results are
well described by simple scaling arguments showing that the main origins of the energy
dissipation are due to viscous turbulent friction of particles within the fluid and to the
inelasticity of collisions. Finally, by measuring the particle collision statistics, we also show
that the particle velocity is independent of N and is only fixed by the magnetic “thermostat.”

DOI: 10.1103/PhysRevFluids.2.102601

I. INTRODUCTION

When a magnetic fluid (i.e., nanometric ferromagnetic particles within a carrier liquid) is subjected
to an alternative magnetic field, an intense heat is released at the particle scale that may serve for
magnetic hyperthermia in medical therapies [1]. In this context, many studies have been performed
to quantify the heat production within a ferrofluid subjected to an alternating magnetic field [2,3].

In soft matter, diluted granular media made of permanent magnetic particles of centimetric
scale, subjected to an alternating magnetic field, have been used in two-dimensional [4,5] or three-
dimensional (3D) [6] experiments to test dissipative granular gas theories. This type of forcing has
been used also to study pattern formation of magnetic particles in suspensions on liquid surface [7]
and to study the mechanical energy conversion into heat for a granular system within a gas or a
liquid [8,9].

For closed turbulent flows, most laboratory experiments on 3D turbulence use a spatially localized
forcing, at large scale, in a deterministic way (e.g., rotating blades or oscillating grids). Here we
present an original forcing technique where the fluid is forced randomly in both time and space,
at small scale, using magnetic particles. It allows a forcing within the bulk, which favors the
homogeneity of the fluid velocity field.

Our magnetic particle consists in a small permanent magnet encapsulated in a soft shell of
centimetric size. The torque applied by the alternating magnetic field over the magnetic moment
of each particle leads to a random forcing, in both space and time, where particles are driven
by chaotic rotational motions. The collisions between particles or between particles and walls
lead to translational erratic motions of the particles. We have previously used such particles to
experimentally study a 3D diluted granular medium in air driven randomly in both time and space
[6]. This homogeneous forcing differs strongly from boundary-driven systems used in most previous
experimental studies on dilute granular systems and leads to several major differences (no cluster
formation and an exponential tail of the particle velocity distribution) [6].

Here we study the mean dissipated power within a 3D turbulent flow homogeneously forced at
small scale (particle size) via magnetic particles. We show notably that the dissipated power within the
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FIG. 1. Experimental setup. Top insets show pictures of a magnetic particle.

fluid increases linearly with the number N of particles in the fluid and with the magnetic field strength
B. Beyond the agreement with the expected scalings for the magnetic injected power, we show that the
dissipated power comes from two main contributions of the same order of magnitude: the viscous tur-
bulent friction of particles within the fluid and the inelasticity of collisions, both contributions scaling
linearly with N and B using simple scaling arguments. Dynamical and statistical properties of such
a turbulent flow generated by this forcing are not described here. Beyond direct interests in turbulent
flows, our study also provides a model experiment in various domains such as magnetic hyperthermia
for medical therapy [1] or magnetically fluidized granular beds accelerating technological processes
[10–12], in which particle dynamics in a fluid are controlled by an alternating magnetic field.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. A cylindrical glass container, 10 cm in diameter and
14 cm in height, is filled with water and N magnetic particles N ∈ [2,60] (corresponding to less
than one layer of particles at rest). The total fluid depth h, including particles, is fixed in the range
h ∈ [4,13] cm. Magnetic particles are made of a disk permanent magnet in neodymium (NdFeB,
N52) encased, and axially aligned, in a homemade Plexiglas cylinder (d = 1 cm in outer diameter,
0.25 cm in thickness, and 2R = 1 cm long) [6]. The particle mass is m = 10−3 kg. The top of
the container is closed with a Plexiglas lid in contact with water regardless of the value of h (no
free surface). The container is thermally insulated by inserting it within a cylindrical cell made of
polystyrene foam (2.5 cm in thickness) and the latter into a vacuum flask (Dewar) (see Fig. 1). The
top flask is closed with polystyrene foam. The whole system is aligned between two coaxial coils.
The coils are driven with a 50-Hz alternating current. A vertical alternating magnetic induction B

is thus generated in the range 0 � B � 225 G with a frequency f = 50 Hz; B is measured with
a Hall probe. The Helmholtz configuration of the coils ensures a spatially homogeneous B within
the flask volume with a 3% accuracy. Temperature is measured by means of thermistors (PTC
Carbon) at two different locations. The temperature T within the fluid is measured just under the
Plexiglas lid. The atmosphere temperature Ta of the room is measured at 40 cm away from the flask.
Temporal evolutions of the temperature are recorded for 104 s with a 50-Hz sampling frequency.
An accelerometer attached to the top of the lid records the particle collisions with the underside
of the lid for 500 s to extract the particle collision statistics with the lid. The sampling frequency
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was fixed at 80 kHz to resolve collisions (∼60 μs). We focus here on the dilute regime of particles
with volume fractions of � = NVp/V < 5% for temperature measurements and � < 14.7% for
collision statistics measurements, V being the volume of the fluid and Vp = πd2R/2 = 0.78 cm3

the volume of a particle.

III. FORCING MECHANISM

Let θ be the angle between the magnetic moment �m of a particle and the vertically oscillating
magnetic field B(t) = B sin ωt , with ω = 2πf and fixed f = 50 Hz (see Fig. 1). A forcing torque
�� = �m × �B is thus applied by the field on the magnetic moment �m of each particle. The fluid creates
on the particle a viscous dissipative torque �d assumed at high Reynolds number (see below). The
angular momentum theorem thus leads to the equation of motion of a single particle as

θ̈ (t) + λθ̇(t)|θ̇(t)| = 2ω2
B sin ωt sin θ (t), θ̇ ≡ dθ/dt, (1)

with ωB = √
mB/2I the resonance frequency, λ = πρCrR

5/I = 0.007 the damping coefficient
with ρ = 103 kg/m3 the fluid density, Cr = 0.01 the rotational drag coefficient of a sphere in a
turbulent flow [13],1 I = 1.4 × 10−8 kg m2 the moment of inertia of the particle, m = 1.55 ×
10−2 A m2 its magnetic moment. Even without the dissipative term, Eq. (1) is nonintegrable and θ (t)
then shows periodic motions, period doubling, or chaotic motions [14,15]. Indeed, the oscillating
magnetic field can be thought of as being composed of two counterrotating fields. The equation
of motion in either one of the rotating field components is integrable and may result, depending
on the initial conditions, in small oscillations of θ (t) with its own angular frequency (resonance at
ωB) or in the rotation of the particle at a different frequency. This is the interaction with both field
components simultaneously that renders the system nonintegrable, the second rotating field acting as
a perturbation, leading to frequency lock-ins and chaotic rotational motions [14,15]. The occurrence
of erratic motions is controlled by the stochasticity parameter s ≡ 2ωB/ω [14]; s is also linked to
the ratio between the magnetic dipolar energy of the particle Ed = mB and its rotation energy at
the field frequency Erot = Iω2/2, since s = √

Ed/Erot. Periodic motions (oscillations and uniform
rotations) are predicted to occur when s � 1 (i.e., B � Iω2/2m = 445 G) [15]. When this condition
is violated, a chaotic rotational motion is predicted to occur [14]. Experimentally, we observe erratic
rotational motions for B ∈ [90,225] G corresponding to s ∈ [0.44,0.70] or ωB/2π ∈ [11,17.4] Hz
not so far from ω/2π = 50 Hz. This lowest value of B corresponds to the particle fluidization onset
(see below). Particles are rotating erratically, with the rotation axis mostly normal to the particle
axis, frequency and direction of rotations displaying unpredictable reversing (see [6] for movie of
particle motions in air). Numerical simulations of Eq. (1) confirm these results. Indeed, for large
initial conditions (θ0 and θ̇0), the particle undergoes some time-dependent rotations in one or the
other direction as observed experimentally. The corresponding spectrum of θ̇ (t) displays main peaks
near ω (i.e., at ω ± 2ω2

B/ω) and near ωB (i.e., at 4ω2
B/ω). For low initial conditions, oscillations

of θ (t) are reported near ωB (i.e., at 3ω2
B/2ω) superposed with ones of smaller amplitudes near ω.

The external magnetic field thus generates an erratic rotational driving of each particle. A spatially
homogeneous forcing is thus experimentally obtained where only the rotational degrees of freedom
of each particle are stochastically driven in time. Due to collisions of particles with the container
boundaries or with other particles, erratic translational motions of particles are also observed. Finally,
note that numerical simulations show that the weak level of dissipation does not modify qualitatively
the results obtained without dissipation. Indeed, dissipation is known to shift the onsets of lock-ins
and the value of the Feigenbaum exponent of the period-doubling bifurcations towards chaos; strange
attractors may also occur [15,16]. Let us now give an estimate of the Reynolds number of the flow
Re ≡ vh/ν, with h the fluid depth, ν the fluid kinematic viscosity, and v the rotational particle

1The rotational drag coefficient Cr is roughly constant for 3 × 104 � Re � 6 × 105 [13]. Its value is assumed
to be the one of an effective sphere since the aspect ratio of our cylindrical particle is 1.
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FIG. 2. Temporal evolution of the fluid temperature for different numbers of particles N = 10, 20, 30, 40,
50, and 60 (see arrow), with B = 225 G and h = 13 cm. Dashed lines are linear fits. The inset shows fit slopes
dT /dt versus N . The dashed line has a slope of 1.7 × 10−5 K/s.

velocity. Assuming a synchronous particle rotation at the magnetic field frequency, i.e., dθ/dt = ω,
one has v = ωR � 1.6 m/s and thus typically Re ∼ 105 at most. The flow is thus turbulent, as
assumed by the drag torque used in Eq. (1).

IV. THERMAL DISSIPATED POWER IN THE FLUID

The mean dissipated power is experimentally inferred by directly measuring the growth rate of
the mean fluid temperature. Note that such a thermal measurement of the global dissipated power
in turbulence flows is scarce. Indeed, such direct measurements have been only performed with a
spatially localized forcing at the scale of the container for hydrodynamics flow (von Kármán or
Couette-Taylor flows) [17] or for magnetohydrodynamics flows [18,19]. During experiments, the
room temperature variation in the vicinity of the container is found to be |
Ta| � 0.3 ◦C for 10 000 s
regardless of the values of N and B. In comparison, the increase of the fluid temperature T − T0

due to the particle motions within the fluid is more than one order of magnitude larger; T0 is the
fluid temperature at t = 0 when the experiment starts.

For fixed B, Fig. 2 shows the temporal evolution of the fluid temperature T for different numbers
N of magnetic particles; T is found to increase linearly with time t and with a growth rate dT /dt

increasing with N . Typically, an increase up to 4 ◦C is evidenced in 1 h with 60 particles. The
inset of Fig. 1 shows dT /dt vs N from the slopes of each curve of Fig. 2. One finds that dT /dt

is proportional to N , with a proportionality constant of α = 1.7 × 10−5 K/s. Note that a departure
from the linear law can be observed at a very long time (greater than 6000 s) due to cumulative
residual thermal losses (not shown here).

Now we fix N and we increase B. The fluid temperature is plotted in Fig. 3 as a function of
time for different applied magnetic fields B > Bc, Bc = 90 G being the onset of particle fluidization
(see [6]). The temperature T is found to increase linearly with time t and with a growth rate dT /dt

increasing with B. The inset of Fig. 3 shows dT /dt vs B from the slopes of each curve of the
main figure. One finds that dT /dt is proportional to B beyond Bc. The thermal growth rate is thus
driven by the magnetic field. Reiterating this experiment for a different value of fluid depth h leads
to similar results. Indeed, as shown in the inset of Fig. 3, by doubling the fluid volume, dT /dt is
halved regardless the value of B. Thus, one has hdT/dt = βB with β = 5.4 × 10−3 K s−1 T−1.
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FIG. 3. Temporal evolution of the fluid temperature for different magnetic fields B = 112.5, 135, 157.5,
180, and 202.5 G (see the arrow), with N = 60 and h = 13 cm. Dashed lines are linear fits. The inset shows fit
slopes dT /dt versus B for two fluid depths h = 6.5 (•) and 13 (�) cm. Here N = 60. The dashed line has a
slope of 5.4 × 10−3 K s−1 T−1.

To sum up, the thermal growth rate within the fluid is found to scale experimentally as

dT

dt
= ζ

NB

V
for B > Bc, (2)

with V = Sh the fluid volume, S the container section, and ζ = 7.13(±0.06) 10−7 m3 K s−1 T−1 a
dimensional constant. This accuracy on the value of ζ arises from its two estimations from α and
from β. Using Eq. (2), the thermal dissipated power P diss

expt = ρV cf dT /dt is thus found to scale
experimentally as

P diss
expt = ζρcf NB for B > Bc, (3)

cf = 4187 J kg−1 K−1 being the fluid specific heat. The volume fraction being � < 5%, the
contribution of the solid phase to the medium specific heat is almost negligible. Thus, the thermal
dissipated power within the fluid is typically 3.7 W (for N = 60 and B = 200 G).

V. COLLISION STATISTICS

We want now to find the scaling of the particle velocity v as a function of the parameters N , B, and
V as well as their collision statistics. Using an accelerometer attached to the lid, particle collisions
with the lid are recorded for 500 s. A typical acceleration time series is shown in the bottom inset
of Fig. 4. Each peak corresponds to the acceleration undergone by a particle during its collision on
the lid. The peak amplitude A and the time lag τ between two successive collisions on the lid are
randomly distributed. A thresholding technique is applied to the signal to detect the collisions [20].

Figure 4 shows that the mean collision frequency scales as 1/τ̄ ∼ NB1/3/h2 over two decades
when varying one single parameter N , B, or h while keeping the other two fixed. The scalings with
N and h are the same as the ones found experimentally without liquid in the container [6]. The
different scaling found with B is explained below.

The mean amplitude of acceleration peaks is experimentally found to scale as Ā ∼ h0N0B1/3, as
shown in Fig. 5. For an impulse response of the accelerometer to a single collision, one has |v| = Aδt ,
with A the acceleration peak amplitude, δt � 60 μs the roughly constant collision duration, and v
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FIG. 4. Plot of 1/τ̄ vs NB1/3/h2 for 1 � N � 60 (B = 180 G and h = 4 cm) (•), 2 � h � 8 cm (N = 30

and B = 180 G) (�), and 112 � B � 225 G (N = 30 and h = 4 cm) (�). The bottom inset shows the temporal
signal of the accelerometer showing 44 collisions in 2 s (N = 10, h = 4 cm, and B = 180 G). The top inset
shows PDF(A/Ā) for 1 � N � 60 (B = 180 G and h = 4 cm).

the magnitude of the particle velocity. Hence, the order of magnitude is v ∼ 1 m/s and one finds
experimentally

|v| ∼ h0N0B1/3. (4)

The particle velocity is thus independent of the number of particle N and the fluid volume for our
range of parameters. Although our range of B is quite small, the scaling in B1/3 differs from the one in
B1/2 found experimentally without liquid in the container [6]. The difference between both scalings

0 50 100 150 200 250
B  (G)

0

0.01

0.02

0.03

0.04

0.05

0.06

A
(V

) 0 20 40 60
N 

0

0.02

0.04

0.06

A
(V

)

0 5 10
h   (cm) 

0

0.02

0.04

0.06

A
(V

)

FIG. 5. Mean acceleration (in volts) during particle collisions with the top wall vs B: Ā vs B for N = 30,
with h = 4 cm. The dashed line shows B1/3 scaling. The top inset shows Ā vs N for B = 180 G, with h =
4 cm. The bottom inset shows Ā vs h for B = 180 G, with N = 30.
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is due to additional viscous turbulent dissipation. Indeed, the magnetic field constantly injects energy
in particle rotations, the latter being converted in translation energy only during collisions without
liquid. With a liquid, the viscous dissipation takes place significantly during the particle motions
and thus modifies the power budget (see below).

As for an ideal gas, the particle velocity is found to be independent of N and to be fixed only by
the thermostat, here, a magnetic one. The experimental scalings of 1/τ̄ and |v| with N and B are
also consistent since both quantities are usually related by the density N/V as 1/τ̄ ∼ |v|N/V [21].

For various N at fixed B, the probability density functions (PDFs) of A show exponential tails
that collapse on a single curve when rescaled by Ā (see the top inset of Fig. 4). Similar results are
found at fixed N regardless of B. Moreover, since A = |v|/δt , the tail of the particle velocity’s PDF
is thus found to scale as exp(−c v/|v|) independently of the volume fraction since |v| ∼ N0, c being
a dimensionless constant. Consistently, similar results are found for the time lag distribution. To sum
up, the particle velocity distribution displays an exponential tail and is independent of the particle
density. It is thus not Gaussian as for an ideal gas, or stretched exponential and density dependent
as for a boundary-forced dissipative granular gas [22]. This difference with the latter case is related
to the spatially homogeneous forcing used here. Indeed, a similar exponential tail independent of
density has been found experimentally with this forcing without liquid in the container [6].

VI. ORIGINS OF THE DISSIPATED POWER

Let us first check the power budget. An estimate of the total magnetic power injected into the
fluid by N particles reads Pinj = Nm × Bω/2 ∼ NB. These scalings in N and B are thus in good
agreement with the ones found experimentally in Eq. (3) for the thermal dissipated power P diss

expt .
Indeed, for an out-of-equilibrium steady-state system, the mean injected power has to balance the
mean dissipated power Pinj = Pdiss. The upper limit for Pinj, inferred from the above equation, is
P max

inj = 4.1 W (for N = 60 and B = 200 G), which is consistent with the experimental value of
3.7 W found above for the thermal dissipated power within the fluid.

The experimental scalings of the dissipated power with the control parameters, found in previous
sections, can be explained using simple scaling arguments. Let us first summarize the two main
experimental results: The global dissipated power scales as P diss

expt ∼ NB [see Eq. (3)] from thermal

measurements and the particle velocity |v| ∼ N0B1/3 [see Eq. (4)] from the collision statistics. A
part of the magnetically injected energy is dissipated due to the inelasticity of the collisions between
particles and walls. A simple estimate of the dissipated power by the collisions is P diss

coll = Ediss
coll τ̄

−1,
with Ediss

coll = (1 − ε2)mv2 the dissipated energy by collisions, ε being the restitution coefficient, and
τ̄−1 ∼ NB1/3 the collision frequency on a wall as found above experimentally. Using the scaling of v,
we have thus directly P diss

coll ∼ Nv3 ∼ NB, which is in agreement with the experimental scalings for
P diss

expt . Another part of the injected energy is also dissipated by viscous friction by the turbulent drag
opposing the translational and rotational motions of particles. On the one hand, the power dissipated
by friction for translational motions reads P diss

trans = NFdv, where Fd ∼ Ctv
2 is the turbulent drag

force, with Ct the translational drag coefficient. One has thus P diss
trans ∼ Nv3 ∼ NB, which is also

in agreement with the experimental scalings for P diss
expt . On the other hand, the power dissipated by

viscous turbulent friction for rotational motions reads P diss
rot = Nθ̇�d . One has thus P diss

rot ∼ Nθ̇3,
which is independent of B if we assume a synchronous rotation (ω, i.e., θ̇ = ω). Consequently,
P diss

rot ∼ Nω3 ∼ NB0, which differs from the experimental scalings for P diss
expt .

To sum up, from the scalings with N and B, the magnetic power injected in rotational degrees of
freedom of particles is found to be balanced by the thermal dissipated power, the latter resulting from
the viscous turbulent friction of particles within the fluid on the one hand and from the inelasticity
of collisions on the other. The order of magnitude of each dissipated power for N = 60 is found to
be of the order of 1 W (using Ct = 0.4 [23] and assuming v = 1 m/s and ε = 0.5). Their sum is
thus of the same order of magnitude as the measured dissipated power (3.7 W). It is worth noting
that their ratio P diss

trans/P
diss
coll ∼ Nvτ ∼ N0B0 (using the experimental scalings of |v| and τ̄ ) and thus
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does not depend on the parameter controls (N or B) for our range of Re, but only on geometrical
parameters and on properties of the fluid, particle, and container.

VII. CONCLUSION

We reported measurements of global dissipated power within a turbulent flow forced homo-
geneously at small scales. Unlike most laboratory experiments on 3D turbulence involving a
deterministic and spatially localized forcing at large scale, the forcing used here is random in
both time and space within the fluid by using magnetic particles. By measuring the growth rate
of the mean fluid temperature, we show that the mean dissipated power within the fluid increases
linearly with the number N of magnetic particles in the system and the strength of the magnetic field
B. This mean energy dissipation is found to be balanced by the mean magnetically injected power,
as expected for out-of-equilibrium steady-state systems. Beyond this agreement, we show that the
dissipated power comes from the viscous friction of particles within the fluid and from the inelasticity
of collisions, both dissipated powers theoretically scaling linearly with N and B. By measuring the
particle collision statistics on a container wall, we show that the particle velocity is independent of
N and is fixed only by the magnetic thermostat as B1/3. Finally, this forcing mechanism appears
very promising to generate fully homogeneous turbulence in order to characterize, for instance,
large-scale properties of turbulence (i.e., larger than the forcing scale).
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