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We experimentally investigate the effects of finite-system size on the dynamics of weakly nonlinear
random gravity-capillary surface waves. Experiments are conducted in rectangular tanks with vary-
ing aspect ratios, in which the fluid surface is perturbed locally and erratically by small, partially
submerged magnets. Driven by an oscillating vertical electromagnetic field, these magnets generate a
statistically homogeneous and isotropic random wave field. This setup enables us to probe finite-size
effects without the dominant influence of global forcing present in horizontally oscillated tanks. Spa-
tiotemporal measurements of the wave field reveal multiple branches in the wave-energy spectrum
along the unconfined direction, corresponding to sloshing modes in the confined direction. We show
that the spectral properties of these modes can be tuned by varying either the wave steepness or the
confinement. Signatures of discrete wave turbulence in the confined direction and mesoscopic con-
tinuous wave turbulence in the unconfined direction are observed. As the confinement is gradually
relaxed, we further demonstrate a smooth transition from discrete to continuous wave turbulence,
consistent with the nonlinear-to-discreteness timescale ratio. Using high-order correlation analysis,
we also show that finite-size effects alter wave dynamics by depleting two-dimensional three-wave
resonant interactions along the confined direction.

I. INTRODUCTION

Weak-turbulence theory describes dynamical and statistical properties of random weakly nonlinear dispersive waves
in various systems [1–3]. When wave energy cascades across scales due to resonant nonlinear-wave interactions, the out-
of-equilibrium stationary solution of the kinetic equation yields a power-law dependence of the wave-energy spectrum
on the scale (Kolmogorov-Zakharov spectrum). Initiated in the 1960s to model the ocean wave spectrum [4], this theory
has since been applied in almost all systems involving waves, such as ocean surface waves, plasma waves, hydroelastic
waves, elastic waves on a plate, internal or inertial waves on rotating stratified fluids, and optical waves [1–3].

Weak-turbulence theory requires many assumptions, as an infinite spatial domain or weakly nonlinear waves. The
first one is usually not achieved numerically or experimentally. For an infinitely large system (L → ∞), the Fourier
modes k are continuous, and both exact resonant and quasiresonant wave interactions are possible. For finite L, exact
wave interactions are rare since k modes are discrete and few in number. In this case, quasiresonant wave interactions
become dominant for strong enough nonlinearity (but still weak), and the energy cascade is still continuous in the
Fourier space, as shown numerically [5, 6]. However, when the system size L is too small, Fourier modes become
highly discrete, and the spacing between adjacent modes (∆k = π/L) can exceed the nonlinear spectral broadening.
In this regime, known as discrete wave turbulence, only exact resonances contribute significantly to the dynamics,
as quasi-resonant interactions are weakened by frequency gaps [7, 8]. Exact resonant interactions are then generally
strongly depleted, leading to nonlocal energy transfers [9–11]. The regime in which both continuous and discrete wave
turbulence can coexist [12, 13] is termed “mesoscopic” wave turbulence [7]. For instance, a bursty transfer of energy
across scales, reminiscent of sandpile-like avalanches, has been proposed [14]. In the limit of strong discreteness, the
system no longer supports a cascade and is thus referred to as “frozen turbulence” [5, 15]. Taking these finite-system
size effects into account is also an important challenge in pure mathematics [16, 17].

Although wave turbulence has been experimentally investigated in various systems [18–25], the influence of finite-
system size effects has received little attention, with most experimental studies focusing on hydrodynamic surface
wave turbulence [26–29]. The role of the shape of the basin has been addressed [26] as well as its boundary condition
(e.g., absorbing with a beach, or reflecting with a wall) [27]. Finite-system size effects have been explored in a
rectangular tank with a movable partition along one direction, showing discrete modes in the confined direction and
a continuous spectrum in the perpendicular direction [28]. In cylindrical containers, as a consequence of conservation
laws, gravity-wave turbulence can sustain three-wave resonant interactions due to spatial confinement (instead of usual
four-wave ones) [30, 31]. These modified interactions have been evidenced in a gravity-wave turbulence experiment
in a high-gravity environment [29].
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It is therefore essential to quantify how finite-system size effects shape wave turbulence properties, particularly
in experiments where they strongly impact the dynamics. To investigate finite-size effects in gravity-capillary wave
turbulence, we use an experimental setup in which the water surface is perturbed locally and erratically by small
magnets partially submerged in water. This type of forcing generates waves with statistically homogeneous and
isotropic properties while minimizing direct excitation of the container’s sloshing modes, unlike horizontal oscillations
of the entire tank [26, 28, 32], which strongly excite such modes and collinear wave interactions that mask additional
confinement effects [28]. Here, we show experimental signatures of finite-system size effects in wave turbulence on the
wave spectrum, wave interactions, and typical timescales.

II. THEORETICAL BACKGROUNDS

The linear dispersion relation of inviscid linear deep-water waves on the infinite surface of a fluid reads [33]

ω2 = gk + γk3/ρ , (1)

where ω ≡ 2πf is the angular frequency, k is the wavevector (k ≡ 2π/λ = ||k||), g is the acceleration due to gravity,
and γ and ρ are the surface tension and density of the fluid, respectively. The first term of the right-hand member of
Eq. (1) corresponds to gravity waves, whereas the second term corresponds to capillary waves. The transition between

these two pure regimes occurs for λgc = 2π
√
γ/(ρg) close to 1 cm for most fluids. Waves with wavelengths near this

crossover are gravity-capillary waves which follow the dispersion relationship ω(k) given by Eq. (1).
Weakly nonlinear waves can interact with one another to transfer energy between waves. This nonlinear wave

interaction process is the fundamental mechanism of weak-turbulence theory. N nonlinear waves are in resonant
interactions when they simultaneously satisfy the following conditions on angular frequencies ωi and wavevector ki

ω1 ± ω2 ± · · · ± ωN = 0 and k1 ± k2 ± · · · ± kN = 0, with N ≥ 3, (2)

where each wave i = 1, 2, · · · , N follows the linear dispersion relation, ω(k), and ωi ≡ ω(||ki||). N is the minimal
number of waves for which Eq. (2) is satisfied, which thus depends on the geometry and wave dispersion relationship.
For instance, when waves propagate in two dimensions (2D), for pure capillary waves or gravity-capillary waves,
N = 3, and, for pure gravity waves, N = 4 [1–3]. When the linear dispersion relation is broadened by weakly
nonlinear or dissipative corrections, quasiresonant wave interactions are then possible, so that the two conditions of
Eq. (2) are approximately satisfied, such as

ω1 ± ω2 ± · · · ± ωN = 0 and k1 ± k2 ± · · · ± kN < ±δk, with N ≥ 3. (3)

δk = ||δk|| corresponds to the nonlinear broadening of the dispersion relation. This mismatch can be also written in
δω using Eq. (1). Note that the different signs ± need to be the same in each instance of Eq. (2) [or Eq. (3)]. Such
resonant and quasiresonant interactions have been experimentally evidenced, in particular, in gravity, gravity-capillary,
and capillary wave systems (see review [23]). Nonresonant wave interactions can also occur if the two conditions of
Eq. (2) are fulfilled, but at least one of the involved Fourier modes is not a free wave, i.e., it does not follow the linear
dispersion relation of Eq. (1), and is then called a bound wave. Such bound waves, propagating with the same velocity
as a carrier-free wave, lead to several additional branches in the dispersion relation in a ω− k plot [34–36]. However,
weak-turbulence theory needs resonant interactions (at the lowest nonlinear order) to build wave turbulence [1, 2]. In
some systems, such as internal gravity waves, nonlocal resonant interactions (i.e., involving modes with very different
wave-vector lengths or frequencies) are essential [37]. Finally, finite-size effects usually manifest through sloshing
modes in a bounded container [38], giving rise to additional sloshing branches in the ω − k spectrum, as reported for
surface waves in a fluid torus [39, 40]. Distinct regimes are then expected depending on the ratio of the nonlinear
spectral broadening (δk) to the mode spacing (∆k): frozen wave turbulence when δk � ∆k, discrete wave turbulence
and mesoscopic wave turbulence when δk ∼ ∆k, and continuous wave turbulence when δk � ∆k.

III. EXPERIMENTAL SETUP

A schematic diagram of the experimental setup used to investigate finite-size effects in gravity-capillary wave
turbulence is presented in Fig. 1a. The experiments are conducted in a rectangular transparent Plexiglass container,
with the length along the confined direction (x) adjustable in the range Lx ∈ [5, 100] cm using a movable wall, while
the unconfined direction is fixed at Ly = 50 cm. The aspect ratio AR ≡ Ly/Lx is thus changed by one and a half
decades in the range AR ∈ [0.5, 10]. The distilled-water depth is maintained at h = 2 cm to ensure a deep-water regime
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(a)

1cm

(b)
Magnet-case

FIG. 1. (a) Schematic diagram of the experimental setup used to generate waves in a confined environment. Random waves
are generated by two magnets partially submerged in the fluid, and energized by electromagnetic coils located beneath the
container. A movable partition changes the container aspect ratio by reducing the length in the x direction. A fringe pattern is
projected on the surface of water, and the spatiotemporal deformations of the fringes are recorded using a high-speed camera.
(b) Schematic diagram of the case used to suspend a magnet.

(λ < 2πh). Surface waves are generated by two prolate elliptical rare-earth magnets encased in a PTFE coating (1 cm
in diameter, 1.5 cm in length, magnetic moment µm = 0.8 A m2 [41]) and actuated by an electromagnetic coil [42]
positioned beneath the container, directly below each magnet. Each magnet is suspended by a flexible, nonextensible
1-mm diameter cotton cord at the two diagonally opposite corners of the container. The string lengths are adjusted
so that the magnets remain submerged just below the water surface. The erratic motion of each magnet is induced

by an AC vertical magnetic field ~B(t) generated by each electromagnetic coil, driven with a random noise current in
frequency (2± 0.5 Hz) and amplitude (see movie MagneticRandomForcing.mp4 in Supp. Mat. [43]). As the response
of each suspended magnet to such a magnetic field is not the same, this forcing generates waves with uncorrelated

properties. Typically, the time-dependent torque ~Γ(t) = ~µM × ~B(t) imposed by the coil on the magnet generates
its erratic motion [44–46]. This wave-forcing method is novel and was previously developed by our group to drive,
randomly in space and time, a granular gas [44–46] or three-dimension (3D) hydrodynamics turbulence [47–49]. The
forcing amplitude of the magnets is controlled by the current strength, I ∈ [3, 7] A, flowing into the coils from a 2 kW
power supply (QualitySource PA2000AB). Each magnet is housed inside a 3D-printed cubic shell, 1 cm in size (see
Fig. 1b). The top face of the cube features a circular hole that allows a cylindrical shell to rotate freely. A flexible,
nonextensible string is attached to this cylindrical shell to suspend the magnet assembly. The free rotation of the
cylinder within the hole of the case ensures that there is no torsion in the string when the coils energize the magnets.
A crucial feature of this forcing is that it does not directly excite the container’s sloshing modes, unlike when the
entire container is horizontally oscillated [26, 28, 32], thus potentially masking additional confinement effects when
investigated [28]. Our electromagnetic forcing also leads to a homogeneous wave field (see below) and mainly forces
the free surface rather than the bulk of the fluid (as is the case when flaps are used).

The fully space-and-time resolved surface wave-height field, η(x, y, t), is measured using Fourier transform profilom-
etry (FTP) [50, 51]. A sinusoidally-coded fringe pattern is projected by a full-HD video projector (Epson EH-TW3200)
on the water surface. When subjected to forcing, the deformations of the fringes are recorded using a high-speed
camera (Phantom v10), positioned above the fluid, at 120 fps and a spatial resolution of 112 × 1800 pixels2 corre-
sponding to a surface of S = 1.7 × 27.4 cm2 (along the x and y directions) around the center of the container. For
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better comparison, we kept the spatial resolutions in x- and y-directions constant, regardless of the confinement size.
It is ensured that the magnets were not in the field of view of the camera. To enhance water optical diffusivity
and clearly project the fringe pattern onto the water surface, a controlled amount of micrometric titanium dioxide
(TiO2) particles is added to water [52]. Previous studies have confirmed that TiO2 particles do not alter the water
surface tension and viscosity [53], ensuring that the measurements remain unaffected by the seeding particles. Due to
the deformation of the surface in the presence of waves, the phase information of the projected fringes changes with
respect to the fluid surface at rest (i.e., without forcing). This map of phase differences is then used to calculate the
wave-height field, η(x, y), at each time step. Then, a (2+1)D Fourier transform provides the wave-height field in the
Fourier space, η̂(kx, ky, ω), thus leading to the 3D spectrum of the wave height Sη(kx, ky, ω) ≡ |η̂(kx, ky, ω)|2/(ST )
with T = 60 s the acquisition time. The spatial periodicity of the projected fringe pattern is 2 mm. Note that,
for convenience, we compute the spectrum of the vertical-velocity field of the waves, v(x, y, t) = ∂η(x, y, t)/∂t, noted
Sv(kx, ky, ω). For all experiments, the wave steepness is weak enough to ensure that waves remain weakly nonlinear.
The wave steepness is indeed varied in a range ε ∈ [0.3, 2]%, which is experimentally quantified by the wave mean

slope as ε ≡ (
∫
S ||∇η(x, y, t)||2 dx dy/S)1/2 where · stands for a temporal average. The typical rms wave height is of

the order of 0.2 mm.

IV. FINITE-SIZE EFFECTS

A. Gradient of the wave field

To first identify the finite-size effects of the confinement, we display in Fig. 2 the experimental maps of the local
gradients of the wave field for different confinements Lx (at fixed Ly = 50 cm) corresponding to different container
aspect ratios AR. For simplicity, we select only one single Fourier mode (f∗ = 10 Hz) to show the wave field gradient

||∇η(x, y, f∗)||, corresponding to the local slope at each point (x, y) as ∇η(x, y) ≡ ∂η
∂x
~i + ∂η

∂y
~j. The value of f∗ is

chosen within the inertial range of the wave-turbulence cascade (see Sects. IV B and IV E). For the unconfined case
[Fig. 2(a)], the wave field is roughly homogeneous, mainly involving centimetric wavelengths as expected by λ(f∗)
using Eq. (1). On the contrary, with confinement [Fig. 2(b-d)], larger-scale waves are more present in the system than
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FIG. 2. Spatial profile of the wave field gradient ||∇η(x, y, f∗)||, near the center of the container, for different confinements
Lx (at fixed Ly = 50 cm) corresponding to different container aspect ratios AR ≡ Ly/Lx: (a) Lx = 100 cm (unconfined case
AR = 0.5), (b) Lx = 11 cm (AR = 4.54), (c) Lx = 8 cm (AR = 6.25), and (d) Lx = 5 cm (AR = 10). Only one single Fourier
mode (f∗ ≡ ω∗/2π = 10 Hz) is selected to estimate the wave field gradient. Random forcing: 2± 0.5 Hz. ε = 2%.
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in the unconfined case [Fig. 2(a)]. This phenomenon arises from the emergence of multiple branches in the dispersion
relation caused by the finite size of the container. We will present in the next Sect. IV B, spatiotemporal spectra at
different confinements showing that larger-scale waves are generated (at a fixed frequency) than those coming from the
unconfined dispersion relation of Eq. (1). This will also correspond to a transition from a continuous wave turbulence
cascade (without confinement) to a discrete wave turbulence (strong confinement) (see Sect. IV E).

B. Spatiotemporal spectrum of the wave field

Figure 3(a-d) shows the spatiotemporal spectra of the wave vertical-velocity field, Sv(ky, ω), along the y-direction
(at kx = 0), for different confinements Lx (at fixed Ly = 50 cm). Figure 3(a) corresponds to the spectrum for the
unconfined case, i.e., for the largest container (AR = 0.5), in which almost no finite-size effects occur. Indeed, the
wave energy is observed to spread from the forcing scales (. 2 Hz) down to smaller scales, over more than one decade
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FIG. 3. Spatiotemporal spectra of the wave vertical-velocity field, Sv(ky, ω), for different confinements Lx at fixed Ly = 50 cm
corresponding to different container aspect ratios AR ≡ Ly/Lx: (a) Lx = 100 cm (unconfined case AR = 0.5), (b) Lx = 11 cm
(AR = 4.54), (c) Lx = 8 cm (AR = 6.25), and (d) Lx = 5 cm (AR = 10). Log-scale colorbar. Random forcing: 2 ± 0.5 Hz.
ε = 2%. The white curve represents the theoretical dispersion relation of linear waves of Eq. (1), and the black dashed lines
represent different sloshing modes of Eq. (4). Dashed white lines in (a) correspond to the nonlinear broadening of the dispersion
relation ω(k ± δk) with δk/(2π) = 5 m−1.
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in frequency, around the theoretical dispersion relation of Eq. (1) (see white curve), thus indicating a wave turbulence
cascade [23]. Homogeneity is preserved for this unconfined case, as a similar spectrum is found in the x-direction.
When the aspect ratio is strongly increased [Fig. 3(b-d)], this wave turbulence regime is preserved in the unconfined
direction (and still well described by the white curve), but finite-size effects now occur. Indeed, a significant amount of
energy is now present outside the dispersion relation, in the form of several branches as shown in Fig. 3(b-d). Due to
the finite system size, only waves whose wavelengths are integer fractions of the system size can exist in the confined
direction, i.e., discrete modes kx = nπ/Lx, where n is an integer, and Lx is the length of the container in the confined
direction. The dispersion relation of Eq. (1) is thus affected by finite-size effects as

ω2 = gkn + γk3n/ρ with kn =

√(
nπ

Lx

)2

+ k2y . (4)

The black-dashed lines in Fig. 3(b-d) correspond to Eq. (4) for n > 0 and different values of Lx. Each branch
corresponds to one of the modes given by the value of n = 1, 2, 3, . . . . These branches appear in the spectral energy
along the unconfined direction, when the discrete modes (kx = nπ/Lx) in the confined direction contribute enough
to modify the wavenumber modulus in Eq. (4). These branches are thus sloshing branches. When the confinement
of the container is relaxed (Lx is increased), we observe two additional effects: (i) the number of visible branches
increases [e.g., from six in Fig. 3(d) to thirteen in Fig. 3(b)], and (ii) the sloshing branches are getting closer together
and become denser as they approach the dispersion relation. This is a consequence of the kx = nπ/Lx term in Eq. (4)
which governs the spacing between the discrete modes. Moreover, for fixed ky and n, the frequency of the discrete
mode decreases as Lx increases and approaches the forcing frequency (. 2 Hz). When Lx is large enough that there is
almost no confinement [Fig. 3(a)], sloshing branches thus vanish, and only the wave turbulence regime remains. This
analysis was focused on the y-direction, where the spatial resolution enables highly accurate spectral measurements,
particularly valuable under strong confinement conditions.

FIG. 4. Experimental low-frequency cutoffs of sloshing modes [from Fig. 3(b-d)], for different confinements (see symbols) and
all tested wave steepnesses ε, as a function of the theoretical prediction, ftheo, of Eq. (5) with n = 1, 2, 3, . . .. The black dashed
line has a slope of one.

C. Sloshing modes

The intersection of a sloshing branch with the ω-axis in Fig. 3(b-d) provides its experimental low-frequency cutoff,
ωc/(2π). For all branches and all confinements, these cutoff frequencies are plotted in Fig. 4, as a function of their
theoretical value,

ftheo =
1

2π

√
g

(
nπ

Lx

)
+
γ

ρ

(
nπ

Lx

)3

, (5)
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obtained by substituting ky = 0 in Eq. (4) for each value of n. We observe that the theoretical predictions are in
perfect agreement with the experimental values, as shown by the dashed-line slope of one, and independent of the
tested wave steepnesses and confinements.

D. Role of the wave steepness

Let us now focus on the effect of the wave steepness ε at a fixed confinement. The spatiotemporal spectra of
the wave vertical-velocity field, Sv(ky, ω), are shown in Fig. 5 for different wave steepnesses ε, and for the strongest
confinement (Lx = 5 cm). As explained in Sect. III, different wave steepnesses are achieved by forcing magnets using
different strengths of the random current feeding the coils. We keep the same logarithmic scale for the wave-energy
magnitude in Fig. 5 to focus on the emergence of sloshing modes and the wave turbulence cascade. At the lowest
ε, part of the energy injected at large scales spreads towards small scales around the dispersion relation, while a few

(a)  = 0.0036

0 50 100 150 200

k
y
 /2  (m

-1
)

0

5

10

15

20

25

30

35

40

 
/2

 (
H

z
)

-12

-10

-8

-6

-4

-2

0
(b)  = 0.017

0 50 100 150 200

k
y
 /2  (m

-1
)

0

5

10

15

20

25

30

35

40

 
/2

 (
H

z
)

-12

-10

-8

-6

-4

-2

0

(c)  = 0.0204

0 50 100 150 200

k
y
 /2  (m

-1
)

0

5

10

15

20

25

30

35

40

 
/2

 (
H

z
)

-12

-10

-8

-6

-4

-2

0

FIG. 5. Spatiotemporal spectra of the wave vertical-velocity field, Sv(ky, ω), for the strongest confinement (Lx = 5 cm) and
different wave steepnesses: (a) ε = 0.36%, (b) ε = 1.7%, and (c) ε = 2% [same as Fig. 3(d)]. Log-scale colorbar. Random
forcing: 2± 0.5 Hz. Experimental data in Fig. 5(c) are the same as in Fig. 3(d).
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v (ω), for different confinements Lx ∈ [5, 11] cm and the unconfined case Lx = 100 cm (from bottom to top).

Spectra are vertically shifted for clarity. Random forcing: 2 ± 0.5 Hz. For the strongest confinement (Lx = 5 cm), vertical
dashed lines in (a) represent the theoretical cutoff frequencies of sloshing modes of Eq. (4) with ky = 0, with n = 1 to 6.

branches of sloshing modes start to emerge. At increased nonlinearity (but still weak), the main branch broadens, and
the wave-turbulence energy cascade is visible up to much smaller scales, while additional sloshing branches appear.
These observations highlight the onset of finite-container size effects for weak increasing nonlinearities.

E. Frequency spectrum

We now compute the frequency spectra of the wave vertical velocity, Sv(ω), for different confinements. The frequency
spectra along the confined direction, Sxv (ω), and along the unconfined direction, Syv (ω), are plotted in Fig. 6 to compare
the container finite-size effects on wave directions. The frequency spectrum is obtained from the spatiotemporal
spectrum Sv(kx, ky, ω) as Syv (ω) ≡

∫
Sv(kx = 0, ky, ω)dky for the unconfined direction, and Sxv (ω) ≡

∫
Sv(kx, ky =

0, ω)dkx for the confined direction. The Fourier spectrum in the confined direction, Sxv (ω) in Fig. 6(a), is completely
different from that in the unconfined direction, Syv (ω), in Fig. 6(b). Remarkably, Sxv (ω) in Fig. 6(a) shows a transition
from a continuous spectrum for the unconfined case (Lx = 100 cm) to a discrete spectrum for confined cases (Lx = 5
and 11 cm), whereas the spectrum in the unconfined direction, Syv (ω), is continuous regardless of the confinement
level.

The distinct peaks present in the Sxv spectrum, in Fig. 6(a), well correspond to the theoretical cutoff frequencies of
the sloshing branches of Eq. (4) with ky = 0 (see vertical dashed lines) due to the confinement. These peaks become less
separated and shift to lower frequencies when the confinement is relaxed, as expected by Eq. (4). These observations
are consistent with the one reported experimentally for a horizontal forcing [28] and with predictions [10, 14].

On the contrary, the Syv (ω) spectrum, in Fig. 6(b), is continuous and displays a frequency power-law cascade
corresponding to a gravity-capillary wave turbulence cascade. The best power-law fit typically gives Syv (ω) ∼ ω−5

for the wave vertical-velocity spectrum, meaning thus to a steeper spectrum for wave heights η, Syη (ω) ∼ ω−7. This

exponent thus deviates significantly from weak-turbulence predictions in the pure gravity regime, Sgη ∼ ω−4 [54], and

in the pure capillary regime, Scη ∼ ω−17/6 [55]. The deviation of the power-law exponent of the frequency spectrum
in the gravity regime has previously been reported in several experiments (see [23] for a review), and it depends on
several factors such as wave steepness [18, 27, 56–58], bound waves [35, 36], dissipation [27, 32], and the container’s
shape [26], but not on the confinement as observed here and in [28]. Note that a steepening of the gravity-wave
spectrum due to finite-size effects has been only numerically reported [59].
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F. Three-wave interactions

Weakly nonlinear wave interactions lead to an energy transfer between waves towards smaller scales (as observed
in Figs. 3 and 5). At the lowest order in nonlinearity, three-wave interactions (N = 3) are predicted to occur for pure
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lines, around the solid line, corresponds to quasiresonant 1D wave interaction conditions satisfying Eq. (3) with scalar k, N = 3,
δk/(2π) = 5 m−1 and ω(k) given by Eq. (1). (b-d) Experimental bicoherence [estimated from Eq. (6)] of the wave vertical-
velocity field showing the existence of three-wave interactions along (b) the confined x-direction, (c) the unconfined y-direction,
and (d) all directions (total wave field). Strong confinement Lx = 7 cm (AR ' 7.1), random forcing (2±0.5 Hz), and ε = 0.5%.
White curves: solutions of interaction conditions of Eq. (2) (solid) or Eq. (3) (dashed), for N = 3, between waves belonging
only to the dispersion relation of Eq. (1). Pink curves: solutions of interaction conditions between waves from the first sloshing
branch [Eq. (4) with n = 1] and waves from the dispersion relation of Eq. (1). The pink curves almost cover the white ones.
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capillary waves and for gravity-capillary waves to satisfy the resonance conditions of Eq. (2) [1, 2, 23]. In contrast,
four-wave interactions (N = 4) are solutions for pure gravity waves. Let us consider three-wave interactions between
gravity-capillary waves satisfying the linear dispersion relation of Eq. (1). The geometrical solution of Eq. (2) with
N = 3 [i.e., ω1 + ω2 = ω3 and k1 + k2 = k3 with ω(ki) given by Eq. (1)] is shown in Fig. 7(a) and highlights the
domain of existence of resonant waves. No three-wave resonant solution exists for small frequency values in the (ω1,
ω2) space, as waves are pure gravity waves. The red solid curve represents the boundary case where only 1D resonant
interactions exist, in which two collinear gravity-capillary waves interact to create a third wave propagating in the
same direction. The gray region above this solid line (i.e., for sufficiently large values of ω1 and ω2) represents the
solutions of resonant interactions between waves propagating in distinct directions (i.e., 2D- or noncollinear-resonant
interactions). Furthermore, as mentioned in Sect. I, quasiresonant wave interactions can exist if they satisfy the
conditions given by Eq. (3), where the exact resonant conditions of Eq. (2) have been relaxed by δk that quantifies
the nonlinear broadening of the dispersion relation. The region, where these quasiresonant interaction solutions exist,
is bounded by the dashed lines in Fig. 7(a) around the solid line.

To probe the possible existence of three-wave interactions in our experiments, we compute the normalized third-
order correlations in frequency of the wave vertical-velocity field, or bicoherence [32, 60, 61]

B(ω1, ω2) ≡
|〈v̂x,y(ω1)v̂x,y(ω2)v̂∗x,y(ω1 + ω2)〉|√
〈|v̂x,y(ω1)v̂x,y(ω2)|2〉〈|v̂x,y(ω1 + ω2)|2〉

, (6)

where v̂x,y(ω) =
∫
T v(x, y, t)e−iωt dt is the frequency Fourier transform of wave vertical velocity at (x, y) over T =

20 min, ∗ denotes its complex conjugate, and 〈·〉 represents an average over the entire space. The normalization
is chosen to bound B(ω1, ω2) between 0 (no correlation) and 1 (perfect correlation). Figure 7(b-d) then shows the
experimental bicoherences for a strong confinement (Lx = 7 cm) computed along the confined direction [Fig. 7(b)],
the unconfined direction [Fig. 7(c)], and for all directions [Fig. 7(d)]. We also plot the theoretical solutions of resonant
interactions of Eq. (2) (white solid lines) and of quasiresonant interactions of Eq. (3) with N = 3 and a nonlinear
broadening of δk/(2π) = 5 m−1 (white dashed lines). Pink curves correspond to the solutions of interaction conditions
between waves from the first sloshing branch [Eq. (4) with n = 1] and waves from the dispersion relation of Eq. (1).
The pink curves almost cover white ones, corresponding to waves that belong only to the dispersion relation of Eq. (1).

In the confined direction [Fig. 7(b)], very few wave interactions are observed. This is because modes are depleted
in this direction due to confinement, and thus they take discrete values. The frequencies ω1 (or ω2) of the red
region on the figure are below the forcing frequency (' 2 Hz). Henceforth, they have no significance in terms of
bicoherence. However, the green-cyan region, above the solid line of the 1D resonant interaction, shows 2D resonant
interactions in the confined direction, filling almost all the (ω1, ω2) parameter space homogeneously. This result
contrasts strongly with the dotted pattern observed when the confined container is horizontally oscillating [32] rather
than homogeneously forced as here. The bicoherence along the unconfined direction [Fig. 7(c)] shows much stronger
2D resonant interactions. No collinear (1D) resonant interaction is observed here, in contrast to the ones reported
when the container is horizontally oscillating [32], which dominate and mask the confinement effects reported here.
We see in Fig. 7(b) that 2D resonant wave interactions along the confined direction are strongly depleted with respect
to the ones in Fig. 7(c) along the unconfined direction. Indeed, Fourier modes are not discrete in the unconfined
direction, and more waves belonging to the dispersion relation and the sloshing branches [Eq. (4)] are present to
interact. The bicoherence of the full wave field (i.e., in all directions) in Fig. 7(d) resembles that of the unconfined
direction, which is not affected by the confinement. Finally, we have verified that the bicoherence, in the unconfined
case, yields results qualitatively similar to those in Fig. 7(c,d).

G. Discreteness timescale

Weak turbulence theory assumes a timescale separation (regardless of ω in the inertial range) [2], between the linear
time τlin, the nonlinear time τnl, the dissipation time τdiss (quantifying dissipative effects), and the discreteness time
τdisc (quantifying finite-system size effects) [23, 24, 61], as

τlin(ω)� τnl(ω)� [τdiss(ω); τdisc(ω)]. (7)

The nonlinear evolution is thus assumed to be slow compared to the fast linear oscillations (wave period) but short
compared to the typical wave dissipation time and the time linked to finite-size effects, enabling an energy cascade
to occur in the inertial range. The evolutions of these timescales with frequency are plotted in Fig. 8. The linear
timescale is defined as τlin = 1/ω (black solid line). The nonlinear timescale τnl (circles) is experimentally inferred from
the wave energy broadening around the dispersion relation of Fig. 3, as 1/δω with δω the full-width-at-half maximum
of a Gaussian fit at each wavenumber. The dissipation timescale τdiss (black solid line) is computed as τdiss =
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2
√

2/[k(ω)
√
νω], the main viscous contribution from the surface boundary layer with an inextensible film [33, 62],

as contaminants are present [63]. The discreteness time τdisc (dashed lines) is computed as τdisc = 1/∆ωdisc with
∆ωdisc = (∂ω/∂k)∆k [23] and ∆k = 2π/Lx, the first eigenmode of the tank, that is

τdisc(ω) =

(
∂ω

∂k
∆k

)−1
=
Lx
π

√
k

g

√
1 + (k/kgc)2

1 + 3(k/kgc)2
, (8)

where k(ω) is as in Eq. (1), and kgc ≡
√
ρg/γ is the crossover wavenumber between gravity and capillary regimes (the

inverse of the capillary length). The discreteness time of Eq. (8) is maximum for kgc/3, and reads τgdisc(ω) = Lx

π

√
k
g =

Lx

π
ω
g for pure gravity waves and τ cdisc(ω) = Lx

3π

√
ρ
γk = Lx

3π ( ρ
gω )1/3 for capillary waves [23]. No discreteness effect is

expected for τnl(ω) < 2τdisc(ω), i.e., when the nonlinear spectral widening is larger than the half-frequency separation
between adjacent eigenmodes. When τnl(ω) > 2τdisc(ω), discrete or mesoscopic turbulence should occur, that is for
f < ffroz. The critical (or “frozen”) frequency ffroz is defined as τnl(ffroz) = 2τdisc(ffroz) (see Fig. 8). These finite-size
effects are highlighted in the spectra along the confinement direction of Fig. 6a by the emergence of a well-defined
series of local peaks. When the confinement is gradually relaxed, a smooth transition towards a continuum spectrum
is observed in Fig. 6a, in agreement with the timescales of Fig. 8. Indeed, the timescale-separation assumption of
wave turbulence, as given by Eq. (7), is well validated experimentally in the inertial range for the unconfined case
(Lx = 100 cm), thus confirming a wave turbulence spectrum up to 20 Hz. As the discreteness time decreases with
decreasing Lx, finite-size effects become more significant, thereby reducing the inertial range of a continuous spectrum
in favor of a discrete spectrum. Finally, note that another critical balance occur when τl(ωcb) = τdisc(ωcb), that is for

fcb '
√
g/(8πLx), strongly breaking the timescale separation hypothesis for f < fcb. This balance is not achieved

experimentally, as it occurs within the forcing range (2± 0.5 Hz).

FIG. 8. Wave turbulence timescales as a function of wave frequency. Bottom solid-black line: linear timescale τlin = 1/ω. Circles:
experimental nonlinear timescale τnl for the strongest confinement (Lx = 5 cm - blue) and unconfined case (Lx = 100 cm -
green), estimated from Fig. 3(a) and Fig. 3(d). Top black curve: linear viscous dissipation timescale τdiss (see text). Dashed
lines: discreteness time τdisc of Eq. (8) for the strongest confinement (Lx = 5 cm - blue) and unconfined case (Lx = 100 cm -
green). Same colors as in Fig. 6. The critical frequency ffroz separates discrete wave turbulence (f < ffroz) from mesoscopic
continuous wave turbulence (f > ffroz). fcb corresponds to a critical balance frequency.

V. CONCLUSIONS

We experimentally investigated the influence of the finite-container size on weakly nonlinear random gravity-
capillary surface waves. By locally forcing the fluid with magnets driven erratically by electromagnetic coils, we
generated a homogeneous and isotropic random wave field without the dominant effect of global forcing, such as
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in horizontally oscillated tanks. Our spatiotemporal measurements reveal multiple branches in the spatiotemporal
wave-energy spectrum in the unconfined direction, corresponding to sloshing modes of the confined direction. We
showed that their cutoff frequencies at zero wavenumber and spectral properties can be tuned by varying either
the confinement or the wave steepness. Moreover, the frequency wave spectrum in the confined direction displays
discrete peaks in contrast to the continuous frequency power law in the unconfined direction. Using high-order cor-
relation analysis, we demonstrate that two-dimensional three-wave resonant interactions are significantly depleted in
the confined direction, whereas the unconfined direction retains these resonant interactions, resulting in continuous
wave turbulence. These results thus indicate discrete wave turbulence in the confined direction, and mesoscopic wave
turbulence in the unconfined direction, as the continuous frequency spectrum in this direction is also affected by con-
finement. As the confinement is gradually relaxed, we further show a smooth transition from discrete to continuous
wave turbulence, consistent with the respective behaviors of the nonlinear and discreteness timescales. These findings
establish that finite-system size effects deeply alter wave turbulence by reshaping spectral distributions and deplet-
ing two-dimensional resonant interactions along confined directions. They thus open the way to a more systematic
understanding of how geometry constrains wave turbulence, with implications in both laboratory and geophysical
systems.
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