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We report the first observation of axisymmetric solitary waves on the surface of a cylindrical magnetic

fluid layer surrounding a current-carrying metallic tube. According to the ratio between the magnetic and

capillary forces, both elevation and depression solitary waves are observed with profiles in good

agreement with theoretical predictions based on the magnetic analogue of the Korteweg–de Vries

equation. We also report the first measurements of the velocity and the dispersion relation of axisymmetric

linear waves propagating on the cylindrical ferrofluid layer that are found in good agreement with

theoretical predictions.
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Solitary waves or solitons are localized nonlinear waves
that propagate almost without deformation due to the
balance between the nonlinearity and the dispersion.
Since the first observation of a solitary wave on the free
surface of water by Russell [1], and its interpretation using
the Korteweg–de Vries equation (KdV) [2], it has been
shown that the KdV equation describes a large class of
solitons observed in various situations: acoustic waves on a
crystal lattice, plasma waves, hydrodynamics internal or
surface waves, elastic surface waves, and waves in optical
fibers [3]. Most of them involve a localized elevation
disturbance propagating within a quasi-one-dimensional
plane system. Observations of axisymmetric solitary waves
governed by the KdV equation are scarce [4], and mainly
concern waves in rotating fluids confined in a tube or on
vortex lines. More recently, Bashtovoi et al. derived a KdV
equation with an axisymmetric solitary wave solution
propagating on the surface of a cylindrical magnetic fluid
layer submitted to a magnetic field [5,6]. Without gravity,
the stability of the cylindrical magnetic fluid layer is
governed by the ratio between the magnetic force and the
capillary one. According to its ratio, axisymmetric eleva-
tion (humplike) or depression (holelike) solitary waves are
predicted with a subsonic or supersonic velocity [5,6]. To
our knowledge, direct observation of axisymmetric mag-
netic solitary waves has never been reported.

In this Letter, we report the first observation of axisym-
metric solitary waves on the surface of a cylindrical ferro-
fluid layer submitted to an azimuthal magnetic field.
Depending on the strength of the field, elevation or depres-
sion solitary waves are observed on the ferrofluid surface.
A ferrofluid is a stable suspension of nanometric magnetic
particles diluted in a carrier liquid (water or oil) that
responds to an external applied magnetic field [7,8].
Although the solitary waves are damped by viscous dis-
sipation, we have shown that they keep the self-similar
profile given by the solution of the KdV equation on a
propagation length larger than their typical scale.

Moreover, we also report the first measurement of the
velocity and dispersion relation of axisymmetric magnetic
linear waves in this system in good agreement with the
theoretical predictions [9].
The experimental setup is shown in Fig. 1. It consists of

a cylindrical copper tube (50 cm in length, a ¼ 1:5 mm in
outer radius, and 0.5 mm in thickness) placed in the middle
of a rectangular Plexiglas container (40� 40 mm2 side
and 30 cm length) crossing both container end sides in
the center through hollow waterproof screws. A dc electri-
cal current I in the range 0–100 A is applied to the
cylindrical conductor by means of a power supply. The
current generates circular magnetic field lines around the
tubewith a radial decreasing amplitude. The corresponding
radial magnetic force stabilizes a ferrofluid layer of outer
radius 2:9 � R � 5 mm, around the tube. For the results
reported below, R ¼ 3:8 mm for linear waves and R ¼
3:3 mm for solitary waves. The ferrofluid used is an ionic
aqueous suspension synthesized with 12.4% by volume of
maghemite particles (Fe203, 7� 0:3 nm in diameter) [10].
The properties of this magnetic fluid are density, � ¼
1534� 1 kg=m3, initial magnetic susceptibility, �i ¼
0:75, magnetic saturation Msat ¼ 36� 103 A=m, and esti-
mated dynamic viscosity 1:4� 10�3 N s=m2. To avoid
gravitational effects, the whole container is filled with
Freon (C2Cl3F3), a nonmiscible transparent fluid with a
density, �e ¼ 1581� 1 kg=m3, close to the ferrofluid one.
The surface tension between the ferrofluid and Freon is
� ¼ 5:5� 10�3 N=m. A water cooling inside the tube

FIG. 1 (color online). Experimental setup.
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drains off the Joule dissipation of the current-carrying
electrodes (their contact resistance being 13:8 m�, that
is a dissipated power of roughly 140 W for I ¼ 100 A).
The metallic tube is tightened to avoid parasitic vibration.
Namely, one end of the tube is threaded to fix it with a nut,
and a small chuck is used at the other end to tighten it.
Surface waves are generated on the ferrofluid surface by
the horizontal motion of a concentrical Plexiglas tube,
9 mm (3 mm) in outer (inner) diameter driven by an
electromagnetic vibration exciter. The wave maker is
driven sinusoidally (in a frequency range from 0.5 to
10 Hz with a maximal amplitude of 2 mm) to study linear
waves, or impulsively (typical duration of 0.05 s) to study
solitary waves. Note that the wave maker end is made of
copper in order to increase the ferrofluid wetting.
Axisymmetric waves propagating on the cylindrical ferro-
fluid layer are visualized with a high-resolution camera
(Pixelink 2208� 3000 pixels) located above the con-
tainer, and are recorded with a 25 Hz (44 Hz) sampling
for linear (solitary) waves.

The magnetic induction generated by the carrying-
current tube is up to 30 G at 100 A at a distance r ¼
8 mm from the tube axis, that is the z axis of the (r, �, z)
cylindrical coordinate system. The magnetic induction

being orthoradial ~B ¼ ½Br ¼ 0; B� � B;Bz ¼ 0�, i.e.,
throughout tangential to the free surface, the Rosensweig
magnetic surface instability is absent [7,11]. B is measured
with a transverse Hall probe via a Gauss meter (Bell 5100)
as a function of the current and the distance r from the tube
in agreement with the usual law B ¼ �0I=ð2�rÞ for r � a,
where �0 ¼ 4�� 10�7 H=m is the magnetic permeabil-
ity of the vacuum. The corresponding magnetic body force,
~Fmag ¼ ��0�I

2=ð4�2r3Þ ~er, is radial towards the z axis.

Since gravity is negligible (�e ’ �), this magnetic force
stabilizes a uniform axisymmetric layer of a magnetic fluid
of outer radius R as soon as the capillary force by volume
Fcap � �=R2 is small enough. Both magnetic and capillary

effects are then compared by the dimensionless magnetic
Bond number Bom � Fmag=Fcap ¼ �0�I

2=ð4�2�RÞ.
Assuming no gravity and a thin tube radius (a 	 R), the

dispersion relation of inviscid axisymmetric linear waves
propagating on a magnetic fluid surface reads [9,11]

!2 ¼ �

�R3
kR½Bom � 1þ ðkRÞ2� I1ðkRÞ

I0ðkRÞ ; (1)

where ! � 2�f is the angular frequency and k � 2�=�
the wave number, In and Kn being, respectively, the modi-
fied Bessel functions of first and second kind of order n
(their ratio being a positive increasing function of k). When
Bom � 1, the capillary effects are greater than the mag-
netic ones, and an instability occurs [!2 � 0 in Eq. (1)]:
the cylindrical ferrofluid layer is unstable to disturbances
whose wavelengths � � 2�R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bom � 1

p
, and breaks up

into a string of connected drops [9,12]. This is the magnetic
analogue of the surface-tension-driven Rayleigh-Plateau

instability when a thin cylindrical jet of a usual fluid breaks
into a set of drops [13]. When Bom > 1, one has !2 > 0 in
Eq. (1): the cylindrical layer of ferrofluid is stable whatever
the wavelength disturbance, and axisymmetric linear
waves can propagate on its surface.
We first measure the dispersion relation of such linear

waves. The wave maker is driven sinusoidally in order to
generate surface waves at the interface between the Freon
and the ferrofluid. A typical snapshot of such axisymmetric
linear waves is shown in the bottom inset of Fig. 2. The top
inset of Fig. 2 shows the wavelength � of surface waves in
response to the forcing frequency f for different applied
currents I, that is, for different Bom � I2 ranging from 1 to
12. � is found to decrease with increasing frequency what-
ever Bom. When expressed in the rescaled variables
!2=f½Bom � 1þ ðkRÞ2��=ð�R3Þg and kR, all these data
collapse on one single master curve (solid line) predicted
by Eq. (1) (see Fig. 2). Note that no adjustable parameter is
used when comparing the data and the theoretical disper-
sion relation of axisymmetric magnetic surface waves.
Using the expansion of the modified Bessel functions

I1ðxÞ
I0ðxÞ � x

2 � x3

16 [14], the dispersion relation of Eq. (1) in a

long-wavelength limit (kR 	 1) reads [6]

! ¼ c0k

�
1� 1

16

Bom � 9

Bom � 1
k2R2

�
;

c0 ¼
ffiffiffiffiffiffiffi
�

�R

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bom � 1

2

s
;

(2)

where c0 is the velocity of linear waves for Bom > 1. Note
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FIG. 2 (color online). Dimensionless dispersion relation of
linear cylindrical waves for various applied currents I from 40
to 100 A corresponding to Bom ¼ 1:85 (�), 2:69 (+), 4.17 (v),
4.89 (4), 5.67 (e), 6.51 (
), 7.4 (5), 8.36 (e), 9.37 (*),
10.44 (h), and 11.57 (x). Solid line corresponds to the theo-
retical prediction of Eq. (1). Top inset: Frequency f as a function
of the wavelength � for different I with a 10 A step. Dashed lines
are from Eq. (1). Bottom inset: Snapshot of linear waves (f ¼
3:5 Hz, Bom ¼ 6:5—wave maker is visible on the left-hand
side—10 cm size window).
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that both c0 and the sign of the dispersive term �k3 in
Eq. (2) depend on Bom. In order to extract the velocity of
linear waves, the inset of Fig. 3 displays the previous data
in variables !=ðc0=RÞ and kR. As expected, for small kR,
all the data collapse on a single linear curve of slope 1.
Note that for larger kR and for Bom ’ 1, a departure from
the prediction of the linear term of Eq. (2) is observed since
the dispersive effects become important [i.e., the
k2=ðBom � 1Þ term in Eq. (2)]. For kR 	 1, the slope of
each curve ! vs k thus gives, for each Bom value, a direct
measurement of the velocity of linear waves. These values
are plotted in Fig. 3 and are found in rough agreement with
the theoretical velocity of Eq. (2) with no adjustable pa-
rameter. To our knowledge this is the first measurement of
the velocity and dispersion relation of axisymmetric mag-
netic linear waves on the surface of a ferrofluid.

Let us now focus on axisymmetric magnetic solitary
waves. First, let us assume no viscosity and no gravity. In
the long-wavelength limit (kR 	 1), the dispersion is
small and the linear wave velocity is c0. When the interface
deflection Aðz; tÞ is also small, such that nonlinear effects
have the same order of magnitude as dispersive ones, it is
governed at the leading order by a magnetic analogue of
the Korteweg–de Vries equation [5,6]

At þ c0Az þ �AAz þ 	Azzz ¼ 0; (3)

with � ¼ 2Bom�3

23=2
ffiffiffiffiffiffiffiffiffiffiffiffi
Bom�1

p ffiffiffiffiffiffiffi
�

�R3

q
the nonlinear coefficient,

	 ¼ Bom�9

29=2
ffiffiffiffiffiffiffiffiffiffiffiffi
Bom�1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3�=�

p
the dispersive coefficient, and

Bom > 1. The axisymmetric magnetic solitary wave solu-
tion of Eq. (3) reads [5,6]

Aðz; tÞ ¼ A0sech
2

�
z� ct

L

�
; L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3R3

2A0

Bom � 9

2Bom � 3

s
;

(4)

with c the velocity of solitary wave

c ¼ c0

�
1þ A0

6R

2Bom � 3

Bom � 1

�
; (5)

and L is the length scale of the solitary wave. Equations (4)
and (5) show that there exists a continuous family of
soliton solutions with parameter A0 (the extremum ampli-
tude of the wave). Since �, 	, c, and L depend on Bom, an
elevation (A0 > 0) or depression (A0 < 0) solitary wave is
predicted that propagates with a supersonic (c > c0) or
subsonic (c < c0) speed. All the possible solutions are
summarized in Table I.
We have performed a study of axisymmetric solitary

waves on the surface of the ferrofluid layer (R ¼
3:3 mm) around a copper tube carrying current in the range
60–110 A (4 � Bom � 14). We impulsively drive the
shaker to generate solitary waves: the wave maker is
pushed forward to generate a pulse on the fluid interface
leading to either an elevation or a depression pulse accord-
ing to the value of Bom. The interface deflection Aðz; tÞ is
detected from the images recorded by the camera using
standard IMAGEJ binarization and edge detection processes.
The profile is displayed in Fig. 4(a) for a depression pulse
(Bom ¼ 8:3) and in Fig. 4(b) for an elevation pulse (Bom ¼
10:5). Both recordings are in good agreement with the
profiles of elevation and depression KdV solitary waves
given by Eq. (4). Note that once A0 is known the theoretical
profile as well as the velocity of the solitary wave given by
Eqs. (4) and (5) do not involve any adjustable parameter.
Those isolated pulses involve typical amplitude and size
that are in the range of validity required for the derivation
of Eq. (3), that is, corresponding to small dispersion (L2 �
R2), and small nonlinearities (jA0j 	 R), both of the same
order of magnitude (R3 � jA0jL2). Note that no solitary
wave has been observed for Bom < 4 since its predicted
amplitude (A0 � few mm for L� 1 cm) is too large com-
pared to our radius R to have small nonlinearities. The inset
of Fig. 4(a) [Figure 4(b)] shows the profile of the depres-
sion (elevation) pulse recorded at different times corre-
sponding to a total propagation distance up to 10 times
its typical size. The recorded profiles are in good agree-
ment with the KdV magnetic solitary wave all along the
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FIG. 3 (color online). Velocity of linear axisymmetric mag-
netic waves as a function of rescaled magnetic Bond number.
Experimental (r) and theoretical [solid line of Eq. (2)] linear
wave velocity c0. Dashed line: Theoretical solitary wave velocity
c of Eq. (5) with A0 ¼ 0:5 mm, R ¼ 3:8 mm (see text). Dash-
dotted lines correspond to Bom ¼ 3=2 and 9. Inset: Rescaled
dispersion relation !=ðc0=RÞ vs kR. Same symbols as Fig. 2.
Solid line has a slope 1.

TABLE I. Properties of axisymmetric solitary wave solution of
Eqs. (4) and (5) according to the magnetic Bond number.

Bom � 	 c A0 Solitary wave

1< Bom < 3=2 � � <c0 þ Subsonic elevation

3=2< Bom < 9 þ � <c0 � Subsonic depression

Bom > 9 þ þ >c0 þ Supersonic elevation
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propagation. Note, however, that for farther distances the
cumulative effect of dissipation leads to small amplitudes
that are hardly measurable by the camera (0:04 mm=pixel).
For both the elevation and depression solitary waves, dis-
sipation leads to an extremum amplitude A0ðzÞ that de-
creases linearly with the propagation distance z. By
rescaling all the profiles displayed in each inset of Fig. 4
with the variables jAðzÞ=A0ðzÞj vs z=L, all the data lie on a
single curve predicted by Eq. (4) (not shown here). This
means that the pulse keeps a self-similar shape over a
distance up to 10 times its typical size and is in a good
agreement with the profile derived from KdV magnetic
equation. Finally, the solitary wave velocity c is measured
all along its propagation by the successive locations of
amplitude extrema, jA0ðzÞj, at different times. We find
that c ’ c0 (�few cm=s) with a dependence on Bom

roughly comparable to that predicted by Eq. (2). Note
that c is predicted by Eq. (5) to slightly depend on A0

with a correction with respect to c0 up to 10%when Bom �
10 (see dotted line in Fig. 3). Since our velocity measure-
ment accuracy is 6%, we cannot thus discriminate from a
subsonic to a supersonic solitary wave as predicted in
Table I (see also Fig. 3).
In conclusion, we have reported the first observation of

depression and elevation axisymmetric solitary waves on
the surface of a cylindrical magnetic fluid layer and found
that their shapes are in good agreement with the ones
predicted from the axisymmetric KdV solitary wave solu-
tions. A possible extension of this work would be the study
of the collisions between these new solitary waves.
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FIG. 4 (color online). (a) Axisymmetric profile of a depression
magnetic solitary wave for Bom ¼ 8:3 (I ¼ 80 A), t ¼ 0:33 s,
(b) elevation magnetic solitary wave for Bom ¼ 10:5ðI ¼ 90 AÞ,
t ¼ 0:32 s, centered on its extremum. Solid lines are the theo-
retical profiles of KdV solitons derived from Eq. (4) with no
adjustable parameter. Insets: Profiles of solitary waves at differ-
ent times [(a) 0.16, 0.33, 0.47, 0.62, and 0.74 s; (b) 0.17, 0.32,
0.47, 0.58, and 0.65 s] during its propagation over 10 times its
typical size L� 4 mm. Initial amplitudes A0 ¼ �0:5 mm. R ¼
3:3 mm. z-axis origin is located on the wave maker.
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