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Univ Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, F-75 013 Paris, France
(Received 21 July 2011; revised manuscript received 7 October 2011; published 11 November 2011)

Capillary origami is the wrapping of a usual fluid drop by a planar elastic membrane due to the interplay

between capillary and elastic forces. Here, we use a drop of magnetic fluid whose shape is known to

strongly depend on an applied magnetic field. We study the quasistatic and dynamical behaviors of such a

magnetic capillary origami. We report the observation of an overturning instability that the origami

undergoes at a critical magnetic field. This instability is triggered by an interplay between magnetic and

gravitational energies in agreement with the theory presented here. Additional effects of elasticity and

capillarity on this instability are also discussed.
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Generally, a solid in contact with a static liquid interface
is undeformed by surface tension forces at large scales.
However, for submillimetric scales or when gravity is
negligible, capillary forces may deform an elastic structure
in various domains (see [1] for a review): adhesion (coales-
cence of wet hairs [2]), biological systems (floating flowers
[3]), or industrial applications (microscale fabrication
such as 3D photovoltaic cells or microelectromechanical
systems [1]). The most well-known phenomenon involving
the interplay between elasticity and capillarity is capillary
origami. It concerns the spontaneous wrapping of a liquid
droplet by a planar elastic sheet when the capillary forces
dominate the restoring elastic ones [4,5]. Various folding
shapes (spherical, cubic, or triangular encapsulation) can
then be tuned from the geometry of the initial flat mem-
brane. A new challenge is to accurately control the folding
and unfolding of the origami without the use of a mechani-
cal part. Such a capillary origami control has been recently
performed by means of an electric field and could lead to
potential applications to digital displays [6,7]. However,
the capillary origami is generally considered as a quasi-
static phenomenon and dynamical studies are rare. To our
knowledge, only one experiment concerns the dynamical
selection of the final shape of the capillary origami when a
drop impacts an elastic membrane [8].

In this Letter, a drop of magnetic fluid is deposited on a
flat elastic membrane and is submitted to a magnetic field.
The shape of the ferrofluid drop is known to strongly
depend on the applied magnetic field [9–11]. The wrapping
of the drop by the thin elastic membrane (origami) is thus
expected to be strongly modified by the magnetic field.
Both quasistatic and dynamical behaviors of such a mag-
netic capillary origami are reported here. The most striking
one is the observation of an overturning instability that
the origami undergoes at a critical magnetic field. This
instability is shown to arise from the interplay between
magnetic and gravitational energies.

The ferrofluid used is an ionic aqueous suspension
synthesized with 12.4% by volume of maghemite particles

(Fe203; 7� 0:3 nm in diameter) [12]. The properties of
this magnetic fluid are density � ¼ 1550 kg=m3, surface
tension � ¼ 43� 3 mN=m, initial magnetic susceptibility
�i ¼ 0:75, magnetic saturation Msat ¼ 36� 103 A=m,
and dynamic viscosity 1:4� 10�3 N s=m2. The elastic
membranes are made of polydimethylsiloxane (PDMS—
Dow Corning Sylgard 184), a 10:1 polymer and curing
agent mix. The PDMS is spin coated at rotation rates in
the range 1800—2800 rpm over Emery polishing paper
(grit 0) with average roughness of 192 �m. The thickness
h of the membrane depends on the rotation rate and ranges
from 50 to 100 �m. Its roughness significantly reduces
the adhesion of the membrane on the substrate [6]. The
ferrofluid drop alone or wrapped by the elastic membrane
(origami) is then placed between two horizontal coils,
25 cm (53 cm) in inner (outer) diameter, 7 cm far apart.
A dc current I is supplied to the coils in series by a power
supply (50 V=50 A). The vertical magnetic induction B
generated is up to 780 G and is measured by a Hall probe
located near the drop. The magnitude of B is proportional
to I and is controlled either manually or by means of
a ramp generator of typical speed rate 0:4 A=s.
Deformations of the drop are visualized from a side view
by means of a 45� mirror reflecting a diffuse lighting
towards a high-resolution camera (Pixelink 2208� 3000
pixels) located above the drop, and are recorded up to a
150 Hz sampling.
We first study the deformation of a ferrofluid drop alone

deposited on a superhydrophobic surface and submitted to
a vertical magnetic field. As shown in inset (a) of Fig. 1, the
drop is quasispherical at B ¼ 0. When B is increased, the
drop lengthens in the direction of B and its shape changes
continuously from a semiellipsoid [inset (b)], then a
pointed ellipsoid [inset (c)] up to a sharp tip [inset (d)].
By analogy with a semiellipsoid, we define a (b) as the
semimajor (semiminor) axis of the deformed drop.
a is measured from the top of the drop to the horizontal
plane where its width is largest, whereas b is its half-
maximal width (see inset of Fig. 1). Both are measured
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on the image of the drop with a 5% accuracy. The aspect
ratio a=b of the drop is plotted in Fig. 1 as a function
of the magnetic Bond number, Bom. This dimensionless
number characterizes the order of magnitude of the
ratio between magnetic and capillary energies [11].
Bom � �ðBÞB2R0=ð�0�) with R0 the initial drop radius
at B ¼ 0, �0 ¼ 4�� 10�7 H=m the magnetic permeabil-
ity of the vacuum, and �ðBÞ the magnetic susceptibility of
the ferrofluid which is a known decreasing function of B
with �i � �ðB ¼ 0Þ [13]. The elongation of the drop is
found to strongly increase with Bom since the ferrofluid
tends to align towards the direction of B. Moreover, as
shown in Fig. 1, both curves performed for two different R0

superimpose underlying that a small drop is less deformed
than a larger one for the same applied B. Note that such a
deformation has also been observed when the ferrofluid
drop is surrounded by a nonmiscible fluid of almost the
same density leading to a full ellipsoidal shape: a=b is then
found to increase continuously with B for small �i � 1 [9]
whereas for a large one (�i * 20) a discontinuous defor-
mation occurs [10]. The elongation of a full ellipsoidal
droplet can be described theoretically in the limit of a
linear [10,11] or nonlinear [14] drop magnetization. To
our knowledge, no analogous analytical computation exists
for a ferrofluid drop with a semiellipsoid shape (as the one
in Fig. 1).

Let us now focus on the behavior of a ferrofluid drop
wrapped by an elastic membrane and submitted to a
magnetic field. A geometric shape of the membrane is
manually cut out from the PDMS layer and placed on the
superhydrophobic surface. The membrane shape is chosen

to be an equilateral triangle of side L (5 � L � 15 mm)
such that the closed state of the origami will have a
pyramidlike shape [4]. A typical experiment is as follows.
First, at B ¼ 0, a ferrofluid drop is deposited on the planar
membrane. Second, the volume of the drop is adjusted such
that, due to the competition between capillary and elastic
forces, the three corners of the membrane touch themselves
and wrap the spherical drop as shown in Fig. 2(a). When B
is turned on and is increased, the drop lengthens vertically
[Fig. 2(b)], then exhibits a pyramidal shape at higher B due
to the presence of the membrane [see Fig. 2(c)]. For a
critical value Bc, corresponding to a critical Bond number,
Bocm, the origami suddenly overturns, then oscillates
around its vertical position before stopping its rocking
motion (see movie in [15]). This leads to a new static
configuration of the origami [see Fig. 2(d)]: the drop now
forms a cone at its top, and rests on one corner of the
membrane, the two other corners wrapping it horizontally.
If B is now decreased, the origami falls forward and never
returns to its initial configuration, thus showing a hysteretic
behavior.
To quantitatively study the above instability, the maxi-

mum height zmax of the magnetic capillary origami is
measured during a linear temporal increase of B at a
tunable rate ranging from 3 to 40 G=s. This rate is slow
enough to consider a quasistatic evolution of B (see below).
Figure 3 shows the dimensionless height zmax=R0 as a
function of Bom for the origami and for a ferrofluid drop
alone (R0 being the initial radius). For the drop alone,
zmax=R0 is a continuous function of Bom. For the origami,
a jump of zmax=R0 is observed for a critical Bond number,
Bocm, corresponding to the threshold of the overturning
instability for which the origami shape changes from a
pyramid [Fig. 2(c)] to a conelike shape [Fig. 2(d)].
Because of inertia, this jump in zmax=R0 is accompanied
by an overshoot (zmax=R0 reaching a maximum higher than
the equilibrium) followed by underdamped oscillations
(see bottom inset of Fig. 3 and movie in [15]). Moreover,
just after the instability occurring at Bocm, the origami in its
new configuration has a height close to the one of the drop
alone meaning that the stress applied by the membrane has
relaxed. When iterating this experiment for different sizes

FIG. 2. Deformation and instability of the magnetic capillary
origami as the vertical magnetic field is increased: B ¼ 0 (a),
150 (b), 400 (c), and 600 G (d) corresponding to Bom ¼ 0, 10,
48, and 84, respectively. An overturning instability occurs
between (c) and (d) (see text and movie in Ref. [15]).
R0 ¼ 2:7 mm, L ¼ 10 mm, h ¼ 65 �m. Bar scale is 2 mm.
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FIG. 1 (color online). Aspect ratio a=b of a ferrofluid drop on
a superhydrophobic substrate versus the magnetic Bond number
Bom, for two values of the initial drop radius: R0 ¼ 1:2 (4) and
0.93 mm (h). Inset: Photo of the ferrofluid drop deformation for
different vertical magnetic fields: B ¼ 0 (a), 260 (b), 520 (c), and
780 G (d) corresponding to Bom ¼ 0, 11, 31, and 53, respec-
tively. R0 ¼ 1:2 mm. Bar scale is 2 mm.
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L of the triangular membrane of fixed thickness h, the
onset of this instability Bocm is found to increase with L,
as shown in the top inset of Fig. 3.

We first explain these above observations by dimen-
sional scaling laws. At the onset of the instability, an
increase of the origami height is observed (see Fig. 3)
underlying that gravitational energy Eg should be taken

into account. One has Eg � �Vgzmc with zmc the mass

center of the origami and V the volume of the ferrofluid.
One can assume zmc � L and V � L3 since the initial
configuration of the origami is quasispherical, and thus
Eg � L4. The magnetic energy writes Em ��0MHV �
L3B2�ðBÞ=�0 since the magnetization M� �ðHÞH and
the magnetic field H ¼ B=�0 [13]. The balance between
the magnetic and gravitational energies thus leads to the
critical magnetic field Bc at the instability threshold such
that �ðBcÞB2

c � L. Thus, Bocm � �ðBcÞB2
c is expected to

increase with L as observed in the inset of Fig. 3. Bocm is
also expected to be independent of the membrane thickness
h as found experimentally. A similar scaling law analysis
balancing the magnetic energy with the capillary energy
Ec, or the elastic one Ee, leads for both cases to inverse
predictions, i.e., a decrease of Bocm with L since Ec � �L2,
and Ee � Eh3�2L2 (E being the Young modulus of the
membrane of curvature �� 1=L). Thus, the origami over-
turning occurring at Bc is triggered by a competition
between magnetic and gravitational energies. Note that
the role of capillarity and elasticity is nonzero. When
B ¼ 0, it drives the origami formation when Ec * Ee

(i.e., for L *
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eh3=�
p

[4]), and they both deform the
ferrofluid shape when B � 0.
Let us now characterize this instability more quantita-

tively. To do that, one has to compute the magnetic

energy Em � ��0V
RH0

0 MðHÞdH0, with M the ferrofluid

magnetization assumed uniform within the drop [14]. H is
the magnetic field within the ferrofluid droplet that de-
pends on the applied magnetic fieldH0 through the implicit
equationH ¼ H0 �DMðHÞ,D being the demagnetization
coefficient that depends on the ferrofluid shape [13]. For a

full ellipsoid, it is known that D ¼ 1�e2

2e3
½ln1þe

1�e � 2e�, with
e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðb=aÞ2p

the eccentricity and a (b) the semimajor
(semiminor) axis [10,11]. For instance, in the case of an
ellipsoidal drop alone,D ¼ 0 for a drop infinitely stretched
in the direction of H0, D ¼ 1=3 for a spherical drop,
and D ¼ 1 for an infinitely flat drop normal to H0.
The magnetic energy Em thus depends on the external
magnetic field H0 and on the droplet shape through its
magnetization MðHÞ since H is a function of both D and
H0. Consequently, the computation of Em demands to
integrate MðHÞ over the external magnetic field H0.
We estimateMðHÞ by using the usual Langevin expression:
MðHÞ ¼ MsatLð3�iH=MsatÞ, where LðxÞ � cothðxÞ �
1=x [13]. The initial magnetic susceptibility, �i �
dM
dH jH!0, and the magnetic saturation, Msat ¼ MðHÞjH!1,
are given by the ferrofluid properties (see above).
The variation of the magnetic energy during the insta-

bility, occurring at the critical fieldH0 ¼ Hc, reads�Em ¼
��0V

RHc

0 �MðHÞdHc, where �M � MðH2Þ �MðH1Þ is
the variation of M before and after the instability (denoted
by subscripts 1 and 2, respectively). H1 ¼ Hc �D1MðH1Þ
andH2 ¼ Hc �D2MðH2Þ are the magnetic field within the
drop before and after the instability. Since the origami
undergoes a vertical elongation, one has D2 �D1 < 0
that leads to a decrease of the magnetic energy, i.e.,
�Em < 0. The variation of the gravitational energy
during the instability is �Eg ¼ �Vg�zmc, with �zmc the

variation of the height of the mass center. At the onset of
the instability, �Em compensates �Eg, i.e., �Em þ
�Eg ¼ 0, and therefore

�zmc ¼ �0

�g

Z Hc

0
�MðHÞdHc: (1)

For different sizes L of the membrane, �zmc is deduced
from the measurements of zmc before and after the insta-
bility occurring at Bc. The origami aspect ratio a=b is also
measured in the same way as for the ferrofluid drop alone
on a plane (see above). For such a semiellipsoid, no theo-
retical expression for the demagnetization coefficient D is
known. However, substituting the measured value a=b of
the semiellipsoidlike origami into the above expression of
Dða=bÞ for a full ellipsoid leads to a measured value
of the demagnetization coefficient Dm. The quantity
RHc

0 �MmðHÞdHc is experimentally found as follows
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FIG. 3 (color online). Height of the origami [light gray (red)
dots] rescaled by its initial radius (R0 ¼ 2:3 mm), as a function
of the magnetic Bond number Bom, and the corresponding
evolution for a ferrofluid drop alone (black dots, R0 ¼ 2 mm).
L ¼ 8:4 mm, h ¼ 56 �m. A jump in the height of the origami is
observed for a critical Bond Bocm ¼ 25:3, corresponding to the
instability shown between Figs. 2(c) and 2(d). Bottom
inset: Zoom near the instability region. Top inset: Bocm versus
the size L of the elastic membrane.
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(m denoting a measured quantity). For each Hc � Bc=�0

corresponding to each value of L, one computes �MmðHÞ
by using the experimental values ofDm before and after the
instability, by numerically solving the above implicit equa-
tions giving H1 and H2, and finally by iterating H0 from
0 to Hc. Figure 4 then shows �zmc as a function of
RHc

0 �MmðHÞdHc for different values of L. Both quantities
are found proportional, and with a constant �0=ð2�gÞ,
i.e., half the coefficient predicted in Eq. (1). However,
the value of the magnetic energy for a semiellipsoid can
be assumed to be half of the one of the full ellipsoid, i.e.,
�M ¼ �Mm=2. The experimental curve is therefore in
good agreement with the predictions of Eq. (1) with no
adjustable parameter. Finally, �zmc is measured to be
independent of the thickness h at fixed L, emphasizing
that elasticity does not play a significant role during this
overturning instability.

Capillarity and elasticity are at the origin of the capillary
origami formation but are not involved in the threshold of
the gravity-magnetic instability reported here. However,
capillarity and elasticity effects can appear in the origami
configuration before the instability: dewetting of the drop
in the vicinity of the strongest curvature of the membrane
(see left arrow in the top inset of Fig. 5), as well as
curvature of a ridge of the pyramid, can occur (see right
arrow). Both phenomena result from elasticity and capil-
larity since they depend on the membrane thickness h and
length L according to the phase diagram shown in Fig. 5.
For thin enough membranes and/or long enough ones, the
elasticity energy�h3L0 is much smaller than the capillary
�h0L2 and magnetic �h0L3 ones. It thus leads to very
small curvature radii of the membrane that rigidify the
origami, and consequently favors the ferrofluid dewetting

(see zone 3 in Fig. 5). For thinner h and/or longer L, as
elasticity becomes negligible with respect to magnetic
effects, the membrane bends inward and follows the elon-
gated ferrofluid shape, leading to the curvature of the
pyramid ridges (see zone 4). These additional effects of
elasticity and capillarity on the overturning instability
deserve further studies. Note also that if an adhesion force
exists between the substrate and the membrane, the insta-
bility leads to an anomalous final state: one corner of the
membrane points up while the two others wrap the drop at
its base (see bottom inset of Fig. 5).
Finally, the instability reported here could have some

interest for potential applications (see Ref. [1]). Indeed, the
overturning instability is controlled in a nonintrusive way
and its scaling law is suitable for miniaturization as lower
critical magnetic fields are required for smaller size
membranes.
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