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This work presents direct numerical simulations of capillary wave turbulence solving the full three-
dimensional Navier-Stokes equations of a two-phase flow. When the interface is locally forced at large
scales, a statistical stationary state appears after few forcing periods. Smaller wave scales are generated by
nonlinear interactions, and the wave height spectrum is found to obey a power law in both wave number
and frequency, in good agreement with weak turbulence theory. By estimation of the mean energy flux
from the dissipated power, the Kolmogorov-Zakharov constant is evaluated and found to be compatible
with the exact theoretical value. The time scale separation between linear, nonlinear interaction, and
dissipative times is also observed. These numerical results confirm the validity of the weak turbulence
approach to quantify out-of equilibrium wave statistics.
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Wave turbulence aims to provide a general description of
a set of weakly nonlinear interacting waves. The theoretical
framework of weak-wave turbulence has been widely
applied to very different physical situations such as gravity
and capillary waves at the surface of a liquid, internal
waves in the ocean and the atmosphere, flexural waves on a
plate, optical waves and magneto-hydrodynamical waves
[1–3]. Experimental and numerical results in various
systems show that the description provided by weak
turbulence has limitations. For instance, the existence of
dissipation at all scales has an influence on the energy
spectrum measured in capillary wave turbulence [4] as well
as in flexural wave turbulence on plates [5,6]. In the case of
ocean gravity waves, wave breaking is known to be the
main dissipation source appearing at various scales [7–9].
The existence and influence of coherent structures among a
set of random waves is also an open question in wave
turbulence [10–12]. Direct numerical simulations (DNS)
are an appealing tool to quantify the influence of different
processes on wave turbulence and test the various theo-
retical hypotheses separately.
Capillary wave is one of the simplest systems for the

study of wave turbulence. However, this regime often
interacts with gravity wave turbulence in experiments,
and these mutual interactions remain an open question
[4,13]. The numerical investigation of purely capillary
wave turbulence finds application in probing the validity
range of weak turbulence theory in experiments and in
improving our understanding of the influence of capillary
waves at the ocean surface regarding dissipation, air-water
exchanges [9,14,15], or microwave remote sensing tech-
niques of the ocean surface [15,16].
The main result of capillary wave turbulence is the

existence of a direct energy cascade. In terms of the spatial

wave power spectrum SηðkÞ, where k is the wave number,
the Kolmogorov-Zakharov (KZ) spectrum reads [17]

SηðkÞ ¼ CKZ
k ϵ1=2ðγ=ρÞ−3=4k−15=4; ð1Þ

with ϵ the mean energy flux, γ the surface tension, and ρ the
liquid density. CKZ

k is the nondimensional KZ constant that
can be explicitly calculated [17,18]. This direct energy
cascade has been widely explored experimentally, finding
good agreement with theory for the frequency (or wave
number) scaling of the wave spectrum [19–25]. Recent
works address the influence of dissipation on wave turbu-
lence [4] and the coexistence of anisotropic structures and
wave turbulence [25]. Numerical simulation is a powerful
tool to answer to these questions; notably, it allows us to
access quantities difficult to measure experimentally. In
comparison to the wide literature available for experimental
measurements, there are only a few numerical studies on
capillary wave turbulence. These studies can typically be
classified into two different groups: kinetic equation
simulations [1,26,27] and weakly nonlinear Hamiltonian
dynamics simulations [18,28]. Both approaches remain
limited to weakly nonlinear situations and cannot inves-
tigate the possible influence of air and water flow on the
waves. The reason why more complete models have not
been tested is that solving the full Navier-Stokes equations
in multiphase flow is a numerical challenge. Only thanks to
the recent development of numerical methods [29] it is now
possible to perform long wave turbulence simulations, in
order to obtain representative statistics, with relative high
resolution in terms of wave number.
In this Letter, we present the first observation of the

direct energy cascade in capillary wave turbulence from the
numerical solution of the full three-dimensional (3D)
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Navier-Stokes equations. The numerical method and physi-
cal configuration are first introduced, and the stationary
state is characterized. We show the ability of the simu-
lations to capture the propagation of capillary waves. The
obtained space-time wave spectrum is compared with the
classical dispersion relation. The wave spectrum both in
wave number or frequency is found to obey a power law in
good agreement with the weak turbulence theory from
which the KZ constant can be estimated. The nonlinear
interaction time scale τnl is estimated and is found to scale
as τnl ∼ k−3=4, in agreement with wave turbulence theory.
Finally, we show that the wave turbulence inertial range is
defined by τl ≪ τnl ≪ τd, where τl is the linear propagation
time and τd the dissipation time.
We solve the 3D two-phase Navier-Stokes equations

accounting for surface tension and viscous effects using the
open source solver GERRIS [29,30]. This solver has been
successfully used in multiphase problems such as atomi-
zation, the growth of instabilities at the interface [31], wave
breaking [32], or splashing [33]. The physical properties of
the two phases are those of air and water. Gravity is not
present. The simulation domain is a cube of length
L ¼ 1 m with periodic boundary conditions in the x and
y horizontal directions. In the vertical direction z slipped
wall (symmetry) conditions are imposed. The interface
between the liquid and gas phase is initially placed at the
half plane z ¼ 0 (the water depth is h ¼ 0.5L). It is
perturbed locally, introducing a source in the momentum
equation. This source is obtained from the linear wave
solution [34] corresponding to a forcing on the interface

elevation η: ηðx; y; tÞ ¼ αðx; yÞP4
i¼0 η0 cos ð ~ki · ~x − ωitÞ

and on the liquid velocity ~v (~v ¼ ~∇ϕ, ϕ the velocity
potential): ϕðx; y; z; tÞ ¼ αðx; yÞP4

i¼0f−η0ðωi=kiÞ×
½cosh kiðzþ hÞ=coshðkihÞ�g cos ð ~ki · ~x − ωitÞ, where η0 is
the wave amplitude. The forcing modes are k0 ¼ kp,
k1 ¼ 1.4kp, k2 ¼ 1.2kp, k3 ¼ 0.8kp, k4 ¼ 0.6kp, with
kp ¼ 2π=ð0.4LÞ the central forcing wave number and

ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ=ρÞk3i tanhðkhÞ

p
the corresponding frequency

given by the linear dispersion relation of capillary waves.
The forcing is located in space through the Gaussian
function αðx; yÞ ¼ exp ½−ðx − xcÞ2 − ðy − ycÞ2�=2r2, with
r ¼ 0.15L, xc ¼ yc ¼ 0.25L. Note that the forcing area
size has no influence on the generated wavelength. We
expect capillary waves to propagate according to the linear
dispersion relation ω2 ¼ ðγ=ρÞk3 [34]. The maximal res-
olution in the simulations presented here corresponds to
256 × 256 grid on the interface. Adaptive mesh refinement
is used to decrease the resolution in the bulk and to reduce
the computational time. However, despite the use of
adaptive mesh refinement techniques, the high computa-
tional cost of the method has impeded the refinement of the
grid to a level where the numerical viscosity naturally
introduced by the numerical schemes becomes negligible
compared to the physical viscosity (see the Supplemental

Material [35]). Note that the effect of artificial numerical
dissipation is also present in previous numerical compu-
tations presented in the literature with pseudospectral
methods [18,28].
Figures 1(a) and 1(b) show two snapshots of the interface

ηðx; yÞ during the first period of forcing [Fig. 1(a)] and after
few forcing periods [Fig. 1(b)]. The forcing area is clearly
visible in Fig. 1(a) (top left corner), where we see waves
propagate from the circular region where the source is
applied and from others corners due to the periodic
boundary conditions. After a few forcing wave periods
[Fig. 1(b)], the wave field displays random features with a
wide range of spatial scales. The wave field nonlinearity is
estimated by the typical steepness r ¼ σηkp ≈ 0.3, with ση
the rms value of the wave amplitude. Figure 1(c) shows the
total wave energy Et ¼ Es þ Ec as a function of dimen-
sionless time tfp. The kinetic and potential energy on the
domain volume Ω are computed from the liquid velocity v
and the surface area Aðx; yÞ, as Ec ¼

R
1
2
ρv2dΩ and

Es ¼ γAðx; yÞ. After a short transient state, the wave energy
reaches a stationary state (tfp > 5) where the wave energy
fluctuates around a constant mean value [displayed by a
dashed line in Fig. 1(b)]. Wave statistics are obtained in the
time interval t ¼ ½10∶20�fp, with fp ¼ ωp=ð2πÞ. We now
focus on the statistical and dynamical properties of the
waves during this stationary regime. Figure 1(d) shows the
probability density function (PDF) of the wave height η=ση
during this stationary stage. Gaussian statistics are
observed, meaning that the nonlinear effects are weak
enough to not induce a significant asymmetry on the
capillary waves.
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FIG. 1 (color online). Snapshot of the wave interface ηðx; yÞ at
time tfp ¼ 0.3 (a) and tfp ¼ 9.1 (b). (c) Total wave energy Et as
a function of time tfp. A stationary state is reached for tfp > 5,
and the mean value is indicated by the dashed line. (d) PDF of the
wave height η=ση. Dashed line is the normalized Gaussian.
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The space-time wave height spectrum Sηðω=ωp; k=kpÞ is
shown in Fig. 2(a). Energy is found to be localized in the
Fourier space around the linear dispersion relation of
capillary waves. The local maxima of the spectrum for
each frequency (crosses) fall relatively well on the theo-
retical dispersion relation curve. A slight mismatch
between theoretical and numerical values occurs at high
frequencies, which is attributed to the numerical dispersion
(see the Supplemental Material [35] for details) that is
linked to the lack of resolution for the highest frequencies.
While forcing is only applied at low k, the energy spectrum
spreads over a large range of wave numbers showing that
nonlinear transfers among the different scales have taken
place. Moreover, the dispersion relation broadens in fre-
quency as the wave number increases, first due to nonlinear
interaction between the waves and then at high frequencies
(ω=ωp > 20) due to dissipative effects, as discussed later
on. Note also that for simulations with lower values of ση
the space-time spectrum nonlinear broadening is reduced
(not shown). Figures 2(b) and 2(c) depict the spatial
spectrum Sηðkx=kp; ky=kpÞ at two different frequencies
ω�. An isotropic wave field is observed where the energy

is localized around a circle of radius k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2x þ k�2y

q
well

predicted by the linear dispersion relation ω�ðk�Þ. Again, a
significant broadening on the spectrum is observed for high
wave numbers. These observations still holds regardless of
the frequency and the forcing amplitude. Thus, numerical
computations capture well capillary waves that propagate at
various scales in an isotropic wave field.
Figure 3(a) depicts the spatial spectrum Sηðk=kpÞ,

obtained by integrating over all frequencies the space-time
spectrum depicted in Fig. 2. It exhibits a power-law regime
within an inertial range 1≲ k=kp ≲ 6 from the forcing scale
to a dissipative cutoff length, beyond which the spectrum
departs from the power law. The frequency spectrum
(obtained by integrating over k) also exhibits a power
law in the range 1≲ ω=ωp ≲ 8 [see Fig. 3(b)]. The inertial
range spreads over roughly 1 decade in frequency (the
range is smaller in terms of wave numbers). The observed
power laws within the inertial range are found to be in good
agreement with wave turbulence theory scalings:
SηðkÞ ∼ k−15=4, SηðωÞ ∼ ω−17=6 [17]. The compensated
spectrum is shown in the inset in both cases [Figs. 3(a)
and 3(b)]. The flat spectrum observed within the inertial
range confirms the good agreement between DNS and
wave turbulence theory. This limited inertial range is a
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FIG. 2 (color online). (a) Sηðω=ωp; k=kpÞ. Key to symbols:
(dashed line) linear dispersion relation ω2 ¼ ðγ=ρÞk3; (white
crosses) spectrum maxima. Sηðkx=kp; ky=kpÞ at a fixed ω� ¼
ω=ωp ¼ 6 (b) and ω� ¼ ω=ωp ¼ 18 (c). Circles in solid line
indicate k�ðω�Þ given by the dispersion relation. The wave field is
found isotropic. Colors are Sη log scaled.
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FIG. 3 (color online). (a) Sηðk=kpÞ. (b) Sηðω=ωpÞ. Theoretical
KZ spectrum (dashed line) is respectively Sη ∼ k−15=4 and
Sη ∼ ω−17=6. Inset: compensated spectrum, respectively
SηðkÞðkÞ15=4=½ϵ1=2ðγ=ρÞ−3=4� and SηðωÞω17=6=½ϵ1=2ðγ=ρÞ1=6�.
Vertical dot-dashed line indicates the forcing scale range.
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consequence of the finite resolution of the interface;
therefore, it may be enlarged at the expense of larger
computational resources (see the Supplemental Material
[35] for details).
It is now possible to estimate numerically the KZ

constant from Eq. (1) and the compensated spectrum:
CKZ
k ¼ SηðkÞk15=4=½ϵ1=2ðγ=ρÞ−3=4� [inset Fig. 3(a)] or

CKZ
ω ¼ SηðωÞω17=6=½ϵ1=2ðγ=ρÞ1=6� [inset Fig. 3(b)]. To this

end, we evaluate the mean energy flux ϵ using the measure
of the dissipated power D ¼ 2 ρν

R
Ω SijSijdΩ, with Sij

the deformation tensor Sij ¼ ð1=2ÞPijð∂viÞ=ð∂xjÞ, i ¼
fx; y; zg [36]. The mean energy flux is then defined by
ϵ≡ hDi=ðAρÞ, where A is the surface area and h:i desig-
nates an average over time. A comparable value of the flux
is obtained using the dissipation spectrum as in Ref. [4],
ϵd ¼

R
dωdkðγ=ρÞk2Sηðk;ωÞ=τemp, where τemp ¼ τd for

k=kp < 6 and τemp ¼ τnumd for k=kp > 6 so that τemp

includes τd ¼ 1=ð2νk2Þ [34] the viscous linear dissipation
and τnumd the total (numerical and physical) dissipation time
valid only at small scales ðk=kp > 6Þ (see the Supplemental
Material [35]). We obtain from the DNS the following
estimation of the KZ constant: CKZ

ω ¼ 16 and CKZ
k ¼ 34.

Thus, CKZ
k =CKZ

ω ≈ 2, while the theoretical ratio given by the
relation SηðkÞdk ¼ SηðωÞdω is 3=2. The KZ constant Cnk

can be also defined from the wave action spectrum
equation, and CKZ

k ¼ 2πCnk [18]. Using the CKZ
k value

from our simulations and the latter equation leads to
Cnk ¼ 5� 1, the uncertainty coming from using either
the value of CKZ

k or CKZ
ω . Our estimation of Cnk is of the

same order of magnitude as 9.85, the theoretical value
found in Ref. [18]. The difference between these two values
can be due to the short inertial range induced by the
numerical dissipation. Note that in the previous
Hamiltonian simulations, the KZ constant was found to
be 2 times smaller than ours [18]. This difference is
probably related to the limited length of the inertial range
and the numerical dissipation at small scales, our numerical
methods allowing for a better resolution of these scales.
One aspect of the weak turbulence key hypothesis

regards the time scale separation. The linear wave propa-
gation time is indeed supposed to be much smaller than the
time scale of the nonlinear energy exchanges. This latter
must also be small compared to the dissipative time. We
will now evaluate the various time scales involved in the
problem. As already discussed, Sηðk;ωÞ broadens around
the linear dispersion relation curve. The interaction non-
linear time scale τnlðkÞ is linked to this broadening
[2,37,38]. This time is defined by τnlðkÞ ¼ 1=ΔωðkÞ, where
ΔωðkÞ is the inverse of the spectrum width at a given wave
number k. As shown in the inset of Fig. 4, ΔωðkÞ is
extracted from Sηðk;ωÞ using the rms value of a Gaussian
fit with respect to ω at a given k�. Then, iterating this
protocol to all k� allows us to determine τnlðkÞ. Figure 4
shows that τnlðkÞ is found to be close to the theoretical

scaling of capillary wave turbulence τnl ∼ k−3=4 [17] within
the inertial range 1 < k=kp < 6 and then strongly decreases
for larger k. The linear propagation time τl ¼ 1=ω is also
shown on Fig. 4 where we see a clear time scale separation
τl ≪ τnl within the inertial range. Close to the forcing
scales, both times are of the same order of magnitude.
The dissipative time scales are also shown; the solid line
indicates the classic viscous linear dissipation τd ¼
1=ð2νk2Þ [34], while the dot-dashed line displays the
extrapolated empirical (physical and numerical) dissipation
τnumd , determined by measuring the decay rate of a two-
dimensional freely decaying capillary wave for various
spatial resolution (see the Supplemental Material [35]).
Thus, when the nonlinear time scale becomes of the same
order as the total dissipation time, the cascade progressively
ends and dissipation is responsible for the broadening of the
spectrum, as already observed in Fig. 2. We note that the
numerical dissipation does not affect the capillary wave
turbulence cascade within the inertial range, while the
physical dissipation would become dominant for very high
resolution, far beyond current computational resources. As
expected by the weak turbulence theory, the power-law
spectrum observed is shown to fall within the range defined
by the double inequality τl ≪ τnl ≪ τnumd .
In conclusion, this work presents direct numerical

simulations of capillary wave turbulence where the two-
phase 3D Navier-Stokes equations have been solved. The
wave height spectrum is found to exhibit frequency and
wave number power laws in good agreement with weak
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turbulence theory. We also observe a clear time scale
separation between linear and nonlinear times. These
numerical results confirm the validity of the weak turbu-
lence approach to quantify out-of-equilibrium wave sta-
tistics. It also opens new perspectives in order to better
understand wave turbulence systems and the influence of
the air and water flows. For instance, further numerical
results should shed new insight on the importance of
dissipation at all scales as recently reported experimentally
in capillary [4] and flexural [5,6] wave turbulence.
Moreover, the inclusion of gravity in the present simu-
lations would allow us to investigate the role of the gravity-
capillary transition, strongly nonlinear structures (wave
breaking, soliton, etc.), as well as gravity wave turbulence.

We thank S. Popinet and C. Josserand for discussions as
well as the Institut Jean le Rond d’Alembert for their
computational facilities. This work was partially supported
by ANR Turbulon under Grant No. 12-BS04-0005.

[1] V. E. Zakharov, G. Falkovitch, and V. S. L’vov, Kolmogorov
Spectra of Turbulence I: Wave Turbulence (Springer-
Verlag, Berlin, 1992).

[2] S. Nazarenko, Wave Turbulence (Springer-Verlag, Berlin,
2011).

[3] A. C. Newell and B. Rumpf, Annu. Rev. Fluid Mech. 43, 59
(2011).

[4] L. Deike, M. Berhanu and E. Falcon, Phys. Rev. E 89,
023003 (2014).

[5] T. Humbert, O. Cadot, G. During, C. Josserand, S. Rica, and
C. Touze, Europhys. Lett. 102, 30002 (2013).

[6] B. Miquel, A. Alexakis, and N. Mordant, arXiv:1405.3406.
[7] W. Melville and P. Matusov, Nature (London) 417, 58

(2002).
[8] L. Romero, W. K. Melville, and J. M. Kleiss, J. Phys.

Oceanogr. 42, 1421 (2012).
[9] P. Sutherland and W. K. Melville, Geophys. Res. Lett. 40,

3074 (2013).
[10] V. E. Zakharov, A. O. Korotkevich, A. Pushkarev, and D.

Resio, Phys. Rev. Lett. 99, 164501 (2007).
[11] J. Laurie, U. Bortolozzo, S. Nazarenko, and S. Residori,

Phys. Rep. 514, 121 (2012).
[12] B. Miquel, A. Alexakis, C. Josserand, and N. Mordant,

Phys. Rev. Lett. 111, 054302 (2013).
[13] A. Newell and V. Zakharov, Phys. Lett. A 372, 4230 (2008).

[14] A. V. Fedorov and W. K. Melville, J. Fluid Mech. 354, 1
(1998).

[15] C. Cox and W. Munk, J. Opt. Soc. Am. 44, 838 (1954).
[16] O. M. Phillips, Annu. Rev. Fluid Mech. 20, 89 (1988).
[17] V. E. Zakharov and N. N. Filonenko, J. Appl. Mech. Tech.

Phys. 8, 37 (1967).
[18] A. Pushkarev and V. Zakharov, Physica (Amsterdam) 135D,

98 (2000).
[19] R. G. Holt and E. H. Trinh, Phys. Rev. Lett. 77, 1274 (1996).
[20] W. B. Wright, R. Budakian and S. J. Putterman, Phys. Rev.

Lett. 76, 4528 (1996).
[21] M. Brazhnikov, G. Kolmakov, and A. Levchenko, J. Exp.

Theor. Phys. 95, 447 (2002).
[22] E. Falcon, C. Laroche and S. FauvePhys. Rev. Lett. 98,

094503 (2007).
[23] C. Falcón, E. Falcon, U. Bortolozzo, and S. Fauve, Euro-

phys. Lett. 86, 14002 (2009).
[24] H. Xia, M. Shats, and H. Punzmann, Europhys. Lett. 91,

14002 (2010).
[25] M. Berhanu and E. Falcon, Phys. Rev. E 87, 033003

(2013).
[26] D. Resio and W. Perrie, J. Fluid Mech. 223, 603 (1991).
[27] G. Kolmakov, Pis'ma Zh. Eksp. Teor. Fiz. 83, 64 (2006)

[JETP Lett. 83, 58 (2006)].
[28] A. N. Pushkarev and V. E. Zakharov, Phys. Rev. Lett. 76,

3320 (1996).
[29] S. Popinet, J. Comput. Phys. 228, 5838 (2009).
[30] S. Popinet, J. Comput. Phys. 190, 572 (2003).
[31] D. Fuster, J.-P. Matas, S. Marty, S. Popinet, J. Hoepffner, A.

Cartellier, and S. Zaleski, J. Fluid Mech. 736, 150 (2013).
[32] D. Fuster, G. Agbaglah, C. Josserand, S. Popinet, and S.

Zaleski, Fluid Dyn. Res. 41, 065001 (2009).
[33] M.-J. Thoraval, K. Takehara, T. G. Etoh, S. Popinet, P. Ray,

C. Josserand, S. Zaleski, and S. T. Thoroddsen, Phys. Rev.
Lett. 108, 264506 (2012).

[34] H. Lamb, Hydrodynamics (Dover, New York, 1932).
[35] See the Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.112.234501, where we
quantify the numerical dispersion and dissipation by per-
forming 2D simulations of a propagating single capillary
wave between air and water for various grid resolutions; an
empirical relation for the numerical dissipation is obtained.

[36] S. B. Pope, Turbulent Flows (Cambridge University Press,
Cambridge, England, 2000).

[37] B. Miquel and N. Mordant, Phys. Rev. E 84, 066607
(2011).

[38] L. Deike, J.-C. Bacri and E. Falcon, J. Fluid Mech. 733, 394
(2013).

PRL 112, 234501 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
13 JUNE 2014

234501-5

http://dx.doi.org/10.1146/annurev-fluid-122109-160807
http://dx.doi.org/10.1146/annurev-fluid-122109-160807
http://dx.doi.org/10.1103/PhysRevE.89.023003
http://dx.doi.org/10.1103/PhysRevE.89.023003
http://dx.doi.org/10.1209/0295-5075/102/30002
http://arXiv.org/abs/1405.3406
http://dx.doi.org/10.1038/417058a
http://dx.doi.org/10.1038/417058a
http://dx.doi.org/10.1175/JPO-D-11-072.1
http://dx.doi.org/10.1175/JPO-D-11-072.1
http://dx.doi.org/10.1002/grl.50584
http://dx.doi.org/10.1002/grl.50584
http://dx.doi.org/10.1103/PhysRevLett.99.164501
http://dx.doi.org/10.1016/j.physrep.2012.01.004
http://dx.doi.org/10.1103/PhysRevLett.111.054302
http://dx.doi.org/10.1016/j.physleta.2008.03.043
http://dx.doi.org/10.1017/S0022112097007453
http://dx.doi.org/10.1017/S0022112097007453
http://dx.doi.org/10.1364/JOSA.44.000838
http://dx.doi.org/10.1146/annurev.fl.20.010188.000513
http://dx.doi.org/10.1007/BF00915178
http://dx.doi.org/10.1007/BF00915178
http://dx.doi.org/10.1016/S0167-2789(99)00069-X
http://dx.doi.org/10.1016/S0167-2789(99)00069-X
http://dx.doi.org/10.1103/PhysRevLett.77.1274
http://dx.doi.org/10.1103/PhysRevLett.76.4528
http://dx.doi.org/10.1103/PhysRevLett.76.4528
http://dx.doi.org/10.1134/1.1513817
http://dx.doi.org/10.1134/1.1513817
http://dx.doi.org/10.1103/PhysRevLett.98.094503
http://dx.doi.org/10.1103/PhysRevLett.98.094503
http://dx.doi.org/10.1209/0295-5075/86/14002
http://dx.doi.org/10.1209/0295-5075/86/14002
http://dx.doi.org/10.1209/0295-5075/91/14002
http://dx.doi.org/10.1209/0295-5075/91/14002
http://dx.doi.org/10.1103/PhysRevE.87.033003
http://dx.doi.org/10.1103/PhysRevE.87.033003
http://dx.doi.org/10.1017/S002211209100157X
http://dx.doi.org/10.1134/S0021364006020032
http://dx.doi.org/10.1103/PhysRevLett.76.3320
http://dx.doi.org/10.1103/PhysRevLett.76.3320
http://dx.doi.org/10.1016/j.jcp.2009.04.042
http://dx.doi.org/10.1016/S0021-9991(03)00298-5
http://dx.doi.org/10.1017/jfm.2013.536
http://dx.doi.org/10.1088/0169-5983/41/6/065001
http://dx.doi.org/10.1103/PhysRevLett.108.264506
http://dx.doi.org/10.1103/PhysRevLett.108.264506
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.234501
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.234501
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.234501
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.234501
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.234501
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.234501
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.234501
http://dx.doi.org/10.1103/PhysRevE.84.066607
http://dx.doi.org/10.1103/PhysRevE.84.066607
http://dx.doi.org/10.1017/jfm.2013.379
http://dx.doi.org/10.1017/jfm.2013.379

