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We report the first quantitative measurements of the resonance frequencies of a torus of fluid confined in a
horizontal Hele-Shaw cell. By using the unwetting property of a metal liquid, we are able to generate a stable
torus of fluid with an arbitrary aspect ratio. When subjected to vibrations, the torus displays azimuthal
patterns at its outer periphery. These lobes oscillate radially, and their number n depends on the forcing
frequency. We report the instability “tongues” of the patterns up to n ¼ 25. These resonance frequencies are
well explained by adapting to a fluid torus the usual drop model of Rayleigh. This approach could be applied
to the modeling of large-scale structures arisen transiently in vortex rings in various domains.
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Vortex rings are ubiquitous in nature. They occur at
different scales in various domains: hydrodynamics [1],
plasma physics [2,3], geophysics during volcanic eruptions
[4], quantum gravity [5], and biophysics such as biocon-
vection [6], or underwater bubble rings produced by
dolphins [7]. Since their first mathematical analysis in
1858 [8], their formation, dynamics, or collision has been
extensively studied [9–11]. Indeed, it is common to
generate transient vortex rings (such as smoke rings) in
laboratory by pushing a fluid out of a tube or of a hole
[12,13], by impacting a solid disk in a fluid at rest [14] or a
droplet on a plate [15] or in another liquid [16,17], or by
vibrating a gas bubble in a liquid [18]. Once the external
force vanishes, the fluid ring is inevitably unstable and
breaks up in droplets [19–23]. The dynamics of a vortex
ring has been shown to be dominated by large-scale
structures, such as azimuthal modes observed both exper-
imentally [11,12,14] and numerically [24,25]. However,
the details of the growth mechanisms of such instability are
not well understood [14], reflecting in large measure the
experimental difficulties in generating a stable fluid torus
under well-controlled conditions.
Forming a stable ring of fluid is indeed far from being

simple and still remains a challenge. For instance, fluid tori
can be obtained by levitating a liquid over its vapor film
(Leidenfrost effect) [26] or by injecting a liquid crystal in a
rotating bath containing a yield-stress material as outer
fluid [27]. Here, we report on a much simpler technique to
generate a stable torus with an arbitrary aspect ratio. We
inject an unwetting fluid (mercury) at the periphery of a
solid cylinder, and a stable torus of fluid is forming. This
solid boundary prevents the undulations of the torus inner
periphery that would occur with no confinement to min-
imize its surface. We then report the first quantitative
measurements of the torus resonance frequencies. When

subjected to vibrations, azimuthal modes occur at its outer
periphery up to n ¼ 25. We understand our results by
adapting to a fluid torus the usual Rayleigh’s model valid
for a puddle [28,29]. The geometric properties of the
section of the torus can be also inferred from a poloidal
instability (driven by the confinement) occurring before
each azimuthal pattern. Finally, these patterns look like the
ones arisen transiently in vortex rings dynamics [6,12,14],
and our approach could be thus applied to their modeling.
A schematic view of the experimental setup is shown in

Fig. 1. A volume of mercury (V ¼ 1.5 mL) is injected,
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FIG. 1. Top: experimental setup. Plate forcing: A sin ð2πftÞ.
Bottom: top view of fluid torus deformations (mode 7).
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between two transparent plates, at the periphery of a
cylinder to form a stable torus of fluid of outer (resp.
inner) radius R ¼ 21 mm (resp. Ri ¼ 15 mm). The dis-
tance between the top and bottom plates is h ¼ 1.5 mm
(except otherwise stated). Because of gravity, the torus is
flattened and has an elliptical section of semimajor and
semiminor axes a ¼ ðR − RiÞ=2 ¼ 3 mm and b ¼ h=2
(see Fig. 1). The aspect ratio of the torus χ≡
ðRþ RiÞ=ð2aÞ ¼ 6, roughly twice the one of typical
doughnut confectionery. The top glass plate (fixed to the
laboratory frame of reference—except otherwise stated)
avoids possible axisymmetric modes on the top of the ring.
The bottom Plexiglass plate of slightly conical shape is
coated with a spray to obtain a substrate repelling liquid
[30] and is subjected to vertical sinusoidal vibrations by
means of an electromagnetic shaker (frequency f ≤ 65 Hz
and amplitude A < 0.5 mm). An accelerometer (BK 4393)
below the plate measures its acceleration (<4.9 ms−2). The
horizontal oscillations of the torus outer periphery are
recorded by means of a photodiode measuring the luminous
flux, received from a laser, the flux being modulated by
the fluid oscillations cutting the laser beam. Direct visu-
alization is obtained with a camera (IDS UI3160CP)
located above the drop. Mercury properties are density,
ρ ¼ 13500 kgm−3, surface tension, γ ¼ 330 mNm−1, and
kinematic viscosity, 10−7 m2 s−1. Its capillary length is
lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ðρgÞp ¼ 1.6 mm. γ is measured 32% lower than

the reference one due to the presence of contaminants and
possible slight oxidation, even if special attention was paid.
Before each experiment, mercury is renewed by using a
fresh fluid volume from the bottom of the reservoir, free of
contaminants due to the heaviness of mercury.
To accurately measure the onset of azimuthal oscillations

of the torus, we process as follows. The shaker is driven
sinusoidally at frequency f with a slowly increasing ramp
in amplitude, A, the latter being controlled and measured by
the voltage across the shaker over time. The photodiode
measures the amplitude of the horizontal oscillations of the
torus outer periphery over time. By comparing both
amplitudes oscillating initially in phase at f, one can
define accurately the onset of the instability when the fluid
oscillations become slightly modulated in amplitude as a
precursor of the subharmonic behavior at f=2 of the fluid in
response to the forcing at f (see Fig. 1 in the Supplemental
Material [31]). Then, we note the corresponding amplitude
of the shaker, Ac and the mode number, n, of the pattern
observed from the camera. Indeed, above this critical
amplitude, Ac, an azimuthal pattern is observed in the
horizontal plane at the torus outer periphery [see Fig. 2(a)]:
lobes oscillate radially at f=2, i.e., half the forcing
frequency. When f is increased, the number n of oscillating
lobes increases as shown in Figs. 2(a) and 2(b). Movies and
more pictures are shown in the Supplemental Material [31].
Similar experiments are also carried out without the solid

cylinder located in the center of the cell to form a flattened

puddle of fluid [see Figs. 2(c) and 2(d)] with an outer
diameter adjusted to the previous value for the torus. The
pattern observed for a torus is found to have the same
properties as the one for a puddle, for the same f [see
Figs. 2(a) and 2(c) or Figs. 2(b) and 2(d)]. Moreover, the
evolution of n with f is similar. No azimuthal oscillation in
the inner diameter of the torus occurs. This means that the
instability occurs only near the ring outer periphery and the
bulk plays no major role.
The derivation of the eigenfrequency fn of an inviscid

fluid torus has to be independent of the nature of the forcing
and arises from the interplay between inertia and surface
tension effects. We consider small radial deformations of
the outer peripheral surface of amplitude ηnðtÞ ≪ R. In
polar coordinates, this reads rðθ; tÞ ¼ Rþ ηnðtÞ cosðnθÞ
(see Fig. 1). In the limit 2R ≫ h, the torus shape is
approximated by a thin hollow cylinder. The radial ampli-
tude of the lobes ηnðtÞ is then governed by a harmonic
oscillator equation, d2ηnðtÞ=dt2 þ ω2

nηnðtÞ ¼ 0, of eigen-
frequency fn (see the Supplemental Material [31]),

ω2
n ¼

γ

ρR3
nðn2 − 1Þ 1 − ðRi=RÞ2n

1þ ðRi=RÞ2n
for n > 1; ð1Þ

with ωn ¼ 2πfn. To wit, we have adapted the Rayleigh
derivation valid for a puddle (ω2

n ¼ nðn2 − 1Þγ=ðρR3Þ
[28,29]) to a fluid torus. A correction factor (≤ 1) thus

(a) (b)

(c) (d)

FIG. 2. Top view of the azimuthal pattern displayed at the
periphery of a torus (a),(b) and of a puddle (c),(d) of mercury for
f ¼ 16.4 Hz (a),(c) and f ¼ 43 Hz (b),(d). The corresponding
numbers n of lobes, oscillating radially at f=2 are n ¼ 9 (a), (c)
and 23 (b),(d), respectively. Gray areas correspond to the solid
cylinder (a),(b). Torus or puddle diameter at rest ≈42 mm. V ¼
1.5 mL (a),(b). V ¼ 3.2 mL (c),(d).
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occurs that tends to be 1 for large n. For our torus aspect
ratio, both models are almost similar (1.3% difference for
n ¼ 2 and 0.2% for n ¼ 3). In addition to these azimuthal
modes, an axisymmetric mode due to the flattening of the
confined torus on the top plate can be also derived (see the
Supplemental Material [31])

ω2
1 ¼

γ

ρhR2

2ðR2 − R2
i Þ�

R2−3R2
i

4
þ R4

i
R2−R2

i
ln R

Ri

� : ð2Þ

The vertical vibrations of the substrate force the fluid
parametrically, leading thus to a Mathieu equation for ηnðtÞ
for weak enough vibrations [36,37]. The solutions of such a
parametric oscillator are marginality curves (or instability
“tongues”) separating stable zones (no drop deformation)
and unstable zones where azimuthal standing waves at the
drop periphery oscillate at f=2, near the resonance frequen-
cies fn [38]. This corresponds to the parametric instability
shown in Fig. 2.
Experimentally, these tongues of instability are displayed

in Fig. 3 as a function of the critical amplitude of vibration,
Ac, and the forcing frequency f. Below each resonance
tongue, no significative deformation is observed whereas,
above each tongue, n lobes are observed oscillating at the
torus outer periphery near f=2, as expected theoretically.
Indeed, the Mathieu equation predicts that the minimum of
each marginality curve occurs at twice the eigenmode
f ¼ 2fn. We observe experimentally up to n ¼ 25 modes
whatever the chosen geometry (torus or puddle). Data are
obtained for various f by increasing the forcing amplitude
until we observe lobes at critical amplitude Ac. Note that a

slight hysteresis of the tongues is reported if we decrease f
after having increased it.
We now define fmin;n as the forcing frequency for which

the nth tongue is minimum in Fig. 3. The resonance
frequency fn of the azimuthal mode n is thus inferred
from Fig. 3 as fn ¼ fmin;n=2. We plot in Fig. 4 these
experimental resonance frequencies for a torus of fluid, and
for a puddle, as a function of nðn2 − 1Þ=R3 in order to
compare with the prediction of Eq. (1) (see solid line). If
one takes into account the flattening axisymmetric mode of
Eq. (2) (also called breathing mode for a puddle [39]), the
agreement with f2n þ f21 is excellent on two decades with
no fitting parameter and regardless of the fluid geometry.
Such a nontrivial coupling would deserve further studies.
As shown in the Supplemental Material [31], we reiterate
numerous experiments to measure fn for different exper-
imental parameters (notably R, h, plates fixed together or
not), and the law in nðn2 − 1Þ=R3 is still found to be valid.
As quantified above, the resonance frequencies of a torus

are expected to be the same as the ones of a puddle for large
enough n. Physically, it occurs when the azimuthal oscil-
lations occurring at the outer boundary of the torus do not
feel the presence of the solid central cylinder. This is the
case when their typical wavelength is much smaller than the
torus horizontal thickness, i.e., λ ≪ 4πa. From the torus
outer perimeter, one has 2πR ≃ nλ, and thus the condition
reads n ≫ R=ð2aÞ ¼ ð1þ χÞ=2 ¼ 3.5. The mode number
n should thus be much larger than the torus aspect ratio.
Here, this condition is almost validated since n ∈ ½5; 25�.
We cannot reach smaller values of n on Fig. 3 since the
shaker amplitude is limited. Moreover, no breakup of the
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FIG. 3. Phase diagram of the lobes occurring on a vibrating
torus showing the resonance tongues from n ¼ 5 to 25. To better
distinguish successive tongues, the corresponding data and mode
number n are colored alternatively in black and red (light-gray).
V ¼ 1.5 mL.
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torus by Rayleigh-Plateau (RP) instability is observed here
due to the presence of the cylinder. Indeed, RP should occur
for λ ≥ 2πa, that is for n ≤ R=a ¼ 7.
We now define Amin

cn as the minimum amplitude of the
nth tongue in Fig. 3. These minima also display a minimum
with f (see Fig. 3). Figure 5(a) then shows 1=Amin

c as a
function of f in the case of a fluid torus or of a puddle.
Similar behavior is observed regardless of the geometry:
much less energy is needed to reach the instability thresh-
old near f ¼ f0. This comes from the occurrence of a
confined poloidal mode (oscillating at f) observed before
each azimuthal mode and resonating at f0 [see the
Supplemental Material (Movie a13.mp4) for a puddle
[31]]. For different confinement depths h, one finds
f20 ∼ h−3, as displayed in Fig. 5(b), the error bar being
due to the depth measurement uncertainty (0.1 mm). This
poloidal mode is thus clearly related to the modulation of
the confinement and not of the gravity one since h≲ 2lc,
the acceleration is weak (<0.5 g) and the fluid never loses
contact with the plates. This poloidal mode can be
explained by the oscillations (in phase opposition) of the
outer free surface at the top and bottom plates [see inset of
Fig. 5(b)]. Indeed, assuming the curvilinear length l of the
fluid outer boundary to be half a typical wavelength in the
vertical plane, l ∼ λz=2 [see inset of Fig. 5(b)]. One has
from geometry l ¼ αh, with α ¼ π=2 ≃ 1.57 for a half-
circle, or an adjustable parameter experimentally quantify-
ing the more realistic ellipsoidal section of the ring. One
has thus λz ¼ 2αh. Using the usual dispersion relation of
capillary waves ω2

z ¼ ðγ=ρÞk3z with kz ≡ 2π=λz, one has
thus f20 ¼ 2πðγ=ρÞ=ð2αhÞ3. Figure 5(b) shows that this law
is in better agreement with experiments for α ¼ 1.9 (dashed

line) than for π=2 (dash-dotted line). Indeed, the torus is not
of circular section due to the fluid-plate interactions. The
theoretical frequency response of a simple harmonic
oscillator ∼1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf20 − f2Þ2

p
, with f0 given above, is then

in good agreement with the data, as shown in Fig. 5(a).
Finally, an indirect measurement of the geometric

properties of the section of the elliptic torus is inferred.
Balancing the half-ellipse perimeter ≈π=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða2 þ b2Þ

p

with l, and using its eccentricity e≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðb=aÞ2

p
, with

a its semimajor and b ¼ h=2 its semiminor axes, one finds
a ¼ h=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8α2=π2 − 1

p
and e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½8α2=π2 − 1�−1

p
. For

a circle (α ¼ π=2), one has a=b ¼ 1 and e ¼ 0, as
expected. For α ¼ 1.9, as inferred experimentally from
Fig. 5(b), it corresponds thus to an ellipsoidal section of the
ring with a=b ≃ 1.4 and e ≃ 0.7. These experiments were
made with top and bottom plates fixed together, distant of
h, and vibrating thus in phase [see empty symbols in
Fig. 5(b)], in order to avoid the fluid flattening with a fixed
top plate and a vibrating bottom one (α ¼ 1.71).
In conclusion, we reported the first quantitative mea-

surements of the azimuthal patterns on a stable torus of
fluid. Using analytical calculations, we showed that they
correspond to the eigenmodes of a thin hollow cylinder
provided n is much larger than the torus aspect ratio. This
approach could be applied to the modeling of the transient
large-scale structures in vortex rings in various domains.
Our experimental configuration can be easily used to study
a stable vortex ring including (poloidal) vorticity by just
applying a Lorentz force to the liquid metal. The solid
internal confinement could be also replaced by a toroidal
potential. This should reveal more precisely the origin of
these transient large-scale structures in vortex rings.
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same as in Fig. 4). R ≃ 21 mm. h ¼ 1.5 mm. Solid line displays 1=Amin

cn ∼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf20 − f2Þ2

p
with f20 ¼ 2πðγ=ρÞ=ð2αhÞ3 and α ¼ 1.71.

(b) Resonance frequency f0 as a function of h−3, with h the confinement distance. (filled diamond) Top plate is fixed whereas bottom
one vibrates, same parameters as in (a). (diamond) Top and bottom plates are fixed together oscillating in phase. V ¼ 2mL. Model with
(dashed line) α ¼ 1.9 and (dash-dotted line) α ¼ π=2. Inset: schematic lateral view of the confined poloidal mode (half-circle
case l ¼ πh=2).
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