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In this supplemental material, we present experimental details (§1), movies (§2), pictures (§3), and additional
measurements (§4) of the resonance frequencies of a fluid torus confined between two horizontal plates submitted to
vertical sinusoidal oscillations. The derivation of the azimuthal eigenmodes of the torus is also presented in §5, as
well as the flattening axisymmetric mode (n = 1) in §6, corresponding to Eqs. (1) and (2) of the paper, respectively.
Notations as in the above-mentioned paper.

1. Experimental details

To accurately measure the onset of azimuthal oscillations of the torus, we process as follows. The shaker is driven
sinusoidally at frequency f with a slowly increasing ramp in amplitude, A, the latter being controlled and measured
by the voltage across the shaker over time (see Fig. 1). The photodiode measures the amplitude of the horizontal
oscillations of the torus outer periphery over time. By comparing both amplitudes oscillating initially in phase at f
(see left-hand side of Fig. 1), one can define accurately the onset of the instability when the fluid oscillations become
slightly modulated in amplitude (see arrow in Fig. 1) as a precursor of the subharmonic behavior at f/2 of the fluid
in response to the forcing at f (see right-hand side of Fig. 1).
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FIG. 1: Amplitude of horizontal oscillations of the fluid outer periphery (red-light grey curve) as a function of time in response
to the vertical oscillations of the shaker (black curve). The arrow denotes the onset of the Faraday instability. In the right-hand
side, the fluid oscillations are at half the forcing frequency. Mode 9. f = 16.4 Hz. V = 1.5 mL. h = 1.5 mm.

2. Movies

Top view of the azimuthal pattern at the outer periphery of a mercury torus. f : forcing frequency. n: number of
lobes. 25 fps camera sampling. Note that the bright line corresponds to the specular reflection of the lighting, thus
at a location just above the fluid outer periphery.

• mode7.mp4: Azimuthal mode n = 7 of a torus (f = 10.9 Hz),

• mode12.mp4: Azimuthal mode n = 12 of a torus (f = 21.3 Hz),

• mode16.mp4: Azimuthal mode n = 16 of a torus (f = 32.2 Hz),

• mode20.mp4: Azimuthal mode n = 20 of a torus (f = 44 Hz),

• a13.mp4: Poloidal deformations leading to axisymmetric mode of a puddle before the occurrence of the azimuthal
mode n = 8. Constant forcing amplitude. f = 11.6 Hz. Similar observations occur for a torus.
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3. Pictures

FIG. 2: Top view of the azimuthal pattern displayed around a torus of mercury for different increasing forcing frequencies f .
The corresponding number n of lobes, oscillating at f/2 is n = 7, 10, 13, 15, 19 and 21, respectively (from left to right, top
to bottom). Grey areas correspond to the central solid cylinder. Middle-right hand side: Static torus - no forcing (f = 0 Hz).
Red laser spot is visible. Torus diameter at rest ≈ 42 mm. V = 1.5 mL. h = 1.5 mm.

4. Additional measurements of the resonance frequencies of a fluid torus

We reiterate experiments presented in the paper to measure the resonance frequency fn of a fluid torus or of a
puddle with different experimental parameters (puddle or torus radius R, height h between plates, shape and coating
of the bottom plate). Figure 3 sums up the results. As shown in the main paper, fn does not depend on the fluid
geometry (see Fig. 3a - same in Lin-Lin as Fig. 5 of the main paper). Figure 3b shows experimental results when the
bottom plate, slightly conical (angle of 1.4◦ with the horizontal [1]), is changed by a flat plate. No significant effect is
observed. For a puddle, it is more difficult to reach its high resonance frequencies with a flat plate since it tends to drift
from the center of the cell. Figure 3c shows results of experiments performed with or without hydrophobic coating
of the bottom plate and for different h. Since the fluid volume is fixed, different h correspond also to different fluid
radii R that we inferred from camera snapshots taken with no vibration. No significative effect of the hydrophobic
coating appears here underlying that the natural unwetting of mercury is enough to obtain reproducible experiments.
Note that, when working with a wetting fluid (e.g. water), it is generally crucial to minimize the pinning force of
the drop at the contact line, with a hydrophobic coating of the substrate, to reach enough reproducible experiments
[2, 3]. Finally, Fig. 3d reports, for a fixed fluid volume, the effect of the distance h between the top and bottom plates
that are now fixed together, and thus oscillate in phase. Here again, no effect of h is noteworthy, and the prediction
of Eq. (1) of the paper is well valid, for our tested h range.

5. Derivation of the azimuthal eigenmodes of a fluid torus

Let us consider a cylindrical torus of an unwetting fluid (such as mercury) with (at rest) radii Ri and R, and height
h. The equilibrium pressure inside the fluid is homogeneous and equal to P0 = Patm + γ/R. Let us use cylindrical
coordinates and consider a fluid element, henceforth denoted ~r, located at rest at point ~r = r~er + z~ez (r ∈ [Ri, R] and
z ∈ [0, h]). In the framework of the Lagrange picture, this fluid element ~r is displaced in the course of the motion
toward the point ~s(~r, t) = ~r + ~η(~r, t). Similarly, P (~r, t) denoting the total pressure exerted upon element ~r at time t,
the extrapressure field p(~r, t) is defined by P (~r, t) = P0 + p(~r, t). Regarding mercury as an inviscid fluid, the motion
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FIG. 3: Resonance frequency fn of the mode n as a function of n(n2
− 1)/R3 for different experimental parameters. Dashed

line corresponds to the prediction of Eq. (1) of the paper. (a) Fluid torus (♦) or puddle (◦, �). h = 1.5 mm. (b) Effect of the
bottom plate shape: slightly conical plate (+), and flat plate (other symbols) for different h and V (corresponding to different
fluid radii R). (c) With (full symbols) or without (open symbols) superhydrophobic coating of the bottom vibrating plate for
different h (corresponding to different R) at fixed V . (d) Effect of distance h between the top and bottom plates. V = 2 mL.
(a-b) top plate is fixed, and bottom plate is vibrating. (c-d) top and bottom plates are fixed together and oscillating in phase.

equation reads

ρ
∂2~η

∂t2
= −

−−→
grad p . (1)

Moreover, considering mercury as incompressible, we are left with ∆p = 0. Allowing for the cylindrical symmetry of
the problem (and for its assumed invariance along the z-direction), we can look for a solution of the latter equation
of the form p(r, θ) = f(r)g(θ), that is

1

f(r)

(

r2
d2f

dr2
+ r

df

dr

)

+
1

g(θ)

d2g

dθ2
= 0 . (2)

Since function g(θ) is necessarily 2π-periodic, we should have 1
g
d2g
dθ2 = −n2, with n integer, involving g(θ) = cos(nθ+ψ),

and consequently r2 d2f
dr2 + r df

dr − n2f = 0, and thus f(r) = Anr
n + A−nr

−n. Observe that a couple of solutions is
associated to each value of integer n (corresponding to, say, gn(θ) = cos (nθ) or sin (nθ)). It turns out that, in the
linear approximation, each solution describes an eigenmode of azimuthal oscillation of the mercury torus. Let us focus
on a given such mode, namely a given value of integer n with gn(θ) = cos (nθ) and angular frequency ωn. Using Eq.
(1), we get

~ηn(r, θ, t) =
n cos (ωnt)

ρω2
n

[(

Anr
n−1 −A−nr

−n−1
)

cos (nθ)~er −
(

Anr
n−1 +An−1r

−n−1
)

sin (nθ)~eθ
]

. (3)
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FIG. 4: Schematic lateral view of the flattening mode (n = 1) of a torus of rectangular section at two phases of its vibration.

Let us now consider the boundary conditions of our problem. For r = Ri, the radial component ηnr is necessarily
zero, so that we have A−n = AnR

2n
i and consequently

ηnr(r, θ, t) =
n cos (ωnt)

ρω2
n

Anr
n

[

1−

(

Ri

r

)2n
]

cos (nθ) . (4)

For r = R we have, due to the capillary Laplace law, p(R) = P (R) − P0 = P (R) − (Patm + γ/ρ) = γ/R − γ/R,
where R is the radius of curvature of the free mercury surface. Now a careful calculation of R yields R−1 =
R−1 −R−2

(

ηr + ∂2ηr/∂θ
2|r=R

)

, so that, for n > 1, we are left with

ω2
n =

γ

ρR3
n(n2 − 1)

1−
(

Ri

R

)2n

1 +
(

Ri

R

)2n , (5)

that corresponds to the azimuthal eigenmodes of the torus given in Eq. (1) of the main paper. As expected, Eq. (5)
with Ri = 0 reduces to the Rayleigh prediction valid for a puddle [4, 5]. Finally, it is noteworthy that the azimuthal
oscillations of our mercury torus can be regarded as capillary waves at the surface of a cylindrical “ocean” with radii
Ri and R, i.e. with a depth R − Ri = 2a. Integer n is just the number of wavelengths in the perimeter 2πR. The
associated wavenumber is k = 2π/λ = n/R. As a consequence, the dispersion relation reads from Eq. (5)

ω2(k) =
γ

ρR3
kR(k2R2 − 1)

1−
(

1− 2ak
kR

)2kR

1 +
(

1− 2ak
kR

)2kR
. (6)

It is interesting to examine the kR → ∞ limit of the above formula. Indeed, we easily obtain ω2(k) = (γk3/ρ) tanh 2ak,
thus recovering the usual capillary waves dispersion relation for a finite liquid depth (2a).

6. Derivation of the flattening axisymmetric eigenmode (n = 1) of a fluid torus

For a puddle, this mode is usually called the breathing mode [6] or the radius pulsation mode [7]. Here we compute
the frequency of the flattening axisymmetric mode of a torus of rectangular section by using conservation of energy
when its shape is oscillating (see Fig. 4). The inner radius Ri is fixed, the outer radius R(t) and the height h(t)
depend on time. Its volume V = πh(t)

[

R(t)2 −R2
i

]

is conserved over time, which leads to dh
dt = − 2hR

R2
−R2

i

dR
dt .

For a small variation of radius ∆R, the variation of potential energy Ep = Ec + Eg with Ec the capillary energy

and Eg the gravitational energy reads ∆Ep = ∆R
∂Ep

∂R + (∆R)2

2
∂2Ep

∂R2 + o[(∆R)2]. At equilibrium, ∂Ep/∂R = 0. For
h ≪ R − Ri, effects of gravitational energy are negligible and the variation of capillary energy is mainly due to the

variation of the top and bottom surfaces of the torus: ∂2Ec

∂R2 = 4π(γsolid/liquid − γsolid/gas). As the contact angle
between mercury and plates is close to 180◦, we have γsolid/liquid − γsolid/gas = γ and

∆Ep =
1

2

∂2Ec

∂R2
(∆R)2 = 2πγ(∆R)2. (7)

If we suppose that radial velocity vr only depends on r and vertical velocity vz only depends on z, the boundary

conditions and the condition of incompressibility yield to vr = R dR
dt (r −

R2

i

r )/(R2 −R2
i ). For h≪ R−Ri, the kinetic

energy is dominated by radial motion:
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Ek =

∫∫∫

ρv2r
2
dV =

πρhR2

R2 −R2
i

(

d∆R

dt

)2 (
R2 − 3R2

i

4
+

R4
i

R2 −R2
i

ln
R

Ri

)

(8)

By keeping the term in dR/dt of the lowest order (small fluctuations), conservation of energy d(Ep + Ek)/dt = 0
thus reads

d2∆R

dt2
+ ω2

1∆R = 0, with ω2
1 =

γ

ρhR2
·

2(R2 −R2
i )

(

R2
−3R2

i

4 +
R4

i

R2
−R2

i

ln R
Ri

) (9)

[1] For the bottom conical plate, the depth between the two plates is 2.4 mm at the center, and 1.5 mm at the tore/puddle
periphery (R = 21 mm).

[2] F. Celestini and R. Kofman, Phys. Rev. E 73, 041602 (2006).
[3] C.-T. Chang, J. B. Bostwick, P. H. Steen, and S. Daniel, Phys. Rev. E 88, 023015 (2013).
[4] L. Rayleigh, Proc. R. Soc. London 29, 71 (1879).
[5] H. Lamb, Hydrodynamics (Dover, New York, 1932), 6th ed.
[6] X. Ma and J. C. Burton, J. Fluid Mech. 846, 263 (2018).
[7] X. Noblin, A. Buguin, and F. Brochard-Wyart, Phys. Rev. Lett. 94, 166102 (2005).


