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We report on the observation of gravity-capillary wave turbulence on the surface of a fluid in a high-
gravity environment. By using a large-diameter centrifuge, the effective gravity acceleration is tuned up to
20 times Earth’s gravity. The transition frequency between the gravity and capillary regimes is thus increased
up to one decade as predicted theoretically. A frequency power-law wave spectrum is observed in each
regime and is found to be independent of the gravity level and of the wave steepness. While the timescale
separation required by weak turbulence is well verified experimentally regardless of the gravity level, the
nonlinear and dissipation timescales are found to be independent of the scale, as a result of the finite size
effects of the system (large-scale container modes) that are not taken currently into account theoretically.
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Introduction.—Wave turbulence concerns the study of
random nonlinear waves in interaction. Although this
phenomenon occurs in various situations (ocean surface
waves, plasma waves, hydroelastic or elastic waves, inter-
nal waves, or gravitational waves), it is far from being
completely understood [1–6]. For instance, most laboratory
experiments on gravity wave turbulence are not in agree-
ment with weak turbulence theory [7–11]. Several reasons
are given such as the roles of the dissipation, of the strong
nonlinear waves, or of the basin finite size that are usually
not taken into account theoretically. The goal here is to
better study gravity wave turbulence by tuning the natural
key parameter seldom modified until now, the gravity field.
In this Letter we describe a unique experimental setup

that is designed to build and study hydrodynamic wave
turbulence on the surface of a fluid in hypergravity
conditions in a laboratory. The relevant parameters of wave
turbulence depend strongly on the gravity acceleration g� at
different levels. First, it appears in the dispersion relation of
linear waves ωðk; g�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g�kþ ðγ=ρÞk3
p

(with ω ¼ 2πf
the wave angular frequency, k its wave number, ρ the fluid
density, and γ its surface tension). Second, it appears in the
transition frequency between the capillary and gravity wave
turbulence regimes [7]

fgc ¼
1
ffiffiffi

2
p

π

�

ρ

γ

�

1=4
g�3=4: ð1Þ

Third, the timescale of nonlinear interactions between
gravity waves, τgnl ∼ ε−2=3k−3=2g�1=2, is assumed slow
compared to the linear wave period τlin ¼ 1=f, to require
a weak nonlinearity ∼τlin=τ

g
nl ∼ ε2=3k1=g� ≪ 1 (ε being the

energy flux) [4]. As nonlinearity increases with the scale k,
breaking of weak turbulence for gravity waves is expected
to occur at small scale (kgc ∼ g�=ε2=3), and even smaller with
higher g�. Another relevant theoretical parameter is the
critical energy flux εc ¼ ðγg�=ρÞ3=4 breaking the weak
turbulence at the transition scale [12]. Such dependences of
these parameters on g� are in favor of the study of wave
turbulence in a high-gravity level.
Tuning the gravity level, e.g., from 1 to 20 times Earth’s

acceleration g, will thus increase fgc and εc up to a factor
10, these two parameters being hardly modified differently
since (ρ=γ) is roughly constant for most usual fluids. This is
also an astute solution, not reported so far, to expand
significantly in laboratory the inertial range of observation
of gravity wave turbulence. The latter is usually limited
(1 decade at most) at large scales by the forcing (∼Hz due
to wave maker limitations) and at small scales by the
capillary regime near fgc (≃ the ten of Hz for most fluids at
1g). Tuning the gravity homogeneously is nevertheless far
from being simple. Indeed, quickly rotating a liquid in a
small-size container generates a high centrifugal acceler-
ation but with a radial gradient of effective gravity leading
to a parabolic curvature of the liquid surface. To circumvent
this effect, we use a large-scale centrifuge with a free
swinging gondola that generates an effective gravity still
perpendicular to the liquid surface at rest. Note that tuning
to low-g values was performed to observe pure capillary
wave turbulence on more than 2 decades with no effect of
gravity waves during parabolic flights (10−2g) [13] or on-
board the International Space Station (10−5g) [14].
Here, we report the observation of surface wave turbu-

lence in hypergravity, fgc being increased up to one decade.
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We also show that finite size effects modify the usual
energy transfer mechanism (nonlinear wave interactions);
finite size effects having rarely been addressed experimen-
tally [10,15] compared to numerical or theoretical studies
[16–19].
Experimental setup.—Experimentswere performed in the

European Space Agency’s Large Diameter Centrifuge
(LDC), an 8 m diameter four-arm centrifuge with two
free-swinging gondola on each arm (see top of Fig. 1).
The gondola containing the experiment is locked at the end
of an arm, and a counterweight is placed on the other end.
Themaximumangular velocityΩ of the centrifuge is 67 rpm
(i.e., 101 km=h at the arm’s end, 4m from the axis). Because
of centrifugal acceleration, the apparent gravity is
g⃗� ¼ g⃗þ Ω2rie⃗r, with g ¼ 9.81 m=s2 Earth’s gravitational
acceleration, ri the radius to the point of interest. The range
of effective gravity g� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ ðΩ2riÞ2
p

is 1 to 20 times
Earth’s gravity. The angle θ ¼ arctan ðΩ2ri=gÞ of the rotat-
ing gondola (with respect to the horizontal) decreases
strongly from 90° when Ω increases and is less than 12°
when g� > 5g. The experimental setup placed in the gondola
bottom consists of a cylindrical container, 23 cm in diameter,
filled with distilled water (density ρ ¼ 1000 kg=m3 and
surface tension γ ¼ 74 mN=m) up to a depth h ¼ 6.5 cm to
reach a deep water regime (λ ≪ 2πh). Surface waves are
generated by a rectangular flap wave maker driven by a
servomotor moving according to a random noise forcing of
narrow bandwidth (3 to 5 Hz) and of rms amplitude,
σA < 2.2 cm. The wave height ηðtÞ is monitored at a given
location by a homemade capacitive wire gauge during
T ¼ 1000 s with a 10 μm sensitivity [7]. Typical wave
steepness is less than 0.1. The fluid is filled in the container

once the prescribed acceleration is reached to avoid a
possible fluid rotation, as controlled by an on-board camera
in the gondola. During stationary rotation but with no wave
forcing, the free surface of the fluid remains perfectly
parallel to the container bottom, as expected. No Coriolis
force effect is observed on the wave field since the wave
velocities are much smaller than the centrifuge velocity.
Wave spectrum.—For a fixed g�, the temporal evolution of

the wave height ηðtÞ is erratic and its rms value, ση ¼
ffiffiffiffiffiffiffiffi

hηi2t
p

of few mm, increases linearly with the forcing amplitude σA
regardless of g�. The spectrum of ηðtÞ is shown in Fig. 2 for
two different apparent gravities, 1g and close to 20g. At 1g,
we observe two frequency power-law regimes corresponding
to the gravity and capillary wave turbulence regimes as
already reported previously [7]. For a gravity close to20g, the
power-law regimes are still observed and the transition
frequency fgc between both regimes increases significantly
of 1 decade as expected (see below). Consequently, the
inertial range of the gravity regime has been also extended to
reach roughly 1 decade. Nevertheless, note that the maxi-
mum of the spectrum occurs at a higher frequency at high-g
level. This comes from the gravity dependence of the
dispersion relation. Indeed, the forcing frequency bandwidth
at 1g corresponds to wavelengths λ less than the container
diameter D, whereas at high g� it corresponds to λ > D, the
maximum of the spectrum being then related to the first
eigenmodes of a cylindrical basin (notably λ ∼D=3), as
shown in the inset of Fig. 2.
Transition frequency.—The transition frequency fgc

between gravity and capillary wave turbulence regimes
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FIG. 1. Experimental setup. Top: schema of the large diameter
centrifuge showing the generation of an apparent gravity normal to
the fluid surface. Bottom: experimental setup inside the gondola.
See movies in Supplemental Material [20].
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FIG. 2. Power spectrum density (PSD) of the wave height ηðtÞ
for 1g and 19.4g. Dashed lines display best power-law fits for
(blue) gravity and (red) capillary regimes. Vertical dash-dotted
lines correspond to fgcðg�Þ of Eq. (1). σA ¼ 15.5 mm. Inset: PSD
for different vibration amplitudes σA ¼ 0, 3.7 and 15.5 mm
(bottom to top). g� ¼ 19.4g. Vertical solid (dashed) lines are the
first axisymmetrical m ¼ 0 (nonaxisymmetrical m ¼ 1) basin
mode solutions of J0mðknD=2Þ ¼ 0, with J0mð·Þ the derivative of
the mth order Bessel function of the first kind [21].
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is inferred from the wave spectrum, and is plotted in Fig. 3
versus g� for two forcing amplitudes. fgc is found to increase
stronglywith g� by 1 decade invery good agreementwith the
prediction of Eq. (1) with no fitting parameter. The frequency
power-law exponents of the spectrum in both regimes are
reported in the inset of Fig. 3 as a function of g�. They are
found to be independent of g� and of the wave steepness
within the range of parameters. In the capillary regime,
the experimental exponent value αc ≃ −2.6 (red dotted line)
is in good agreement with the prediction −17=6 ≃ −2.8
(red solid line) of the weak turbulence spectrum
Scη ∼ ε1=2ðγ=ρÞ1=6f−17=6 [22]. In the gravity regime, one
has αg ≃ −6.4 (blue dotted line) that differs significantly
from weak turbulence prediction Sgη ∼ ε1=3gf−4 (blue solid
line) [23] as reported earlier at 1g in different basin sizes
(0.5–50m) [7–11]. This departure has been recently shown to
be related to the modulation of coherent nonlinear structures
(boundwaves) [24].We also compute the probability density
functions of ηðtÞ. They are found to be independent of g� for
the same forcing amplitude, and to be roughly described by a
Tayfun distribution (the first nonlinear correction to a
Gaussian) as a confirmation of weak nonlinearity of the
wave field (see Supplemental Material [20]).
Decay experiments.—We now present nonstationnary

experiments to obtain estimations of the nonlinear and
dissipation timescales of wave turbulence, and of the mean
energy flux cascading through the scales. Once a stationary
wave turbulence is reached, we stop the wave maker at time
t ¼ 0, and the temporal decay of the wave height is
recorded during T ¼ 15 s. The experiment is automatically
iterated up to 330 times to improve statistics and results are
averaged.

For g� ¼ 15g, the temporal decay of the spectrum is
shown in Fig. 4, the spectrum being computed over short-
time intervals δt. The power laws are found to be conserved
at the very beginning of the decay in the gravity regime and
over a much longer duration in the capillary regime, before
vanishing in favor of a purely dissipative regime. When
iterating this experiment for different g�, we found that this
self-similar decay in the first moments is independent of the
gravity level (see Supplemental Material [20]). This self-
similar decay of the wave spectrum has been predicted
theoretically [2] and observed at 1g either in the gravity
regime [10] or in the capillary regime [25].
The temporal evolution of the amplitude of the Fourier

modes inferred from the decaying spectrum is then shown
in the inset of Fig. 4. First, a fast time power-law decay is
observed (t ≤ 2 s) due to nonlinear mechanisms but that
differs from t−1=2 (predicted for pure 4-wave interactions)
in the gravity regime [26] and from t−1 (for pure 3-wave
interactions) in the capillary regime [27] (see discussion
below). Then, a slow exponential decay is observed
(2 ≤ t ≤ 10 s) due to a viscous linear damping of a
large-scale mode. Indeed, each Fourier mode is found to
decay exponentially with the same rate given by the
viscous damping of the main container mode ωðkD=3Þ
(see open circle symbols). When compared to the total
wave energy decay [computed from the wave variance
decay σ2η (þ symbols)], most of the energy is contained at
this large scale mode and plays the role of an energy source
which sustains the turbulent cascade. We emphasize that
this dynamics is different from the decay of noninteracting
waves where high frequencies are usually damped faster by
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FIG. 3. Transition frequency fgc between gravity and capillary
wave turbulence regimes versus g�. Vibration amplitude: σA ¼
3.7 (open circles) and 15.5 mm (solid diamonds). Solid line is the
prediction of Eq. (1). Inset: Frequency power-law exponents α of
the wave spectrum for capillary (red) and gravity (blue) regimes.
Dotted lines: mean values hαcig� and hαgig� . Solid lines: weak
turbulence predictions (see text).
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FIG. 4. Temporal decay of the wave spectrum Sηðf; tÞ for 15g.
Inset: semilogy plot of the decay of wave energy σ2η (þ), and of
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linear viscosity than low ones. Here, it is due both to
cumulative energy transfer from the large-scale mode and
to transfer by nonlinear interactions.
Timescale separation.—Let us now verify the weak

turbulence theory assumption of a timescale separation
τlinðfÞ ≪ τnlðfÞ ≪ τdissðfÞ between the linear propagation
time τlin ¼ 1=f, the nonlinear interaction time τnl, and the
dissipation time τdiss. τnlðfÞ is obtained by a power-law fit
of the fast decay on 1 decade in time (0.2 to 2 s) of
each Fourier mode, and τdissðfÞ by an exponential fit
of the slow decay. For a fixed g�, the timescale separation
is well verified as shown in Fig. 5. More surprisingly, τnl (*)
and τdiss (open circles) are found to be roughly independent
of the scale f, contrary to weak turbulence predict-
ions in the gravity (τgnl ¼ cgε−2=3g2f−3) and capillary
[τcnl¼ccε−1=2ðρ=γÞ−1=2f−1=2] regimes (see dashed lines in
Fig. 5, ε being estimated experimentally as below). This
departure is ascribed to the finite size effects of the system.
Indeed, τdiss is of the same order of magnitude as the linear
viscous dissipation by surface boundary layer of the main
container mode τdiss ¼ 2

ffiffiffi

2
p

=½kD=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

νωðkD=3; g�Þ
p � [21,25]

(≃6 s for 15g), whereas the nonlinear interactions are
modified by this container mode (see below). The time-
scales τdiss and τnl are also roughly independent of g� (see
Supplemental Material [20]).
3- and 4-wave interactions contributions.—Assume a

wave energy decay at the Fourier mode f as

dEfðtÞ
dt

¼ −aEfðtÞ − bE2
fðtÞ − cE3

fðtÞ ð2Þ

with a, b, and c positive values depending on f. The first
term on the right-hand side corresponds to a usual viscous
linear dissipation, the second and third terms modeling the
nonlinear transfer from 3- and 4-wave interactions, respec-
tively. Considering only one nonzero coefficient, a, b,
or c, leads to usual decaying solutions: EfðtÞ=Efð0Þ ¼
exp ½−t=τdiss�, ½1þ t=τcnlðfÞ�−1 and ½1þ 2t=τgnlðfÞ�−1=2, for
only dissipation (a ≠ 0), only 3-wave interactions (b ≠ 0),
and only 4-wave interactions (c ≠ 0), respectively [10].
Since no power law in t−1=2 or t−1 is found experimentally
in the fast decay, we have to take into account in Eq. (2) the
three nonzero coefficients at the same time. Fixing the
viscous dissipation time 1=a, independently of f as found
experimentally, and fitting each experimental Fourier mode
by time-power laws gives the nonlinear timescales for
3-wave interactions, 1=b (solid squares), and for 4-wave
ones, 1=c (open squares), versus f as shown in Fig. 5. In the
capillary regime, we find that 4-wave interactions take
place (c ≠ 0) and 3-wave interactions are negligible
(b ≈ 0), contrary to weak turbulence predictions. In the
gravity regime, we find that 3-wave interactions occur
(c ≈ 0, b ≠ 0). Although forbidden by weak turbulence
theory for plane gravity waves, 3-wave interactions are
authorized theoretically in cylindrical containers where
axisymmetric eigenmodes are important [28]. Indeed,
axisymmetric modes imply a new conserved quantity
(angular pseudomomentum) [28]. The large-scale axisym-
metric modes being important in our study, they thus
modify the type of interaction mechanism for gravity
waves, and probably change the one for capillary waves.
Such finite size effects on the wave interactions would
deserve further studies with more accurate space-time
measurements.
Energy flux.—One can finally estimate the mean cascad-

ing energy flux ε from the wave energy decay [10].
Indeed, the wave energy (neglecting capillary waves) is
EðtÞ ¼ g�σ2η, and the power budget (assuming no forcing
and dissipation in the inertial range) then reads
dEðtÞ=dt ¼ −ε, quantities being per unit surface and fluid
density. Combining the two expressions then leads to
ε ¼ −g�dσ2ηðtÞ=dtjt¼0. Thus, experimentally from the tan-
gent at t ¼ 0, ε is found to increase linearly with the
apparent gravity g� as expected, and is found to be 2 orders
of magnitude smaller than the critical flux breaking weak
turbulence, ðγg�=ρÞ3=4 ≃ 800g�3=4 cm3 s−3, regardless of
the value of g� (see Supplemental Material [20]).
Conclusion.—In this Letter, we reported the first obser-

vation of gravity-capillary wave turbulence in a high-gravity
environment. This specific setup favors the study of gravity
wave turbulence in the laboratory by extending significantly
its inertial range and the critical energy flux. We observe
power-law wave spectra in both regimes independent of the
gravity level. The timescale separation required by weak
turbulence is verified experimentally by means of nonsta-
tionary experiments. We also showed that large-scale
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FIG. 5. Wave turbulence timescale separation for g� ¼ 15g.
Solid line: linear timescale τlin ¼ 1=f. Nonlinear timescale τnl
estimated from the fast decay power-law fit of Fig. 4 (*) or from the
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container modes play an important role by notably modi-
fying the type of nonlinear interactions. Tuning the gravity
field appears to be a promising solution to study in
laboratory the large-scale properties (i.e., larger than the
forcing scale) of gravity wave turbulence. More generally,
identifying the different scenarios (inverse cascade, statis-
tical equilibrium, condensate) governing large-scale proper-
ties of turbulent flows is of primary interest [29] in wave
turbulence [30–32] and 3D turbulence [33–35]. Our
approach could be applied in different fields involving wave
turbulence with finite size effects such as Rossby inertial
waves (limited by the finite diameter of the planets), long
internal waves in the oceans, or plasma waves in tokamaks.
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“Wave turbulence on the surface of a fluid in a high-gravity environment”
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In this Supplemental Material, we present movies (§1) and additional data analyses related to the observation
of gravity-capillary wave turbulence on the surface of a fluid in a hyper-gravity environment: Wave spectrum and
wave distribution (§2), non-stationary wave turbulence (§3), timescale separation (§4), and mean energy flux (§5).
Notations as in the aforementioned paper.

1. MOVIES

• LDC.mp4 (90s - 14.5Mo): ESA Large Diameter Centrifuge (LDC) accelerating from 1g to 18g. The angle of
the swinging gondola in flight with horizontal decreases rapidly from 90○ to 3○.

• 7 5gLow.mp4 (32s - 5 Mo): Running experiment inside the gondola for an apparent gravity of 7.5g.

2. WAVE SPECTRUM AND WAVE DISTRIBUTION
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FIG. 1: (Left) Power spectrum density (PSD) of wave height η(t) for gravity levels g∗ ranging from 1g to 19.4g. Curves have
been shifted vertically for clarity. Dashed lines display best power-law fits for gravity and capillary wave turbulence regimes.
Same forcing amplitude σA = 15.5 mm. Vertical dash-dotted lines correspond to the transition frequencies fgc(g∗) between the
two regimes. fgc is found to strongly increase with g∗ by 1 decade, as expected by Eq. (1) of the main manuscript.
(Right) Probability distribution functions (PDF) of normalized wave height η(t)/ση for different g∗ and for σA = 15.5 mm.

ση ≡
√
⟨η(t)2⟩t is the rms value of η(t). Black dash-dotted line displays a Gaussian of zero mean and unit standard deviation.

Red dashed line shows a Tayfun distribution for a wave steepness of 0.08. Bottom inset: Flatness F = ⟨η4⟩/⟨η2⟩2 vs. g∗. Top

inset: Skewness S = ⟨η3⟩/⟨η2⟩3/2 vs. g∗. A weak asymmetry ⟨S⟩g∗ = 0.16 (−− in top inset) and a weak Kurtosis ⟨F ⟩g∗ = 3.3 (−−
in bottom inset), are observed as expected for a weakly nonlinear wave field. Let us remind that normal distribution would
lead to S = 0 and F = 3.
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3. DECAY OF WAVE TURBULENCE

5 10 15 20Gravity  (g)
-8

-7

-6

-5

-4

-3

-2

-1

S
pe

ct
ru

m
 e

xp
on

en
t  

FIG. 2: Frequency power-law exponents α of the wave spectrum of the Fig. 4 of the main manuscript for capillary (red) and
gravity (blue) wave turbulence regimes, during the beginning of the decay: t = (○) 0, (▽) 1, (◇) 2 and (◻) 4 s.

4. WAVE TURBULENCE TIMESCALE SEPARATION
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FIG. 3: Wave turbulence timescale separation for different gravity levels g∗ = (○) 1g, (▽) 2.5g, (◻) 5g, (◇) 7.5g, (hexagram) 10g,
(∗) 12.5g, (+) 15g, (×) 17.5g, (☆)19.4g. (Black solid line) Linear propagation timescale τlin = 1/f . (Red symbols) Nonlinear
interaction timescale τnl estimated from the fast decay. (Blue symbols) Dissipation timescale, τdiss, estimated from the slow
decay. Same forcing amplitude σA = 15.5 mm.
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5. MEAN ENERGY FLUX
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FIG. 4: Mean cascading energy flux ε, estimated experimentally from the wave energy decay, as a function of the apparent
gravity g∗. Same forcing amplitude σA = 15.5 mm. ε is found to increase linearly with g∗, and to be 2 orders of magnitude

smaller than the critical flux breaking weak turbulence, (γg∗/ρ)3/4 ≃ 800g∗3/4 cm3s−3, regardless of the value of g∗.


