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We report on the observation of surface gravity-wave turbulence at scales larger than the forcing ones in
a large basin. In addition to the downscale transfer usually reported in gravity-wave turbulence, an upscale
transfer is observed, interpreted as the inverse cascade of weak turbulence theory. A steady state is achieved
when the inverse cascade reaches a scale in between the forcing wavelength and the basin size, but far from
the latter. This inverse cascade saturation, which depends on the wave steepness, is probably due to the
emergence of nonlinear dissipative structures such as sharp-crested waves.
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Introduction.—Wave turbulence is a phenomenon exhib-
ited by random nonlinear waves in interaction. It occurs in
various contexts: ocean surface waves, plasma waves,
hydroelastic or elastic waves, internal waves, or optical
waves [1–4]. Nonlinear wave interactions are the basic
mechanism that transfers the energy from a large (forcing)
scale down to a small (dissipative) scale. Most experiments
on wave turbulence concern its small-scale properties
resulting from this direct energy cascade [5,6], notably
to compare them with weak turbulence theory (WTT) [2,3].
The large-scale properties (i.e., larger than the forcing
scale) have been much less investigated experimentally
[7–10], although their understanding is of primary interest
(e.g., for climate modeling and long-term weather fore-
casting). For instance, for systems involving four-wave
interactions such as deep water gravity waves, an inverse
cascade from the forcing scales towards a larger (dis-
sipative) scale was predicted in the 1980s by WTT, due to
an additional conserved quantity (wave action) [11]. It was
confirmed by direct numerical simulations of Zakharov
equations more than ten years ago [12,13]. To our knowl-
edge, the only laboratory observation of inverse cascade in
gravity-wave turbulence is limited to a narrow inertial range
due to the small-sized container used [7], while recent
attempts have been inconclusive within a larger size
basin [14] or using another type of forcing [15]. As for
field observations, inverse cascade is hardly distinguishable
from the direct cascade due to the anisotropy, inhomo-
geneity, and nonstationnarity of the wind-generated
wave fields [15–17]. A downshifting of the spectrum
peak is rather reported as the wind strength or fetch
grows [17–19].

In this Letter, we report the first laboratory experiment in
a large-scale basin evidencing the formation of an inverse
cascade of gravity waves. To do this, it has been found
necessary to replace the usual absorbing beach of large
basins by a reflective wall, and to use a multidirectional
forcing to foster wave interactions. The cascade is found to
stop well before a so-called condensate state is reached; i.e.,
before wave action piles up at a large scale due to basin
finite size effects. Instead, a saturation is observed resulting
from the emergence of highly dissipative nonlinear struc-
tures. Although well understood in 2D hydrodynamic
turbulence [20] or Bose-Einstein condensation [21,22],
such large-scale dynamics resulting from an inverse
cascade is far from being fully understood for wave
turbulence systems beyond gravity surface waves [7], such
as for optical waves [8], waves in superfluid [9], plasma
waves [23], or elastic waves [24,25].
Theoretical background.—The dispersion relation of

linear deep-water surface gravity waves is ωðkÞ ¼ ffiffiffiffiffi
gk

p
,

with ω ¼ 2πf as the angular frequency, k as the wave
number, and g as the acceleration of gravity. For weakly
nonlinear interacting waves in a stationary out-of-
equilibrium state within an infinite size system, WTT
predicts the spectrum of surface elevation Sη for scales
larger than the forcing one (inverse cascade) for a wave
action flux Q (per unit surface and density) [11]

SiηðfÞ ∼Q1=3gf−11=3; ð1Þ

or for an energy flux P cascading from large to small scales
(direct cascade) SdηðfÞ ∼ P1=3gf−4 [26]. SηðfÞ has dimen-
sion L2T, P has dimension ðL=TÞ3, and ½Q� ¼ ½P�=½ω�.
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WTT assumes a timescale separation between the
nonlinear time, which reads for the inverse cascade
τinl ∼Q−2=3g1=6k−11=6, and the linear timescale
τlin ¼ 1=ω, that is the nonlinearity parameter τlin=τinl ∼
Q2=3g−2=3k4=3 ≪ 1 [4]. As nonlinearity increases with Q,
breaking of weak turbulence is expected to occur
for Q > Qc ¼ g=k2.
Experimental setup.—Experiments were performed in

the large-scale wave basin (40 m long × 30 m wide × 5 m
deep) at Ecole Centrale de Nantes with a wave maker made
of 48 independently controlled flaps located at one end of
the basin (see Fig. 1). To favor homogeneity, wave
reflections, and wave interactions necessary to observe
an inverse cascade, a solid wall is built at the opposite end
instead of the usual absorbing sloping beach. A multi-
directional random wave forcing is generated around a
central frequency f0 ¼ 1.8 Hz within a narrow spectral
bandwidth f0 � Δf with Δf ¼ 0.2 Hz. To be able to
observe waves at lower frequencies than the forcing ones,
f0 is chosen to be close to the high-frequency limit of the
wave maker. The 2D multidirectional forcing is also
crucial to ensure a spatially homogeneous wave field,
and to avoid the direct excitation of the first basin
eigenmodes (∼0.1–0.3 Hz). The surface elevation ηðtÞ is
recorded during one hour by means of an array of 12
resistive wave probes located at different distances x from
the wave maker (x ¼ 2 to 38 m—see Fig. 1). Their vertical
resolution is approximately 0.1 mm, their frequency
resolution close to 20 Hz, and the sampling frequency
128 Hz. The typical rms wave height ση ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hη2ðtÞit

p
is less

than 2 cm, and the wave steepness ϵ ≤ 0.1 to limit to a
weakly nonlinear wave regime. The central wavelength
generated is λ0 ¼ g=ð2πf20Þ ≃ 0.48 m. The basin length is
thus 83λ0 (assuming an unrealistic 1D monochromatic
propagation), and a round-trip from the wave maker lasts
T ≃ 3 min [group velocity ω0=ð2k0Þ ≃ 0.44 m=s].
Wave spectrum.—The temporal evolution of the power

spectrum of the surface elevation recorded close to the
wave maker (x ¼ 2 m) is shown in the inset of Fig. 2, the
spectrum being computed over 1 min intervals. For t ≤ T,

the wave spectrum displays peaks at the forcing frequencies
and at their harmonics, as expected. After typically more
than a wave round trip (t > T), the main spectrum peak
undergoes a shift towards low frequencies (or large scales),
whereas frequency power laws are observed at both low
and high frequencies compared to the forcing ones. These
two observations are related to the wave interaction
dynamics occurring cumulatively after a while, and is
not a wave maker’s signature. Note that the direct cascade
towards high frequency differs significantly from WTT
prediction in f−4, as reported earlier in different basin sizes
[27–29], this departure being ascribed to the modulation of
bound waves [30,31]. Numerical simulations have also
evidenced departures from this prediction resulting from
the occurrence of an inverse cascade [13]. Concerning the
large-scale transfer, the frequency downshifting of the main
peak is observed homogeneously within the basin (see
below). For instance, in the middle of the basin (see main
Fig. 2), the spectral peak fmax is shifted with time towards
low frequencies and the spectral shape is compatible with
the inverse cascade prediction of WTT in f−11=3 of
Eq. (1) (see dash-dotted red line). Although this experi-
mental downshifting occurs in a narrow range (1=6 decade
width in f) it corresponds to 1=3 decade in k, a result
similar to the ones achieved in numerical simulations of this
inverse cascade [12,13]. The saturation of this inverse
cascade is also of interest: the wave spectrum reaches a
stationary state in which the gravest eigenmodes are not
excited and no condensate is observed. Since viscous
dissipation is weak at these large scales (see below), it
means that additional dissipation occurs to stop the inverse
cascade.

FIG. 1. Experimental setup showing the 48 flaps wave maker,
the ending wall, and the locations of the 12 wave probes.
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FIG. 2. Temporal evolution of the power spectrum density
(PSD) of the wave height at x ¼ 20 m (averaged on four probes
n°5, 10, 11, 12—see Fig. 1). ση ¼ 1.14 cm. Gray area: forcing
bandwidth. Dash-dotted vertical lines correspond to the maxi-
mum of each spectrum. Dash-dotted red line is the prediction in
f−11=3 of Eq. (1). Dashed black line displays a f−6 fit. Inset: same
for x ¼ 2 m (averaged on probes n°1, 2).

PHYSICAL REVIEW LETTERS 125, 134501 (2020)

134501-2



Saturation.—To better quantify this saturation, we report
in Fig. 3 the frequency of the spectrum maximum, fmax,
versus time along with the WTT prediction fmax ∼ t−3=11

which assumes a linear growth of the total wave action
N ∼ t1 [32,33] (see dash-dotted red line). At short times,
experimental values of fmax are found to be of the form t−α

but α ∈ ½0.1; 0.15� differs from the theoretical exponent
(−3=11 ¼ −0.273). This departure could be ascribed to
small scale dissipation not being negligible during this
transient regime as well as the presence of a dual cascade,
contrary to the assumption of WTT. Because of the
interaction between the wave maker and the wave field,
a constant wave action flux may also not be achieved (i.e.,
N ∼

R
Qdt≁t1). Indeed, following [32,33], one finds that

the total wave action growth should scale as N ∼ tð11α−1Þ=2
that is between t0.05 and t0.35 using our values of α. For long
enough times, we observe that fmax saturates, and all the
faster as the forcing amplitude increases (see Fig. 3—long
time oscillations of the spectral peak are related to
spectrum resolution ≃0.06 Hz). This saturation frequency
fsatmax decreases as the forcing amplitude increases (see main
Fig. 4), and is independent of the measurement location
within the basin (see inset of Fig. 4), confirming the
homogeneity of the wave field observed directly from
the shore.
To confirm that the inverse cascade dictates the satu-

ration timescale of this system, we consider the temporal
evolution of the standard deviation of the wave height

σηðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Sηðω;tÞdω

q
, again in the middle of the basin (see

Fig. 5). A logarithmic growth σηðtÞ ¼ γ log ðt=t0Þ þ σt0η
is clearly observed followed by a saturation to a
value σsatη occurring at tsat. The saturation time

tsat ¼ t0 exp½ðσsatη − σt0η Þ=γ� is found to be about 10–20 min
(γ ∈ ½0.1; 0.4� cm and t0 ¼ 1 min), and to be consistent
with the one related to fsat as displayed in Fig. 5. This
demonstrates that, as could be inferred from the spectra
reported in Fig. 2, a statistically steady state is reached
when the inverse cascade saturates. Both estimates show
that the saturation times are much more than a typical wave
packet round-trip (3 min assuming 1D propagation), and
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FIG. 3. Frequency of the spectrum maximum, fmax, over time
for different forcing amplitudes. σsatη ¼ ð▿Þ 0.59, (square) 1.19,
(diamond) 1.54, (triangle) 1.83, and (circle) 1.92 cm. Dash-dotted
line is the prediction t−3=11 [32]. Dashed lines are best power-law
fits, at short times. x ¼ 20 m.
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FIG. 4. Left-hand axis: saturation frequency fsatmax reached by
the spectrum versus forcing amplitude at x ¼ 20 m (blue open
symbols). Right-hand axis: wave steepness ϵ versus forcing at
x ¼ 20 m (red full symbols). Inset: fsatmax for different distances x
along the basin and different forcing amplitudes. Same symbols
as inset of Fig. 3.
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FIG. 5. Logarithmic time evolution of σηðtÞ for different forcing
amplitudes (same symbols as Fig. 3). Dash-dotted lines show
logarithmic growth fits. Dashed lines shows the saturation values
σsatη . Inset: saturation times of (circle) σηðtÞ and of (diamond) the
spectrum evolution (inferred from Fig. 3) versus forcing. Dashed
line corresponds to the typical wave packet round-trip (3 min).
x ¼ 20 m.
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decrease with the forcing amplitude, or with the wave
steepness ϵ≡ kmaxσ

sat
η ¼ ð2πfsatmaxÞ2σsatη =g, the right-hand

axis of Fig. 4 showing the relationship ϵðσsatη Þ.
So, what stops the inverse cascade? Since energy (and

wave action) is continuously injected into this closed
system, a steady state must involve either linear dissipation
or nonlinear localized dissipative structures (e.g., sharp-
crested waves, whitecapping [13], wave breakings, bound
waves [30,31,34], or parasitic gravity-capillary waves
[35]). Prevailing linear dissipation at a wave frequency
f0 occurs in the viscous surface and basin lateral boundary
layers yielding a typical decay time of τdiss > 3000 s [36].
This timescale is such that the scale separation required by
WTT is verified, τlinðfÞ ≪ τinlðfÞ ≪ τdissðfÞ, between the
linear propagation time τlin ¼ 1=ω, the nonlinear inter-
action time τinl and the dissipative time τdiss, for our range of
f. Indeed, using the values of Q and P inferred experi-
mentally (see below), and using the dimensionless constant
value found experimentally for τnl [28], one finds τinl at least
two decades shorter (longer) than τdiss (τlin), with no fitting
parameter (see the Supplemental Material [37]). The typical
discreteness τdisc (i.e., inverse of the frequency separation
of adjacent eigenmodes) is also found to be almost two
decades longer than τinl at the saturation frequency (see the
Supplemental Material [37]). Basin finite size effects are
thus unlikely to affect the dynamics (see case n°1 in [38]).
The saturation time (shorter than τdiss and τdisc) depends on
the wave steepness. It is thus due to a nonlinear effect,
probably related to the sharp-crested waves, occurring
homogeneously in the wave field, and visible directly from
the shore once a steady state is reached (see movies in [37]).
Dissipation by nonlinear localized structures in the energy
balance equation is indeed often referred in forecasting
models of wind-driven ocean waves [32,39] and remains
very challenging to estimate. Numerical simulations of
fully nonlinear equations demonstrate that such structures
are enhanced in the presence of an inverse cascade [13], and
induce an effective large-scale dissipation not taken into
account in WTT [40,41]. However, we have currently no
way to quantify it since the wave probes are distributed
discreetly over the basin surface, and localized structures
are most of the time not captured. Indeed, the probability
distributions of ηðtÞ and of ∂ηðtÞ=∂t are found
similar before and after the saturation, and close to a
Tayfun distribution. Spatiotemporal measurements seem
necessary to ascertain the role of localized structures,
for instance by measuring the nonlinear corrections to
the dispersion relation (see [42] for a numerical study),
but are difficult to implement in such a large wave
basin [29].
Wave action flux.—One can finally estimate the mean

cascading wave action flux Q from the wave energy decay,
notably to check further theoretical predictions of WTT.
After 60 min of stationary wave turbulence, the wave maker
is suddenly stopped at time t ¼ 0, and the temporal decay

of the wave height is recorded during up to 30 min. Using
the expressions of the gravity wave energy EðtÞ ¼ gσ2ηðtÞ
and of the power budget, the mean energy flux P (per unit
surface and density) is given by P ¼ −gdσ2ηðtÞ=dtjt¼0 [28].
P is thus experimentally estimated from the tangent
at t ¼ 0 (see main Fig. 6), and the wave action flux from
Q ∼ P=ω0. We observe that Q (and P) increases linearly
with ϵ6 as expected theoretically [12,43]. Beyond this
agreement with WTT, Q is found to be at least four
orders of magnitude smaller than the critical flux
breaking weak turbulence,Qc ¼ g2=ω4

0 ≃ 6 × 10−3 m3 s−2,
regardless ϵ.
Conclusion.—We reported the formation of an inverse

cascade of gravity-wave turbulence in a large-scale closed
basin. Although it satisfies some assumptions of WTT
[weak nonlinearity, timescale separation, scaling of QðϵÞ,
and homogeneity], its time evolution is found to be
stopped well before wavelengths sizable to the length
of the basin are observed. This contrasts with the only
laboratory observation performed so far in a small-scale
basin where finite size-effects stops the inverse cascade
[7]. Here, the saturation is related to a nonlinear effect
probably the occurrence of highly dissipative nonlinear
structures (sharp-crested waves) visible in the wave field.
Our findings could be useful in different wave turbulence
fields involving an inverse cascade such as Langmuir
waves in plasmas [23], Kelvin waves in quantum fluids
[9], or for elastic waves in thin plates where coherent
structures were shown numerically to limit the inverse
cascade dynamics [24]. More generally, better identifying
the mechanisms (such as inverse cascade) governing
large-scale properties of turbulent flows is of paramount
interest [44].
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In this Supplemental Material, we present movies (§1) and additional data analyses related to the observation of the
inverse cascade in gravity wave turbulence on the surface of a fluid: Wave homogeneity (§2), wave height distribution
probability (§3), and timescale separation (§4). Notations as in the aforementioned paper.

1. MOVIES

• BasinMEDcutLow.mpeg (35s - 24Mo): Large-scale wave basin seen from the shore showing the wave makers,
the wall at the opposite end, the probe array, and the control room. Weak random forcing conditions.

• WeakForcingIMG 7799.mp4 (15s - 17Mo): Wave field seen from the shore. Weak random forcing conditions:
Wave steepness ǫ = 0.063 (σsat

η = 0.59 cm) and narrow spectral bandwidth (1.8 ± 0.2 Hz).

• HigherForcingIMG 7800.mp4 (15s - 16Mo): Wave field seen from the shore. Higher random forcing conditions:
Wave steepness ǫ = 0.98 (σsat

η = 1.84 cm) and narrow spectral bandwidth (1.8 ± 0.2 Hz).

2. WAVE HOMOGENEITY
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FIG. 1: Time-averaged standard deviations of wave height ση(x) recorded at different distances x from the wave makers for
different forcing amplitudes during 60 min. Good homogeneity for weak enough forcing. Same symbols as in the main paper.
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3. WAVE PROBABILITY DISTRIBUTION
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FIG. 2: (Left) Probability distribution functions (PDF) of normalized wave height η(t)/ση recorded in the middle of the
basin (x = 20 m) during 60 min and averaged on different probes [no5 (blue), 10 (red), 11 (black), and 12 (magenta)].

ση ≡
√
⟨η(t)2⟩t = 1.14 cm. Black dash-dotted line displays a Gaussian of zero mean and unit standard deviation. Red dashed

line shows a Tayfun distribution for a wave steepness of 0.08. A weak asymmetry S = ⟨η3⟩/⟨η2⟩3/2 = 0.23 and a weak Kurtosis
F = ⟨η4⟩/⟨η2⟩2 = 3.3 are observed as expected for a weakly nonlinear wave field (Normal distribution would lead to S = 0 and
F = 3). Inset displays a part of the corresponding signal η(t) for probe no12. (Right) PDF of η(t)/ση computed before (t ≤ 16
min - blue) and after (35 < t ≤ 51 min - red) the saturation of the inverse cascade, and parts of the corresponding temporal
signals η(t) (insets). x = 20 m (probe no12). ση = 1.14 cm

4. WAVE TURBULENCE TIMESCALE SEPARATION
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FIG. 3: Wave turbulence timescale separation. (Black solid line) Linear propagation timescale τlin = 1/ω. (Blue solid lines)

Nonlinear interaction timescales: τ i
nl = cig1/6Q−2/3k(ω)−11/6 (inverse cascade) and τd

nl = cdg1/2P −2/3k(ω)−3/2 (direct cascade)
[4], using the values of Q(ǫ) and P (ǫ) inferred experimentally [fixed wave steepness ǫ = 0.1 (σsat

η = 1.92 cm)], the dimensionless

constant value cd = 0.03 found experimentally [28], and assuming ci = cd. (Green solid line) Discreteness time τdisc computed
as the number of eigenmodes found in a frequency band divided by this bandwidth, taking into account both transverse and
lateral eigenmodes. No discreteness effect for τnl < 2τdisc (i.e. nonlinear spectral widening > half frequency separation between
adjacent eigenmodes). Linear viscous dissipation timescales [36]: (red dashed line) viscous surface τdiss = 1/[2νk(ω)2], (red
solid line) surface boundary layer with an inextensible film τ s

diss = 2
√
2/[k(ω)√νω] negligible for f ≲ 2 Hz [31], and (red

dotted-dash line) lateral boundary layer τL
diss = 2

√
2LxLy/[3

√
νω(Lx +Ly)], Lx = 40 m, Ly = 30 m, whereas bottom boundary

layer is negligible. Water kinematic viscosity ν = 10−6 m2/s. f0 is the central forcing frequency, and fsat
max the frequency of the

spectrum maximum at the saturation time tsat. ω(k) =
√
gk.


