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Soliton gases represent large random soliton ensembles in physical systems that exhibit integrable
dynamics at the leading order. Despite significant theoretical developments and observational evidence of
ubiquity of soliton gases in fluids and optical media, their controlled experimental realization has been
missing. We report a controlled synthesis of a dense soliton gas in deep-water surface gravity waves using
the tools of nonlinear spectral theory [inverse scattering transform (IST)] for the one-dimensional focusing
nonlinear Schrödinger equation. The soliton gas is experimentally generated in a one-dimensional water
tank where we demonstrate that we can control and measure the density of states, i.e., the probability
density function parametrizing the soliton gas in the IST spectral phase space. Nonlinear spectral analysis
of the generated hydrodynamic soliton gas reveals that the density of states slowly changes under the
influence of perturbative higher-order effects that break the integrability of the wave dynamics.
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Solitons are localized nonlinear waves that have been
studied in many areas of science over the last decades
[1–3]. Solitons represent fundamental nonlinear modes
of physical systems described by integrable equations
like the Korteweg–de Vries (KdV) equation or the one-
dimensional nonlinear Schrödinger equation (1D-NLSE)
[1,3–8]. Nowadays the dynamics of soliton interaction is so
well mastered that ordered sets of optical solitons or their
periodic generalizations, the so-called finite-gap potentials,
are synthesized and manipulated to carry out the trans-
mission of information in fiber optics communication
links [9–12]. On the other hand, the question of collective
dynamics of large random soliton ensembles represents a
subject of active research in statistical mechanics and
in nonlinear physics, most notably in the contexts of
ocean wave dynamics and nonlinear optics, see, e.g.,
Refs. [13–25].
The concept of soliton gas (SG) as a large ensemble of

solitons randomly distributed on an infinite line and
elastically interacting with each other originates from the
work of Zakharov [26], who introduced the kinetic equa-
tion for a nonequilibrium diluted gas of weakly interacting
solitons of the KdV equation. Zakharov’s kinetic equation

has been generalized to the case of a dense SG in
Ref. [27] (KdV) and in Refs. [28,29] (focusing NLS).
Additionally, the SG kinetic equation has recently attracted
much attention in the context of generalized hydro-
dynamics for quantum many-body integrable systems;
see Refs. [30–32] and references therein.
Within the inverse scattering transform (IST) formalism

[5,7,33], each soliton in a gas is characterized by a dis-
crete eigenvalue λi of the spectrum of the linear operator
associated with the integrable evolution equation. The
fundamental property of integrable dynamics is the pres-
ervation of the soliton spectrum under evolution. The
central concept in SG theory, borrowed from quantum
physics of disordered systems [34], is the density of states
(DOS), which represents the distribution uðλ; x; tÞ over the
spectral eigenvalues, so that udλdx is the number of soliton
states found at time t in the element of the phase space
½λ; λþ dλ� × ½x; xþ dx�. In a spatially homogeneous (equi-
librium) SG, the DOS is stationary in time, while in a
nonhomogeneous SG, which is far from equilibrium, it
evolves according to the kinetic equation [27–29].
Despite various developments of SG theory (see, e.g.,

Refs. [35–42]) and the existence of an unambiguous
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characterization of SG through the concept of DOS, the
experimental or observational results in this area are
quite limited. Costa et al have reported in 2014 the
observation of random wave packets in shallow water
ocean waves that have been analyzed using numerical
IST tools and interpreted as randomly distributed solitons
that might be associated with KdV SG [43]. In 2015 large
ensembles of interacting and colliding solitons have been
observed in a levitating rectilinear water cylinder [44].
Recently Redor et al. have used the process of fission of a
sinusoidal wave train to generate an ensemble of bidirec-
tional shallow water solitons in a 34-m long flume and they
have analyzed the generated SG using (linear) Fourier
transform [45]. In optics, the SG terminology has been used
to describe experiments where light pulses were synchro-
nously injected in a passive fiber ring cavity [46]. Another
recent experimental observation of complex nonlinear
wave behavior attributed to SG dynamics was reported
in Ref. [47], where the formation of an incoherent optical
field has been observed in the evolution of a square pulse in
a focusing medium [48]. At the same time, to our knowl-
edge, there is no existing experiment where SG would have
been unambiguously identified using some well-defined,
quantitative characteristics and, in particular, where the
measurement and control of the DOS of the SG would have
been achieved.
In this Letter, we report experiments fully based on the IST

method where we generate and study hydrodynamic deep-
water dense and spatially homogeneous SGs. We take
advantage of the recently developed methodology for the
effective numerical construction of the so-called N-soliton
solutions of the focusing 1D-NLSE withN large (Ref. [49]),
to create an incoherent wave field having a dominant and
controlled solitonic content characterized by a measurable
DOS.We show that the nonlinear wave field in the generated
SG may undergo some complex space-time evolution while
the discrete IST spectrum is found to be nearly conserved,
albeit being perturbed by higher-order effects.
Our experiments were performed in a wave flume 148 m

long, 5 m wide, and 3 m deep. Unidirectional waves are
generated at one end with a computer assisted flap-type
wave maker and the flume is equipped with an absorbing
device strongly reducing wave reflection at the opposite
end. As in Ref. [50], the setup comprises 20 equally spaced
resistive wave gauges that are installed along the basin at
distances Zj ¼ j × 6 m, j ¼ 1; 2;…; 20 from the wave
maker located at Z ¼ 0 m. This provides an effective
measuring range of 114 m.
In our experiment, the water elevation at the wave maker

reads ηðZ ¼ 0; TÞ ¼ Re½A0ðTÞeiω0T �, where ω0 ¼ 2πf0 is
the angular frequency of the carrier wave. A0ðTÞ represents
the complex envelope of the initial condition. Our experi-
ments are performed in the deep-water regime, and they are
designed in such a way that the observed dynamics is
described at leading order by the focusing 1D-NLSE:

∂A
∂Z þ 1

Cg

∂A
∂T ¼ i

k0
ω2
0

∂2A
∂T2

þ iαk30jAj2A; ð1Þ

where AðZ; TÞ represents the complex envelope of the
water wave that changes in space Z and in time T [51]. k0
represents the wave number of the propagating wave
[ηðZ; TÞ ¼ Re½AðZ; TÞeiðω0T−k0ZÞ�], which is linked to ω0

according to the deep water dispersion relation ω2
0 ¼ k0g,

where g is the gravity acceleration. Cg ¼ g=ð2ω0Þ repre-
sents the group velocity of the wave packets and α is a
dimensionless term describing the small finite-depth cor-
rection to the cubic nonlinearity [50].
The first important step of the experiment consists in

generating an initial condition A0ðTÞ in the form of a
random wave field having a pure solitonic content. To
achieve this, we move to the “IST-friendly” canonical
dimensionless form of the 1D-NLSE:

i
∂ψ
∂t þ

1

2

∂2ψ

∂x2 þ jψ j2ψ ¼ 0; ð2Þ

where ψðx; tÞ represents the normalized complex envelope
of the water wave. Connections between the physical vari-
ables of Eq. (1) and dimensionless variables in Eq. (2)
are given by t ¼ Z=LNL, x ¼ ðT − Z=CgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ð2LNLÞ

p

with the nonlinear length being defined as LNL ¼ 1=
ðαk30hjA0ðTÞj2iÞ, where the angle brackets denote the
average over time.
The nonlinear wave field ψðx; tÞ satisfying Eq. (2) can be

characterized by the so-called scattering data (the IST
spectrum). For the localized, i.e., decaying to zero as
jxj → ∞ wave field the IST spectrum consists of a discrete
part related to the soliton content and a continuous part
related to the dispersive radiation. A special class of
solutions, the N-soliton solutions (N-SSs), exhibit only a
discrete spectrum consisting of N complex-valued eigen-
values λn, n ¼ 1;…; N and N complex parameters Cn ¼
jCnjeiϕn , called norming constants, defined for each λn.
In all the experiments described below, the phases ϕn of the
norming constants Cn characterizing the generated N-SS
are randomly and uniformly distributed over ½0; 2πÞ, while
their modulus jCnj is chosen to be equal to unity. As shown
in Refs. [49,52], such an N-soliton statistical ensemble is a
good model for a homogeneous dense SG.
In our first experimental run, we used numerical methods

described in Ref. [49] to generate an N-SS of Eq. (2),
hereafter denoted ψ16ðx; tÞ, with N ¼ 16 eigenvalues
chosen arbitrarily within some domain of the complex
spectral plane, as shown with blue points in Fig. 1(b). A
relatively small number of solitons in this random soliton
ensemble prevents its proper macroscopic spectral charac-
terization and the identification with SG. However, it is
important as a first step in our experiment to establish a
robust protocol for the generation of random soliton
ensembles in a spectrally controlled way.
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After appropriate scaling, the generated dimensionless
wave field ψ16ðx; t ¼ 0Þ is converted into the physical com-
plex envelope A16ðZ ¼ 0; TÞ ¼ A0ðTÞ of the initial con-
dition, which is generated by the wave maker. Figure 1(a)
shows the water elevation measured at Z1 ¼ 6 m together
with the modulus of the envelope jA16ðZ1; tÞj computed
using standard Hilbert transform techniques [51]. The
generated wave field with pure solitonic content spreads
over approximately 140 s and exhibits large amplitude fluc-
tuations due to the random phase distribution. Figure 1(b)
shows the discrete IST spectrum that is computed from the
signal recorded by the first gauge andplotted in Fig. 1(a). The
measured eigenvalues plotted in red points in Fig. 1(b) are
close to the discrete eigenvalues (blue points) that we have
selected to build ψ16ðx; t ¼ 0Þ, the N-SS under consider-
ation. This demonstrates that the process of generation of the
N-SS solution is well controlled in our experiments.
As shown in Fig. 1(e), the space-time evolution of the

generated wave packet measured with 20 gauges distrib-
uted along the tank reveals complex dynamics with
multiple interacting coherent structures. Despite the appar-
ent complexity of the observed wave evolution, the
measured discrete IST spectra, compiled and superimposed
in Fig. 1(c), are nearly conserved over the whole propa-
gation distance.
The fact that the isospectrality condition perfectly

fulfilled in a numerical simulation of the 1D-NLSE (see
Supplemental Material [53]) is not exactly verified in

the experiment arises from perturbative higher-order
effects that break the integrability of the wave dynamics
[50,61,62]. As shown in Fig. 1(d), numerical simulations of
a modified NLSE including higher-order effects (see
Supplemental Material [53]) reveals that each discrete
eigenvalue follows an individual trajectory in the complex
plane under the influence of higher-order effects. In the
experiment, these trajectories are not resolved because of
measurement inaccuracies; compare Fig. 1(c) and Fig. 1(d).
Nevertheless, the results of the nonlinear spectral analysis
reported in Fig. 1(c) show that the dynamical features
observed for the wave field composed of 16 solitons are
nearly integrable.
We now take advantage of the above method of the

controlled generation of multiple-soliton, random phase
solutions of the 1D-NLSE to generate a random N-soliton
ensemble that can be identified as SG. It is clear from the
definition of DOS in SG theory that to achieve that, the
number of solitons N should be sufficiently large. Figure 2
shows the dynamical and spectral features characterizing
the experimental evolution of an ensemble of N ¼ 128
solitons with random spectral (IST) characteristics. The
important difference with the first example is that, due to a
large number of solitons generated, we are now able to
characterize the soliton ensemble by a DOS uðλÞ; see
Fig. 3. Specifically, we generate a SG with eigenvalues
λi ∈ C distributed nearly uniformly on a rectangle in the
upper half-plane of the complex IST spectral plane (and the

FIG. 1. Ensemble of N ¼ 16 solitons propagating in the 1D water tank. (a) Water elevation (red line) and modulus of the wave
envelope measured at Z1 ¼ 6 m, close to the wave maker. (b) Blue points represent the discrete IST spectrum of the numerically
generated N-SS ψ16ðx; t ¼ 0Þ and red points represent the discrete IST spectrum measured at Z1 ¼ 6 m by using the signal plotted in
(a). (c) Space evolution of the discrete IST spectra measured along the tank from Z1 ¼ 6 (light red) to Z20 ¼ 120 m (dark red). (d) Same
as in (c) but obtained from numerical simulations of a modified (not integrable) 1D-NLSE including higher-order effects; see
Supplemental Material [53]. (e) Space-time evolution of modulus of the wave envelope recorded by the 20 gauges regularly spaced
along the tank. Physical parameters characterizing the experiment are f0 ¼ 0.9 Hz, k0 ¼ 3.26 m−1, α ¼ 0.895, LNL ¼ 210 m
(hjA0ðTÞj2i ¼ 1.53 × 10−4 m2).
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c.c. rectangle in the lower half plane) and the DOS
uðλÞ ¼ u0 being nearly constant within the rectangle, see
Fig. 2(c). In other words, we generate a (approximately)
homogeneous SG.
Figure 2(a) shows that the generated SG has the form of

a random wave field spreading over ΔT ¼ 1200 s which
corresponds to a range Δx ¼ 396 in the dimensionless

variables of Eq. (2). Clearly the generated SG does not
represent a diluted SG composed of isolated and weakly
interacting solitons but rather a dense SG which cannot
be represented as superposition of individual solitons.
Figure 2(b) shows that the propagation of the generated
SG is not accompanied by any significant broadening of
Fourier power spectrum.

FIG. 3. Statistical analysis of discrete IST spectra of the gas of 128 solitons showing the slow evolution of the DOS uðλÞ (the
probability density function of the discrete IST eigenvalues in the complex plane) as a function of propagation distance in the water tank:
(a),(e) z1 ¼ 6; (b),(f) z3 ¼ 18; (c), (g) z10 ¼ 60; (d), (h) z20 ¼ 120 m. The upper row (a)–(d) represents the DOS measured in the
experiment while the lower row represents the DOS computed in numerical simulation of Euler’s equations; see Supplemental Material
for details [53].

FIG. 2. Gas of N ¼ 128 solitons propagating in the 1D water tank. (a) Water elevation (red line) and modulus of the wave envelope
measured at Z1 ¼ 6 m, close to the wave maker. (b) Fourier power spectra of wave elevation at Z1 ¼ 6 (blue line) and at Z20 ¼ 120 m
(red line). (c) Discrete IST spectrum measured at Z1 ¼ 6 m. (d) Discrete IST spectrum measured at Z20 ¼ 120 m. (e) Space-time
evolution of modulus of the wave envelope recorded by the 20 gauges regularly spaced along the tank. Physical parameters
characterizing the experiment are f0 ¼ 1.15 Hz, k0 ¼ 5.32 m−1, α ¼ 0.936, LNL ¼ 45 m (hjA0ðTÞj2i ¼ 1.58 × 10−4 m2).
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Figure 2(c) shows the discrete IST spectrum of the wave
field measured at Z1 ¼ 6 m. A set of N ¼ 128 eigenvalues
is now measured within a rectangle in the upper complex
plane. Similarly to the features reported in Fig. 1, the
perturbative higher-order effects influence the observed
dynamics and the discrete spectrum measured at Z20 ¼
120 m is not identical to the one measured at Z1, see
Fig. 2(d). Even though the isospectrality condition char-
acterizing a purely integrable dynamics is not exactly
satisfied in our experiment, the measured discrete spectrum
remains confined to a well-defined region of the complex
plane. Moreover, the large number of eigenvalues distrib-
uted with some density within this limited region of the
complex plane justifies the introduction of a statistical
description of the spectral (IST) data, which represents the
key point for the analysis of the observed wavefield in the
framework of the SG theory.
In the context of the 1D-NLSE (2) the DOS uðλÞ, where

λ ¼ β þ iγ, represents the density of soliton states in the
phase space, i.e., udβdγdx is the number of solitons
contained in a portion of SG with the complex spectral
parameter λ∈ ½β;βþdβ�× ½γ;γþdγ� over the space inter-
val ½x; xþ dx� at time t (corresponding to the position Z in
the tank). Considering that the generated SG is homo-
geneous in space, the DOS represents the probability
density function of the complex-valued discrete eigenval-
ues normalized in such a way that

Rþ∞
−∞ dβ

Rþ∞
0 dγuðλÞ¼

N=Δx, where N represents the number of eigenvalues
found in the upper complex plane and Δx represents the
spatial extent of the gas. Figure 3 (upper row) displays the
normalized DOS experimentally measured at different
propagation distances in the water tank while Fig. 3 (lower
row) displays the normalized DOS computed in a numeri-
cal simulation of Euler’s equations; see Supplemental
Material [53] for details. The experiments and numerical
simulations reveal a slow evolution of the DOS along the
tank occurring over a characteristic length scale determined
by LNLΔf=f0, where Δf represents the spectral bandwidth
of the wave field (see Supplemental Material [53]). This
slow evolution is not due to the gas nonhomogeneity, but
mainly originates from the presence of perturbative higher-
order effects. Results reported in Fig. 3 suggest that the
incorporation of higher-order perturbative physical effects
in the theory of SG represents a theoretical question of
significant interest.
In this Letter, we have reported hydrodynamic experi-

ments demonstrating that a controlled synthesis of a dense
SG can be achieved in deep-water surface gravity waves.
We show that the generated homogeneous SG is charac-
terized by a measurable spectral DOS, which provides an
essential first step towards experimental verification of the
kinetic theory of nonequilibrium SGs. We hope that our
work will stimulate new experimental and theoretical
research in the fields of statistical mechanics and nonlinear
random waves.
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J. Mech. B. Fluids 34, 19 (2012).
[59] Ecole Centrale Nantes, LHEEA, Open-source release of

HOS-NWT, https://github.com/LHEEA/HOS-NWT.
[60] F. Bonnefoy, G. Ducrozet, D. L. Touzé, and P. Ferrant, Time
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The purpose of this Supplemental Material is to provide some mathematical, numerical and experimental details
that are utilized in the Letter. All equation, figure, reference numbers within this document are prepended with “S”
to distinguish them from corresponding numbers in the Letter.

I. INVERSE SCATTERING TRANSFORM ANALYSIS OF THE EXPERIMENTAL DATA

In this Section, we describe briefly the method used to compute the discrete IST spectrum from the signals recorded
in the water wave experiment.

The first step for performing the nonlinear analysis of the signals (water elevation given by η(Z, T ) =
Re
[
A(Z, T )ei(k0Z−ω0T )

]
) recorded in the experiments consists in determining the complex envelope A(Z, T ) of the

wavefield. This is achieved by using standard techniques based on the Hilbert transform, as discussed e. g. in ref. [1].
Then, physical quantities are put to dimensionless form using the connection between physical and dimensionless vari-
ables that are provided in the Letter and recalled here for the sake of simplicity: ψ = A/

√
〈|A0(T )|2〉, T = Z/LNL,

x = (T − Z/Cg)
√
g/(2LNL) with the nonlinear length being defined as LNL = 1/(αk30〈|A0(T )|2〉). The brackets

denote average over time. Finally the IST discrete spectrum is determined by solving the Zakharov-Shabat system
using the Fourier collocation method and following a procedure used and described in ref. [2–5]

II. INTEGRABLE VERSUS NON-INTEGRABLE DYNAMICS IN THE ENSEMBLE OF 16 SOLITONS

In this Section, we use numerical simulations of the focusing 1D-NLSE and of a modified (non-integrable) 1D-NLSE
to show the role of higher order effects on the observed space-time dynamics and on the spectral (IST) features that
characterize the evolution of the ensemble of 16 solitons considered in Fig. 1 of the Letter.

Following the work reported in ref. [6], higher-order effects in 1D water wave experiments can be described by a
modified NLSE written under the form of a spatial evolution equation

∂A

∂Z
= i

k0
ω2
0

∂2A

∂T 2
+ iαk30|A|2A−

k30
ω0

(
6|A|2 ∂A

∂T
+ 2A

∂|A|2

∂T
− 2iAH

[
∂|A|2

∂T

])
, (S1)

where A(Z, T ) represents the complex envelope of the wave field and H is the Hilbert transform defined by H[f ] =

(1/π)
∫ +∞
−∞ f(ξ)/(ξ−T )dξ. When the last three terms are neglected in Eq. (S1), the integrable 1D-NLSE is recovered.

Neglecting the last three terms in Eq. (S1), Fig. S1 shows results obtained from the numerical simulation of Eq.
(S1) (integrable focusing 1D-NLSE) for the ensemble of 16 solitons considered in the experiments reported in Fig. 1
of the Letter. Fig. S1(a) (resp. Fig. S1(b)) shows the modulus |A(Z, T )| of the wavefield that is computed at Z1 = 6
m (resp. at Z20 = 120 m). Despite the significantly complicated space time evolution shown in Fig. S1(e) over the
120 m-long propagation distance, the dynamics is integrable which implies that the discrete IST spectrum remains
perfectly unchanged between Z1 and Z20, compare Fig. S1(c) and Fig.S1(d).
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FIG. S1: Integrable dynamics. Numerical simulations of the integrable focusing 1D-NLSE (Eq. (S1) where the last three terms
are neglected) for the ensemble of 16 solitons considered in Fig. 1 of the Letter. (a) Modulus |A(Z1, T )| of the wave envelope at
Z1 = 6 m and (c) corresponding discrete IST spectrum (red points). (b) Modulus |A(Z20, t)| of the wave envelope at Z20 = 120
m and (d) corresponding discrete IST spectrum. (e) Space-time plot showing the nonlinear evolution of the modulus |A(Z, T )|
of the wave envelope.

FIG. S2: Non-integrable dynamics. Numerical simulations of Eq. (S1) for the ensemble of 16 solitons considered in Fig. 1 of
the Letter. (a) Modulus |A(Z1, t)| of the wave envelope at Z1 = 6 m and (c) corresponding discrete IST spectrum. (b) Modulus
|A(Z20, t)| of the wave envelope at Z20 = 120 m . (d) Space evolution of the discrete IST spectra along the tank from Z1 = 6
m (light red) to Z20 = 120 m (dark red). (e) Space-time plot showing the nonlinear evolution of the modulus |A(Z, T )| of the
wave envelope.

If higher order effects described by the three last terms in Eq. (S1) are taken into account, the space-time evolution
is slightly perturbed compared to the integrable case, compare Fig. S2(b) with Fig. S1(b) and Fig. S2(e) with
Fig. S1(e). Contrary to results reported in Fig. S1, the isospectrality condition is now not verified because of the
higher-order effects that break the integrability of the wave dynamics. Fig. S2(d) shows clearly that each of the 16
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discrete eigenvalues composing the random wavefield does not remain invariant over propagation distance but follows
an individual trajectory in the complex plane, as already e.g. evidenced in ref. [7] in numerical simulations of a laser
system. Similar spectral (IST) results have been presented in experimental results reported in Fig. 1 of the Letter.
However clean trajectories in the complex IST plane cannot be clearly identified in experiments because of small
calibration errors in the measurement of the wave elevation.

Assuming that the dynamics is governed by Eq. (S1), the length scale LHOE over which higher-order effects
perturbe the evolution of the wavefield is given by LHOE = LNL∆ω/ω0 where LNL = 1/(αk30〈|A0(T )|2〉) and ∆ω is
the typical spectral bandwidth of the wavefield.

III. DIRECT NUMERICAL SIMULATIONS OF EULER’S EQUATIONS FOR THE GAS OF 128
SOLITONS

Direct numerical simulations of the Euler’s equations have been performed with the efficient and accurate High-
Order Spectral (HOS) method [8, 9]. The numerical model used in our numerical simulations reproduce the main
features of the water tank, namely: i) the generation of waves through a wave maker and ii) the absorption of reflected
waves with an absorbing beach. To this end a Numerical Wave Tank, entitled HOS-NWT, has been developed [10]
(the code being available open-source [11]). It uses the exact same wave makers motions than in the experiments for
a simplified comparison procedure. This specific model has been widely validated in different configurations and more
details can be found in [10, 12].

FIG. S3: Numerical simulations of the Euler’s equations corresponding to the experimental results shown in Fig. 2 of the
manuscript (N = 128). (a) Modulus of the wave envelope at Z1 = 6 m, close to the wavemaker. (b) Fourier power spectra of
wave elevation at Z1 = 6 m (blue line) and at Z20 = 120 m (red line). (c) Discrete IST spectrum measured at Z1 = 6 m. (d)
Discrete IST spectrum measured at Z20 = 120 m. (e) Space-time evolution of modulus of the wave envelope. Parameters of
the simulation are f0 = 1.15 Hz, k0 = 5.32 m−1, LNL = 45 m (< |A0(T )|2 >= 1.58 × 10−4 m2.

Fig. S3 shows numerical simulations of Euler’s equations that are made with physical values characterizing the
experiments presented in the Letter for the gas of 128 solitons. The dynamical and spectral features found in numerical
simulations reported in Fig. S3 are very similar to those reported in Fig. 2 of the Letter.
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