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A B S T R A C T

We show that the natural resonant frequency of a suspended flexible string is significantly modified (by one
order of magnitude) by adding a freely pivoting attached mass at its lower end. This articulated system then
exhibits complex nonlinear dynamics such as bending oscillations, similar to those of a swing becoming slack,
thereby strongly modifying the system resonance that is found to be controlled by the length of the pivoting
mass. The dynamics is experimentally studied using a remote and noninvasive magnetic parametric forcing.
To do so, a permanent magnet is suspended by a flexible string above a vertically oscillating conductive
plate. Harmonic and period-doubling instabilities are experimentally reported and are modeled using the
Hill equation, leading to analytical solutions that accurately describe the experimentally observed tonguelike
instability curves.
1. Introduction

The vibrational modes of a flexible and inextensible hanging string
in the gravitational field is a classical mechanical problem, and its
solution dates back to Bernoulli and Euler in the 18th century [1].
The case of the flexible string with an additional mass at its lower
end has been considered only recently, both theoretically [2] and
experimentally [3], and its modes are found to be close to those of
a rigid pendulum [3]. Although such a mechanical system involves
a spatially dependent wave velocity (as for acoustics in air ducts [4]
or in granular media [5]), there is little experimental data for such
articulated pendulum systems compared to those involving rigid limbs
such as the double pendulum [6].

Here, we study a system constituted of a flexible string with a freely
pivoting attached mass to its lower end. We show that its natural reso-
nant frequency is one order of magnitude higher than the one of a single
flexible string. Such a two-component articulated system exhibits bend-
ing oscillations similar to those of a swing becoming slack, thus strongly
modifying its resonances. They are studied using an original technique
based on noninvasive and remote magnetic forcing. More precisely,
we investigate the dynamics of a permanent magnet, freely pivoting,
suspended by a flexible string above a vertically oscillating conductive
plate. Induced currents due to the moving conductor generate remote
forces on the magnet, giving rise to a parametric forcing needed to
study the nonlinear dynamics of the system. The main advantage of
this forcing is to avoid the excitation of the string torsional modes
and the single pendulum mode unlike vertically oscillating the top
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attachment point of the string. Note that parametric instabilities [7],
phase transitions [8], bifurcations [9] and control of chaos [10] have
been investigated with a rigid pendulum with a magnet as their tip
mass in an oscillating magnetic field [11,12], or with a ferrofluid
drop suspended by a torsion pendulum [13]. For a flexible string, with
no tip mass and vertically vibrated, parametric resonance, chaos, and
self-knotting have been experimentally evidenced [14].

2. Experimental setup

The setup is shown in Fig. 1. It consists of a flexible nylon cord
suspended at its upper point and with a tip mass attached at its lower
end using glue. The cord has a 0.35-mm diameter, linear mass density
𝜌 = 1.24 mg/cm, and length 𝐿 = 6 cm. The tip mass consists of two
neodymium permanent magnets (square cuboid of size 𝑎 × 𝑎 × 𝑎

2 , with
𝑎 = 1 cm, total magnetic moment m = 0.8 ± 0.05 A/m2) in which
a 3D-printed thin plastic square plate is sandwiched with a length of
𝓁 ∈ [0, 2] cm protruding above the magnets (see Fig. 1). The total tip
mass is 𝑀 = 8 g. The articulated system is thus constituted of a flexible
string (of length 𝐿) with a rigid pendulum (of length 𝓁+𝑎) attached to
its end. We force the system parametrically, using a noninvasive and
remote magnetic forcing, to study its dynamics. To do so, the system
is suspended above the center of a circular copper plate. The plate is
attached to an electromagnetic shaker using a long aluminum shaft to
avoid any interference from the internal magnetic field of the shaker.
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Fig. 1. Left: Illustration of the experimental setup with the system in motion. Right:
Photo of the magnets suspended at the end of a nylon cord, using the plastic holder
of length 𝓁 + 𝑎. 𝐿 = 6 cm.

Fig. 2. Spectrum of the magnet velocity showing the system frequency response, 𝑓𝑟, for
different forcing frequencies, 𝑓 . 𝑓0 is the system’s natural resonant frequency. 𝓁 = 6 mm.
A subharmonic response, i.e., 𝑓𝑟 = 𝑓∕2, occurs for frequencies around 2𝑓0 (between the
dash-dotted lines). Note also the presence of the second harmonic (i.e., 𝑓𝑟 = 2𝑓 ) that
is maximal around 𝑓0.

The plate is subjected to vertical oscillations, 𝐴 sin(2𝜋𝑓𝑡), at a mean
distance 𝑑0 ∈ [7, 9] mm from the magnet center, with 𝑓 ∈ [15, 40] Hz
and 𝐴 ∈ [0.07, 2] mm, the frequency and amplitude of the vibrating
plate, respectively. The relative distance between the magnets and
the plate is 𝑑(𝑡) = 𝑑0 + 𝐴 sin(2𝜋𝑓𝑡). The horizontal velocity of the
magnet is measured either by a Polytech laser vibrometer for small
amplitude motions or by a homemade copper wire coil, placed close
to the magnet, for large ones. The magnet motion is visualized by a
Basler camera (2048 × 1536 px2, 120 fps) located in front of it.

3. Frequency response

We first determine the frequency response of the magnet-string
system. To do so, the forcing frequency 𝑓 is varied linearly in time,
during 2 min, from 15 to 50 Hz, and the horizontal velocity 𝑣(𝑡) of the
tip mass is recorded. We compute its frequency spectrum 𝑆𝑣(𝜔) ∼ |�̂�(𝜔)|
[where �̂�(𝜔) is the Fourier transform of 𝑣(𝑡)] as shown in Fig. 2. The
spectrum maxima correspond to the system frequencies 𝑓𝑟 in response
to different forcing frequencies 𝑓 . We clearly see that the response
follows the forcing, 𝑓𝑟 = 𝑓 , except in a region (see vertical dash-
dotted lines), where a subharmonic behavior, 𝑓𝑟 = 𝑓∕2, is observed.
In this range, the magnet exhibits large-amplitude oscillations (in the
planar pendulum motion) in which the string swings back and forth
at half the driving frequency, corresponding thus to a period-doubling
2

Fig. 3. Dynamic behaviors of the articulated system in the nondimensional forcing
amplitude and frequency parameter space. Two resonant tongues around 𝑓0 and 2𝑓0
are observed, corresponding to a harmonic instability and period doubling, respectively.
Bullets: experimental data. Solid lines: prediction of the resonant tongues from Eq. (6)
(red) and Eq. (B.9) (blue). Dashed lines: errors in the predictions due to the estimation
of 𝑞. Inset: Photos at different times showing period-doubling instability and a strong
deviation angle of the magnet and correspondingly of the string. 𝓁 = 1 cm. 𝐿 = 6 cm.

instability [see the red region and photos in Fig. 3, and a movie in
the Supplemental Material (see Appendix D)]. The system exhibits also
small rotations of the center of mass, around the equilibrium, with
deviations of the string from the vertical. Such motion is restricted to
the vertical 𝑦−𝑧 plane and no rotation around the vertical axis is found.
Outside the red region in Fig. 3, a low-amplitude motion is observed.
Interestingly, the magnetic damping of the conductive plate cancels any
torsional motion.

We now measure the natural resonant frequency 𝑓0 of the magnet-
string system. We move laterally the magnet away (over the 𝑦-axis)
from its equilibrium with a small string flexion to excite only the mode
observed in the inset of Fig. 3 and not the unflexible pendulum one
[occurring at a much lower frequency

√

𝑔∕𝐿∕(2𝜋) ≃ 2 Hz]. We record
the magnet velocity during its free-damped oscillations. Through a
Fourier transform, the resonant frequency is inferred from the spectrum
peak frequency, 𝑓0, and is noted by a vertical dashed line in Fig. 2.
The subharmonic region in Fig. 2 occurs around 2𝑓0, as expected for
parametric resonance [15], with the corresponding response 𝑓𝑟 = 𝑓∕2,
i.e., a period-doubling motion. Fig. 2 also shows that no subharmonic
instability occurs around 𝑓0, as expected, whereas a second-harmonic
instability, i.e., 𝑓𝑟 = 2𝑓 , is observed.

4. Instability threshold

The threshold of the subharmonic instability depends on the vi-
brating parameters 𝑓 and 𝐴. It is experimentally measured by slowly
increasing 𝐴, for a given 𝑓 , until observing an exponential rise in the
system oscillation amplitude. The experimental data are shown in Fig. 3
to collapse onto continuous curves in the nondimensional parameter
space (𝐴∕𝑑0, 𝑓∕𝑓0) which are suggestive of two resonant curves around
𝑓0 (in blue) and 2𝑓0 (in red). In the zone above the red points, a
period doubling of the oscillations of the bending string is observed,
i.e., 𝑓𝑟 = 𝑓∕2, corresponding to the inset of Fig. 3. The tonguelike
shape of this marginality curve is reminiscent of parametric resonance.
The instability is also found slightly hysteretic. In the region above
the blue points, the system responds, as 𝑓𝑟 = 𝑓 , corresponding to a
harmonic instability. Note that, for frequencies slightly close and above
𝑓0, no experimental data are indicated since we do not observe a clear
transition to the harmonic instability (see below).
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5. Bending string description

The behavior of a hanging flexible string differs significantly from
that of a rigid pendulum [1]. Let us consider a flexible and inextensible
string suspended from its fixed upper point, subjected to gravity and
tension forces, and a maximal displacement of its end 𝑋0 at an initial
time. The string position 𝐗(𝑠, 𝑡) is then described by Newton’s law
as [14]

𝜌𝜕𝑡𝑡𝐗 = 𝜕𝑠[𝑇 (𝑠, 𝑡)�̂�] − 𝜌𝑔�̂� (1)

where 𝑠 ∈ (0, 𝐿) is the curvilinear position along the string taking its
origin at its upper end [𝐗(0, 𝑡) = 𝟎], 𝑇 (𝑠) is the tension acting in the
string, 𝜌 is the linear mass density, and 𝑔 = 9.81 m∕s2. By applying
additional boundary conditions (BCs), 𝑇 (𝐿, 𝑡) = 0 (no tension acts on
the free end), and 𝐗(𝐿, 0) = 𝐗𝟎 (initial condition), the solutions of
Eq. (1), for no tip mass and small displacements from the equilibrium
configuration, are found as modes of the zeroth-order Bessel function of
the first kind 𝐽0 [1]. Nevertheless, due to the added tip mass, our system
is able to rotate around its center of mass (in the planar pendulum
motion), and a significant modification of its resonant frequencies is
predicted [3]. Beyond BCs on the string position at its ends, forces,
and torques on the tip mass need to be theoretically considered leading
to nontrivial BCs [3]. In that case, solutions of Eq. (1), for small
displacements, are that of a classical harmonic oscillator of frequencies
𝜔𝑛, each corresponding to a system mode. Note that if the string were
elastic, one would recover a parametrically excited buckling beam,
most likely governed by a Duffing-like equation [16].

By considering small motions around equilibrium, Eq. (1) reads

𝜌𝜕𝑡𝑡𝑋 = 𝜕𝑧
[

(𝜌𝑔𝑧 +𝑀𝑔) 𝜕𝑧𝑋
]

, (2)

where 𝑋 is the 𝑥-direction component of 𝐗. Through separation of
variables 𝑋 = 𝑝(𝑡)𝑞(𝑧) and assuming that the hanging mass is much
larger than the mass of the cord, one finds

𝜕𝑡𝑡𝑝 = −𝜔2
𝑛𝑝. (3)

The boundary conditions imposed on the cord determine exactly the
value of 𝜔𝑛. If we assume now that the hanging mass experiences a
time-dependent form, and that the gravitational constant is thus given
as 𝑔(𝑡) = 𝑔[1 + 𝑎(𝑡)], we find through the same procedure as above

𝜕𝑡𝑡𝑝 = − [1 + 𝑎(𝑡)]𝜔2
𝑛𝑝, (4)

where 𝑎 = 𝐹 (𝑡)∕(𝑀𝑔), and 𝐹 is the unknown vertical force exerted
on the hanging mass 𝑀 . An important assumption was made above,
namely that a separation of time and space variables is possible, which
is no longer the case for large tip-mass displacements. Additionally,
Eq. (4) is a significant simplification considering the nontrivial BCs at
the lower end [3]. Ideally, one would have to also include the remote
force exerted by the plate on the magnet into the bottom boundary
condition, notably in the acceleration of the center of mass.

6. Pivoting-mass length effects

We now measure experimentally the resonant frequencies 𝑓0 for
different lengths 𝓁 as shown in Fig. 4. A strong dependence of 𝑓0 on 𝓁
is found, and 𝑓0 is significantly larger (by one order of magnitude) than
the corresponding usual rigid pendulum mode (2 Hz) or the no-tip-mass
flexible string mode (2.4 Hz). The numerical computation of 𝑓0 using
Eq. (1) and the BCs found in Ref. [3] is shown as well, which roughly
agrees with the data with no fitting parameter. We thus find that the
tip-mass flexible string is reasonably well modeled by Eq. (1) with the
BCs in Ref. [3]. As the string is not able experimentally to freely rotate
around its lower attachment point (see inset of Fig. 3), a rigid motion
occurs on the string 𝛿𝓁 ≃ 2 mm away from its lower end, and we have
thus introduced an effective length of the axis, 𝓁eff = 𝓁 + 𝛿𝓁, in this
model.
3

Fig. 4. Experimental resonant frequencies, 𝑓0, of the tip-mass-cord system for different
pivoting mass lengths 𝓁. The solid line corresponds to Eq. (1) of the flexible string
model with a tip mass, i.e., including nontrivial BCs. Inset: Magnetic field 𝐵𝑥 measured
t different distances 𝑧 below the magnet bottom without forcing (bullets). Near-field
ipole prediction (dashed line) and far-field monopole model (dash-dotted line). 𝐿 = 6
m.

. Hill’s equation

Let us now take into account the remote magnetic forcing as the
ertical oscillations of the conducting plate induce a time-dependent
orce on the magnet. First, we measure, with no forcing and using

Koshava5 Gaussmeter, the field amplitude 𝐵𝑥(𝑧) generated by the
agnet along the negative 𝑧 axis (i.e., below the magnet and in the
irection of the magnetic dipole moment 𝐦). Far from the magnet,
𝑥(𝑧) is well described (see inset of Fig. 4) by the classical magnetic
ipole law 𝐵𝑥(𝑧) = 𝜇0m∕(4𝜋𝑧3) [17], with 𝜇0 = 4𝜋10−7 Tm/A the
acuum magnetic permeability. By moving closer to the magnet, the
xperimental magnetic strength clearly departs from this prediction and
s roughly fitted by 𝐵𝑥(𝑧) = 𝜇0𝑞∕(4𝜋𝑧2) where 𝑞 is an effective monopole
oment inferred from the fit as 𝑞 = 33±4 Am. Note that the components
𝑦 and 𝐵𝑧 are negligible due to the choice of 𝐦 along the 𝑥 direction,

ince they are measured to be ten times smaller than 𝐵𝑥. Additionally,
ore sophisticated expressions for the field of a permanent magnet

ould be used [18], but for the sake of simplicity we rely on this
mpirical model, also known as the dumbbell model [19]. The elec-
romagnetic interaction between the magnetic field 𝐵𝑥 and the vertical
otion of the nearby oscillating conductor causes a vertical force on

he magnet computed as 𝐹𝑧(𝑑) = (𝜇2
0𝑞

2𝜎𝑢𝑧)∕(16𝜋𝑑) (see Appendix A)
ith 𝑑(𝑡) = 𝑑0 + 𝐴 sin (2𝜋𝑓𝑡) the relative distance between the magnet
nd the plate, 𝑢𝑧 = d𝑑∕d𝑡 their relative vertical velocity, and 𝜎 the plate
onductivity. By adding the driving force 𝐹𝑧 into Eq. (1) of the hanging
tring, including the nontrivial BCs, and assuming small horizontal
isplacements, we find that the amplitude 𝑝𝑛 of each mode 𝑛, oscillating
t 𝜔𝑛, is governed by an equation of the Hill type (see Appendix B)

𝑡𝑡𝑝𝑛 = −𝜔2
𝑛

[

1 + 𝑐
(𝐴∕𝑑0)𝜔 cos(𝜔𝑡)
1 + (𝐴∕𝑑0) sin(𝜔𝑡)

]

𝑝 − 𝜅𝜕𝑡𝑝𝑛 (5)

with 𝑐 = (𝜇2
0𝑞

2𝜎)∕(16𝜋𝑀𝑔) = 0.026 s, and 𝜅 a dissipation coefficient.
It is well-known that the Hill equation can lead to resonant tongues
of parametric instability including the special case of the Mathieu
equation [20].

By applying a Fourier expansion of the periodic function within the
brackets in Eq. (5) up to the second order, we can analytically find

the expressions for the resonant tongues in the (𝑓∕𝑓0, 𝐴∕𝑑0) parameter
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Fig. 5. Top: Temporal evolution of the horizontal velocity of the magnet, for increasing
plate amplitudes 𝐴 (in order blue, red, green, yellow) at fixed 𝑓 = 27 Hz, and below
the period-doubling instability threshold (white area in Fig. 3). Bottom: same within
the period-doubling region (red area in Fig. 3).

space (see Appendix B). The tongues originate at 2𝜔𝑛∕𝑚 (𝑚 = 1, 2, . . .
is the tongue number) leading thus to a harmonic or subharmonic
response. We reproduce here only the expression for the subharmonic
tongue at 2𝑓0, i.e.,
(

2𝜔2
0

𝜔2
− 1

2

)2

+ 𝜅2

𝜔2
−

(

𝑐𝑒1
𝜔2
𝑛
𝜔

)2

= 0. (6)

where 𝑒1 corresponds to the first Fourier coefficient in the series expan-
sion, which depends nontrivially on the forcing amplitude (the exact
expressions being cumbersome, they have been collected in Appen-
dices B and C). The subharmonic instability curve of Eq. (6) is plotted
in Fig. 3 (red solid line) along with the harmonic prediction at 𝑓0 (blue
one) from Eq. (B.9). Our model is found to be in good agreement with
the experimental instability curves with no fitting parameter once the
tongue minimum is known. As the latter is related to dissipation [21],
this leads to an estimation of the effective dissipation 𝜅 = 0.18 s−1

satisfying the timescale separation 1∕𝑓 ≪ 1∕𝜅. Slight deviations of the
model for higher frequencies (compare red solid line and bullets) could
be due to the mode truncation to obtain the analytic expression. In
addition, the theoretical tongue shape near 𝑓0 (blue solid line) exhibits
a sharp, almost vertical, rise above 𝑓0, explaining why we are unable to
experimentally observe the right part of the harmonic instability curve.

8. Transition behavior

We finally focus on the magnet dynamics when crossing the subhar-
monics instability threshold. For this, we increase the plate amplitude
𝐴 at a fixed frequency 𝑓 , and, using the laser vibrometer, we measure
the horizontal velocity 𝑣(𝑡) of the magnet-string motion, as shown in top
Fig. 5. For low 𝐴, small-scale oscillations are reported (see blue curve).
For high enough 𝐴, still below the subharmonic instability threshold
𝐴𝑐 (𝑓 ) in Fig. 3, we observe the appearance of higher harmonics as well
as an asymmetry of the motion on every second period of the forcing
frequency. This asymmetry exists likely because the magnet velocity
is no longer negligible. Once we cross the threshold of instability, the
motion becomes more regular and with an amplitude that is ten times
larger, as seen in bottom of Fig. 5, with period doubling clearly visible.
Interestingly, the magnet spends a long time at its extreme points,
i.e., for 𝑣 = 0, with a rapid pass through its equilibrium point. Thus,
4

increasing the amplitude means that higher harmonics grow more and
more until the system transitions into the period-doubling state. This
behavior is similar to that of the Duffing equation and indicates the
presence of nonlinearities in the string.

9. Conclusion

We have reported, both experimentally and theoretically, the dy-
namics of an articulated oscillating system consisting of a flexible string
with a freely pivoting mass at its end. The system resonant frequency
is controlled by the length of the pivoting mass and differs significantly
(by one order of magnitude) from that of the single flexible string. This
articulated system in particular exhibits bending oscillations, similar
to a swing becoming slack. To do so, we used a remote and noninva-
sive parametric forcing technique. A magnet suspended by a flexible
string above a vertically oscillating conductive plate is subjected to a
remote force (due to induced currents in response to the conductor
motion). Parametric resonances of the tip-mass-string system are then
highlighted such as harmonic and period-doubling instabilities. This
parametric system is theoretically modeled using a Hill equation and
the obtained analytic expressions for the resonant tongues describe
well the observed instabilities. Beyond their thresholds, more complex
dynamics can be observed once the magnet displacement or velocity be-
comes comparable to the oscillating plate one. A potential improvement
to the current study would be to consider different magnet strengths.
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Appendix A. Force on the magnet

In our model, we consider that the magnet is the source of a
simplified magnetic field close to the conducting plate in the form of

�⃗� =
𝜇0
4𝜋

𝑞
𝑟2
�̂�, (A.1)

which we find to be a reasonable approximation empirically. Following
Ref. [7], the force on the source of this field can be obtained through

𝐹 = ∫𝛴
𝜎(𝑢 × �⃗�) × �⃗�d𝑉 , (A.2)

where 𝛴 is the conductor volume, considered to be located at a dis-
tance 𝑑 from the source and filling the half-infinite volume (we find
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d

r

𝐹

𝑒

A

a

R

numerically that effects of finite size can be neglected due to the 1∕𝑟2

rop-off of field strength).
Inserting Eq. (A.1) into Eq. (A.2) and considering 𝑢 = 𝑢�̂�, Eq. (A.2)

eads

⃗ =
(

𝜇0𝑞
4𝜋

2
)

𝜎𝑢∫𝛴
(�̂� × �̂�) × �̂�

𝑟4
d𝑉 . (A.3)

By turning to cylindrical coordinates, we have

𝐹 =
(𝜇0𝑞
4𝜋

)2
𝜎𝑢�̂�∫

∞

𝑑 ∫

∞

0 ∫

2𝜋

0

𝜌
𝜌2 + 𝑧2

d𝜙d𝜌d𝑧, (A.4)

finally yielding

𝐹 =
(𝜇0𝑞

4

)2 𝜎𝑢
𝜋𝑑

�̂�. (A.5)

Appendix B. Hill equation and stability

We can now insert Eq. (A.5) into Eq. (4) to find the governing
equation of a single mode as

𝜕𝑡𝑡𝑝 = −𝜔2
𝑛

[

1 +
(𝜇0𝑞

4

)2 𝜎
𝜋𝑀𝑔

𝐴𝜔 cos(𝜔𝑡)
𝑑0 + 𝐴 sin(𝜔𝑡)

]

𝑝, (B.1)

where we have assumed that the conducting plate position is given by
𝑧(𝑡) = 𝐴 sin(𝜔𝑡) and its motion is larger than the magnet one, much like
the linearized equations of motion found in Ref. [7].

We introduce now 𝜏 = 𝜔𝑡 and perform a change of variables

𝜕𝜏𝜏𝑝 = − [𝛼 + 𝛾𝑓 (𝜏)] 𝑝, (B.2)

where

𝛼 =
𝜔2
𝑛

𝜔2
, 𝛾 =

(𝜇0𝑞
4

)2 𝜎𝜔2
𝑛

𝜋𝜔𝑀𝑔
(B.3)

𝑓 (𝜏) =
𝛽 cos(𝜏)

1 + 𝛽 sin(𝜏)
, 𝛽 = 𝐴

𝑑0
. (B.4)

In order to analytically compute the approximative instability regions
of Eq. (B.2), we expand the function 𝑓 (𝜏) into a Fourier series up to the
second order. This yields

𝜕𝜏𝜏𝑝 = −
[

𝛼 + 𝛾
(

𝑒1 cos 𝜏 + 𝑒2 sin 2𝜏
)]

𝑝 − 𝜅𝜕𝜏𝑝, (B.5)

where a damping term 𝜅 is now included. Both 𝑒1 and 𝑒2 are functions
of 𝛽 and are given in Eq. (C.2). We consider 𝑝 =

∑∞
−∞ 𝑎𝑛𝑒𝑖𝑛𝜏∕2, giving us

a system of equations for 𝑎𝑛. We truncate the system to two dimensions
and impose that the corresponding determinant is zero, i.e.,
|

|

|

|

|

𝛼 − 1
4 + 𝑖

2𝜅
1
2 𝛾𝑒1

1
2 𝛾𝑒1 𝛼 − 1

4 − 𝑖
2𝜅

|

|

|

|

|

(B.6)

giving
(

𝛼 − 1
4

)2
+ 1

4
𝜅2 − 1

4
(𝛾𝑒1)2 = 0. (B.7)

We repeat the procedure for the harmonic solutions with 𝑝 =
∑∞

−∞ 𝑎𝑛
𝑒𝑖𝑛𝜏 , except that a larger dimension is needed now
|

|

|

|

|

|

|

2(𝛼 − 1 + 𝑖𝜅) 𝛾𝑒1 −𝑖𝛾𝑒2
𝛾𝑒1 2𝛼 𝛾𝑒1
𝑖𝛾𝑒2 𝛾𝑒1 2(𝛼 − 1 − 𝑖𝜅)

|

|

|

|

|

|

|

(B.8)

which leads to

𝛼
[

4(𝛼 − 1)2 + 4𝜅2 − 𝛾2𝑒22
]

− 2(𝛼 − 1)𝛾2𝑒21 = 0. (B.9)

Appendix C. Fourier coefficients

The function 𝑓 (𝜏) is expanded as
5

𝑓 (𝜏) ≈ 𝑒1 cos(𝜏) + 𝑒2 sin(2𝜏) (C.1)
with

𝑒2 =
2
𝛽2

(

𝛽2 + 2
√

1 − 𝛽2 − 2
)

1 =
𝑟

2𝜋𝛽
√

1 − 𝛽

𝑟 =4𝜋
(

2
√

𝛽 + 1𝛽 +
√

1 − 𝛽 − 2
√

𝛽 + 1
)

− 8(𝛽 − 1)
√

𝛽 + 1 tan−1
⎛

⎜

⎜

⎝

√

1 − 𝛽
𝛽 + 1

⎞

⎟

⎟

⎠

− 8(𝛽 − 1)
√

𝛽 + 1 tan−1
⎛

⎜

⎜

⎝

√

𝛽 + 1
1 − 𝛽

⎞

⎟

⎟

⎠

(C.2)

ppendix D. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.physd.2024.134164.
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