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Abstract

We report two-dimensional simulations of strongly vibrated granular materials without gravity. The coefficient of restitution depends on the
impact velocity between particles by taking into account both the viscoelastic and plastic deformations of particles, occurring at low and high
velocities respectively. Use of this model of restitution coefficient leads to new unexpected behaviors. When the number of particles N is large, a
loose cluster appears near the fixed wall, opposite the vibrating wall. The pressure exerted on the walls becomes independent of N, and linear in
the vibration velocity ¥, quite as the granular temperature. The collision frequency at the vibrating wall becomes independent of both N and 7,
whereas at the fixed wall, it is linear in both N and V. These behaviors arise because the velocity-dependent restitution coefficient introduces a new

time scale related to the collision velocity near the cross over from viscoelastic to plastic deformation.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A granular material is called a “granular gas” when the
individual grains do not stay in contact with one another but
rather always move separately through space, interacting only
through dissipative collisions. The absence of enduring contacts
between the particles allows granular gases to be treated by
special numerical and theoretical methods, such as event driven
simulations and kinetic theory. These methods have given rise to
alarge body of knowledge about dissipative granular gases [1,2].

The experimental realization of granular gases is however
more difficult, because the grains must be continuously supplied
with energy. This is usually done with a vibrating plate [3]. These
experiments, however, often result in situations quite unlike those
considered theoretically. Some experiments have then been
carried out in microgravity [4,5] to limit the number of parameters
in the problem in order to make easier the comparison with kinetic
theory of dissipative granular gases. However, the interaction
between experiments and theory has remained sporadic.
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In our past work [6], we have been able to compare
simulations with experiments by studying a granular gas
generated by placing grains in a box and then vibrating one
of the walls to supply energy. We have found that a velocity-
dependent restitution coefficient is necessary to bring simula-
tion and experiment into agreement. In this paper, we
investigate a further consequence of this model that should be
observable in vibrated granular gases in zero gravity.

To see why the velocity-dependent restitution coefficient has a
radical effect in microgravity, one must enumerate the parameters
describing the system. The parameters are the following: the
number of particles N, the diameter of the particles d, there mass
m, the volume of the container, the restitution coefficient r, the
vibration amplitude 4, and vibration frequency f. Note that only
one of these quantities — the inverse of the vibration frequency,
1/f — has the dimensions of time. All other quantities are either
dimensionless or involve length or mass. Thus dimensional
analysis can be used to determine the dependence of every
quantity on f. For example, both the average kinetic energy of the
particles and the pressure vary as f>. However, this scaling is not
in agreement with the one observed during microgravity
experiments [4].
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Fig. 1. The restitution coefficient  as a function of impact velocity v, as given in
Eq. (1) (solid line). The dashed lines show vy=0.3 m/s and r;=0.95.
Experimental points (@) for steel spheres were extracted from Fig. 1 of Ref. [28].

There are two ways to disrupt this role of /. First, one could
introduce gravity, bringing in a second time scale. The second is
to introduce a velocity dependent restitution coefficient. As we
show in this paper, this is sufficient to radically alter the
behavior of the system. Specifically, the coefficient is assumed
to change its character at a specific value of the impact velocity
vo. For velocities lower than vy, collisions dissipate little energy,
but above vy, much energy is dissipated. This leads to several
unusual features that could be observed experimentally.

2. Parameters of the simulations
2.1. The variable coefficient of restitution

The most important parameter in our simulations is the
coefficient of restitution. The restitution coefficient 7 is the ratio
between the relative normal velocities before and after impact. In
contrast to most previous numerical studies of vibrated granular
media [7-9], we let it depend on impact velocity. In most
simulations of strongly vibrated granular media, the coefficient
of restitution is considered to be constant and lower than 1.

Dissipation during collisions of metallic particles can occur
by two different mechanisms. When the impact velocity v is
large (v=5 m/s [10]), the colliding particles deform fully
plastically and rocv ', as reported experimentally [11—14]
and theoretically [10,12,15,16]. When v<0.1 m/s [10], the
deformations are elastic with mainly viscoelastic dissipation,
and 1—-rocy!'® as reported experimentally [14,17,18] and
theoretically [17,19]. Such velocity-dependent restitution coef-
ficient models have recently shown to be important in numerical
[20-26] and experimental [18,27] studies. Applications in-
clude: granular gases [6], granular fluid-like properties
(convection [21], surface waves [22]), collective collisional
processes [18,23,24], granular compaction [26], and planetary
rings [25,27].

In this paper, we use a velocity dependent restitution
coefficient r(v) and join the two regimes of dissipation
(viscoelastic and plastic) together as simply as possible,
assuming that
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where vy=0.3 m/s is chosen, throughout the paper, to be the
yielding velocity for stainless steel particles [10,28] for which
ro is close to 0.95 [28]. Note that vy~ 1/,/p where p is the
density of the particle [10]. We display in Fig. 1 the velocity
dependent restitution coefficient of Eq. (1), with 79=0.95 and
vo=0.3 m/s, that agrees well with experimental results on steel
spheres from Ref. [28]. As also already noted by Ref. [10], the
impact velocity to cause yield in metal surfaces is indeed
relatively small. For metal, it mainly comes from the low yield
stress value (Y~ 10° N/m?) with respect to the elastic Young
modulus (E~10"" N/m?). Most impacts between metallic
bodies thus involve some plastic deformation. For more
informations on restitution coefficient measurements, see Ref.
[11,14,17,18,27-29].

Note that other laws for the velocity dependent restitution
coefficient have been studied in the context of rapid granular
shear flows [30]. It was shown that such a coefficient changes
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Fig. 2. Typical aspect ratio of the container for n=>5 layers of particles (2 mm in diameter) leading to a height of the bed of particles at rest, /p=1 cm. The container
height is #=2.5 cm, its length L=20 cm, and the peak—peak vibrational amplitude 4=2.5 cm (see text for details).
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the scaling relation between the imposed shear rate and the
shear stress. Specifically, when the restitution coefficient
strongly decreases at high impact velocities, the pressure scales
with the shear rate frequency with an exponent less than two.
This finding anticipates our results, but a detailed comparison is
not possible because Ref. [30] does not use Eq. (1).

2.2. The other simulation parameters

The numerical simulation consists of an ensemble of
identical hard disks of mass m~3x107> kg excited vertically
by a piston in a two-dimensional box, in the absence of gravity
(see Fig. 2). We use the standard event-driven simulation
method, where collisions are assumed instantaneous and thus
only binary collisions occur. To avoid inelastic collapse — an
unbounded number of collisions in finite time [31] — collisions
are made energy-conserving whenever very tight clusters of
three particles are detected. Furthermore, note that using the
restitution coefficient given in Eq. (1) prevents inelastic collapse
[24]. For simplicity, we neglect the rotational degree of
freedom. Collisions with the walls are treated in the same way
as collisions between particles, except the walls have infinite
mass. The simulation parameters are chosen close to the usual
ones used in the experiments (see for instance Ref. [3]). The
particles are disks d=2 mm in diameter with stainless steel
collision properties through vy and r, (see Fig. 1). The vibrating
piston at the bottom of the box has amplitude 4=2.5 cm, and
frequencies 8 <f<30 Hz. The piston is nearly sinusoidally
vibrated with a waveform made by joining two parabolas
together [6], leading to a maximum piston velocity given by
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V=4 Af'in the range 0.8 < V<3 m/s. For the parameters used in
this paper, quantities such as the pressure are sensitive to 7] but
not to the maximum piston acceleration [6], so V" will be used to
characterize the vibration.

The box has width L=20 cm and horizontal periodic
boundary conditions. The number of layers of particles is
n=Nd/L. Note that when n<1, it is also the fraction of the
surface covered by particles, so it could also be considered as an
average surface fraction. A layer of particles, n=1, corresponds
to 100 particles. We checked that n is an appropriate way to
measure the number of particles by also running simulations at
L=10 cm and L=40 cm. None of this paper’s results depend
significantly on L. The height % of the box depends on the
number of particles in order to have a constant difference 4
—ho=1.5 cm, where # is the height of the bed of particles at
rest, & being defined from the piston at its highest position (see
Fig. 2). h—hy is keep constant during most of the simulations
(except when notified). All the simulations performed here are
without gravity (except when notified).

3. Results of simulations
3.1. Snapshots

The simplest way to display the results of the simulation is
simply to show the positions of the particles. This is done in Fig. 3
for three simulations at different particle numbers. In all three
panels, the wall shown at the top is fixed, and the bottom,
vibrating, wall is shown at its lowest position. The periodic
boundary conditions are shown by dotted lines at the sides of each
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Fig. 3. Snapshots of various numbers of layers n: top n=1, middle: n=5, bottom: n=10. All snapshots taken when the vibrating wall (bottom) reaches its lowest point.
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picture. Note that through out the paper we will use words such as
“upper”, “lower”, “horizontal”, and “vertical” as suggested by the
orientation of these figures, although there is no gravity.

In the upper panel (rn=1), the system merits the name of
“granular gas”: the particles are well separated. For the middle
(n=5) and lower (n=10) panels, the situation has changed. A
dense cluster forms against the stationary wall. As more
particles are added, this cluster simply becomes thicker. Since
the distance between the vibrating and stationary walls grows
with the number of particles, this process can continue
indefinitely.

3.2. The pressure

Next we concentrate on the pressure on the upper wall
(opposite the vibrating piston) since this is the quantity most
accessible to experiments. Here, the pressure P is defined as the
force per unit length that the particles exert on this wall, or
alternatively the flux of momentum, per unit time and length,
through this wall. Since the collisions are instantaneously, a
precise temporal resolution would yield a series of delta-
function peaks. We average the pressure over many (6400)
cycles to obtain a stable average.

We present in Fig. 4 the dependence of P on the piston
velocity, ¥, and on the number of layers n. This figure can be
divided into two parts. The dominant feature is the pressure peak
observed near n~1. A similar peak appears in the presence of
gravity [6]. It is related to the increase of pressure with n up to
n<1 since interparticle collisions are rare and most of the
particles are in vertical ballistic motion between the piston and the
lid [6]. On the other hand, for n>3, the pressure is approximately
independent of the number of particles (see Fig. 4), and
proportional to the piston velocity as shown by the inset of

6 4 T
L o 00 ] 4
= n=10 OQD
5 527 QOO | —
o o °
L 1k ° i i
— L L —
4 00 1 2 3
\%
g
£ 3 =
o N ]
!
2y
I
0 L | 1 | I | 1
0 2 4 6 8 10
n

Fig. 4. Time averaged pressure P on the top of the cell as a function of particle
layer, n, for various vibration velocities: ¥=0.8 to 3 m/s with steps of 0.2 m/s
(from lowest to uppermost curve). Inset: P as a function of V' for n=10.
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Fig. 5. Pressure as a function of n, for various heights of the cell: 0.5 <h—hy <5 cm
with steps of 0.5 cm (from lowest to uppermost curve). Inset: P as a function of
(h—ho)~" for n=10.

Fig. 4. The reason for this is discussed below. Under gravity, the
situation is quite different [6]. Adding particles causes more
frequent interparticle collision, and the energy dissipation to
increase and thus the pressure to decrease [6]. At large values of n,
resonances also appear under gravity.

In Fig. 5, we examine how changing h—h, affects the
pressure. First, we note that the independence of the pressure on
n is not confined to a special value of #— A, but holds for all
values, except the smallest (h—/y=0.5 cm). The pressure
decreases as the height increases. Examining the dependence of
the pressure on /— kg shows that Poc (h—hy) ! as displayed in
the inset in Fig. 5.

3.3. Scaling relations for global quantities

We would now like to present the information presented in
the previous sections in a more compact way, and also consider
other global quantities. In addition to the pressure, we will
examine the granular temperature 7, or mean kinetic energy per
particle, and the collision frequency C,, of particles with the
upper wall. From these quantities, one can deduce the average
impulse A/ of a particle—wall collision, Aly,=P/Cyp.

The relation between the global quantities and the vibration
velocity ¥ is reasonably well described by power-laws

T
Cup X VO(n) (2)
P

where the exponents 6(n) depend on the number of layers [6].
These exponents are shown in Fig. 6a for a constant restitution
coefficient, and in Fig. 6b for a velocity-dependent restitution
coefficient.
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Fig. 6. Exponents 6 as a function of » for simulations in the absence of gravity
with (a) =0.95 or (b) r=r(v). The granular temperature, 7 (<), collision
frequency, Cy, (*), and pressure, P (O), scale like V" o),

Each point in these figures was obtained by fixing » and
performing eleven simulations, varying /" from 1 to 3 m/s. The
amplitude 4 is kept constant, and thus the vibration frequency is
proportional to ¥, as explained in Section 2.2. Then log X
(where X is the quantity being considered) is plotted against log
V. The resulting curve is always nearly a straight line.
(Specifically |log Xopserved — 108 Xfitea| <0.1 for all points). The
slope of this line gives the power-law exponent 6.

For the case of constant coefficient of restitution, »=0.95
(see Fig. 6a), the scaling exponents are independent of the
number of particles: Cy,~ V', Pand T~ V2. As said above, this
is precisely what is to be expected from dimensional analysis,
since the vibration fixes the only time scale in the problem. On
the other hand, when r=r(v), a more complicated behavior is
observed (see Fig. 6b). When n is small, the exponents
approach those of the previous case. However, when the
number of particles becomes large, all exponents approach
unity. The reason for this is discussed below.

4. Anomalous scalings in the dense regime

In Sections 3.2 and 3.3, we have shown that, with a velocity
dependent restitution coefficient, the pressure of a dense

granular gas without gravity obeys the simple non-extensive
relation

NP1

P .
Rl

3)

Let us now try to explain below this scaling.

4.1. Collision frequencies at the walls

In Figs. 3b—c, we observe that the majority of particles
remain in a loose cluster pushed against the stationary wall,
opposite the piston. Only those particles that “evaporate” from
the cluster are struck by the piston. The flux of evaporating
particles can be estimated from the rate C,, of collisions
between the piston and the particles. This collision rate has a
very curious behavior, as observed in Fig. 7. Cj,, is roughly
independent of n» when n>3 (see Fig. 7a). This behavior holds
for other values of #—hg (see Fig. 7b). The inset of Fig. 7b
shows that ClOWOC(h*ho)fl. Moreover, the inset of Fig. 7a
shows that C),,, does not significantly depend on V (see the
scale on the y-axes), and can be approximately considered as
being independent of V. Thus, at high enough density, the
collision frequency on the vibrating wall is found to be

NOPO

. 4)

Clow x

The rate Cy,, of collisions between the particles and the fixed
wall is displayed in Fig. 8. It has a quite different behavior from
Ciow- In the dilute limit (n<2), Cy, increases more slowly than n
as already observed in microgravity experiments [5] and
simulations [32]. In the dense regime, when n>3, C,, is
proportional to both the number of layers 7 (see Fig. 8), and the
piston velocity V" (see inset of Fig. 8). Thus, at high enough
density, the collision frequency on the fixed wall is found to be

Cop XNV (5)

4.2. Explanation of the pressure scaling

The time averaged pressure on a wall is the time averaged
momentum flux divided by the area of a wall, that is

Plow X C10W<V10W> and Pup (08 Cup<vup> (6)

where (vioy) and (v,,) are, respectively, the mean particle
velocities close to the piston and close to the stationary wall.
Since momentum is conserved, the flux of momentum entering
the system at the piston, Ciow(Viow’, must have the same value
that the one leaving the system through the stationary wall,
Cup(vup>. Therefore, the pressure on both sides is equal and is
denoted P.

Fig. 3c shows that few particles are evaporated from the
cluster, and are close to the piston. The evaporated particles
from the cluster have the typical velocity of the particles within
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Fig. 7. The particle—piston collision rate C),,, as a function of particle layer, n.
(a) At fixed &#—ho=1.5 cm, for various vibration velocities V=1 to 3 m/s with
steps of 0.2 m/s (from lowest to uppermost curve). Inset: Cioy, vs. V for n=10.
(b) At fixed V=2 m/s, for various heights 2—hy=1 to 5 cm with steps of 0.5 cm
(from lowest to uppermost curve). Inset: Coy Vs. (h—he)~ " for n=10.

the cluster, that is v (see below), and thus does not depend on
the piston velocity. Moreover, there is no reason that the number
of evaporated particles depends on N. Therefore, one can
expected that Clow NV which is in agreement with our
numerical results of Eq. (4).

The scaling Ciow < (h—ho) ' probably occurs because a
particle that evaporates from the cluster must travel a certain
distance before it encounters the piston. This distance increases
with A—hy and thus the particle’s travel time also increases.
During its voyage, the evaporated particle could be struck by
another particle that has just encountered the piston. If this

happens, both particles are scattered back into the cluster. Thus
the evaporated particle never reaches the piston. If we assume
that the probability of an evaporated particle being scattered
back into the cluster is independent of time, the number of
particles reaching the piston is inversely proportional to 4 — /.

When these evaporated grains collide with the piston, they
acquire an upwards velocity proportional to V. Thus, the mean
particle velocity close to the piston is (vjo) < V. Therefore,
using these two above results, one have Pjqy % CiowlViow)
N°V'/(h—hg) in agreement with our numerical results of
Eq. (3).

Similarly, the particles close to the fixed wall are within a
cluster (see Fig. 3c). Due to their numerous dissipative
collisions within the cluster, these particles move little, even
less that there are many particles within the cluster. Their mean
velocity (v, is thus fixed by the dissipation within the cluster
(thus by r(v) via vy), and by the number of particles within the
cluster (that is by N). Thus, close to the upper wall, one expect
(Vup) ©vo/N. When the cluster is pushed against the upper wall,
each layer contributes a fixed number of collisions. Thus the
number of collisions per cycle is proportional to N. The
collision rate is also proportional to ¥ because the number of
cycles per unit time grows linearly with V. Thus, one have
Cyp <N "' which is in agreement with our numerical results of
Eq. (5). Therefore, using these two above results, one expect
Py Coplvyp) cc N°F! in agreement with our numerical results
of Eq. (3).

5. Is the granular temperature relevant for dense granular
gases?

In this section, we verified that the notion of granular
temperature (mean kinetic energy per particle) is relevant in our
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Fig. 8. C,, the collision frequency of particles with the upper wall as a function
of n for vibration velocities ’=0.8 m/s (lower curve) to 3 m/s (upper curve) with
steps of 0.2 m/s. Inset: Cy, vs V for n=10.
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dense system. Generally, for an homogeneous dilute granular
gas, the pressure is proportional to the temperature. We wonder
if the pressure scaling with the piston velocity, Poc ¥, can be
extended to the granular temperature for our dense system:
T'oc 1? Although our system is not spatially homogeneous and
not stationary during a vibration cycle, we will see that the
linear dependence of the granular temperature on ¥ is however
meaningful as described below.

5.1. Temporal distribution of energy

We now examine the behavior of the simulations more
closely, focusing on the variation of kinetic energy within one
vibration cycle. We define the “phase” ¢ of the vibration to be a
number between 0 and 1 that gives the position of the vibrating
wall. When the wall is at its lowest position, ¢=0 or ¢=1.
When it has reached its highest position, ¢p=1/2. When it is
halfway between its highest and lowest position, ¢=1/4 if it is
ascending, ¢=3/4 if it is descending.

Fig. 9 shows the total kinetic energy of the particles as a
function of the phase ¢, for three different piston velocities, all
with the velocity dependent restitution coefficient. Note that the
kinetic energy varies by a factor of about six for each V. The
maximum occurs around ¢ = 0.3, just after the vibrating wall has
attained its maximum velocity. Considering the strong variations
of kinetic energy during one cycle, one might question whether
the granular temperature 7 of the system were well-defined, or
whether the law 7cc Poc V' [see Eq. (3)] is meaningful.

The law is meaningful, because the curves of Fig. 9 lie on
one another if rescaled with 7 as shown in the inset of Fig. 9.
Thus, the granular temperature as a function of phase has the
form T(¢)=g(¢)V', where g is a function describing the shape
of the curves in Fig. 9. If one measures 7'at constant ¢ the same
scaling law will be observed, independent of ¢. Note that to
obtain the scaling exponents in Fig. 6, the granular temperature
was measured 20 times per cycle, and then averaged.
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Fig. 9. Total kinetic energy of the particles as a function of vibration phase ¢ for
three different velocities =1, 2 and 3 m/s (from lower to upper) at constant
number of particles n=>5. The wall is at its lowest at ¢ =0 and ¢=1, and reaches
its highest point at p=0.5. Data from 100 cycles were averaged to obtain these
curves. Inset: Total kinetic energy rescaled by Vas a function of ¢.
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Fig. 10. Kinetic energy as a function of altitude y at 3 different phases ¢ of the
vibrating cycle. Each panel contains three curves corresponding to the three
different V' in Fig. 9. Data shown are for =1 m/s (lower curve), V=2 m/s
(middle curve), and V=3 m/s (upper curve), at constant number of layers n=5.

5.2. Spatial distribution of energy

Under gravity, the altitude dependence of the density is
usually measured (in order to extract the granular temperature).
Far enough from the piston, the density decreases exponentially
with altitude. A dense upper region supported on a fluidized
low-density region near the vibrating piston is also reported
experimentally [3], numerically [33] and predicted theoretically
[34].

Without gravity, the spatial-dependence of the energy is
examined in Fig. 10. These graphs were obtained by dividing
the simulation domain into strips of height 2 mm, and then
calculating the kinetic energy present in each strip. Since the
particles also have a diameter of 2 mm, each one will overlap
two different strips. A fraction of the particle’s kinetic energy is
assigned to these two strips, in proportion to the area of the
particle located in each strip. This procedure is carried out for all
particles at fixed values of the phase ¢, and the results averaged
over 100 cycles.

The top panel shows the energy when the wall is at its lowest
point (¢p=0). At this phase, the energy is very low (note that the
scales on the y-axes of the three panels are all different), and its
distribution resembles that of the density. In the second panel,
the wall is now just past its maximum velocity. There is a peak
near the altitude y = 22 mm, due to the kinetic energy just
injected by the wall. This kinetic energy is ten times larger than
the kinetic energy found in the cluster, in spite of the small
density. In the last panel, the wall has begun to move downward.
Note that in all panels, the kinetic energy at any point is roughly
proportional to V. Thus if one measures the kinetic energy
density at fixed ¢ and y while varying ¥, one will observe a
linear dependence on V.

Figs. 9 and 10 present a fairly complete description of how
energy flows through the system. Energy is injected for
0.2<¢<0.4, as the vibrating wall moves upward, colliding
with some particles that have escaped from the cluster found
near the upper wall. These particles collide with this cluster at
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Fig. 11. Division of kinetic energy into mean motion (“hydrodynamic”) and
disorganized parts (“thermal”) as a function of altitude at 3 different phases ¢ of
the vibrating cycle. (...) Thermal kinetic energy (data for =3 m/s from Fig. 10).
(—) Hydrodynamic kinetic energy, obtained by averaging the velocities of all
particles found in each strip.

¢ =0.5, exciting this cluster. Then the energy decays, so that by
the time the wall begins moving upward again, most of the
energy has been dissipated.

5.3. Hydrodynamic and thermal kinetic energy

In this section we consider the ratio of hydrodynamic to total
kinetic energy. Here, we use the word “hydrodynamic” as in the
context of granular kinetic theory. It does not refer to any fluid
moving among the grains, but concerns the decomposition of
each grain’s velocity into an average ‘“hydrodynamic” and a
remaining “thermal” component. The hydrodynamic velocity of
a grain is found by averaging the velocities of all nearby grains.
See Refs. [35,36] for a discussion on the distinction between
these two energies in a granular medium.

The fraction of energy contained in the hydrodynamic
velocities measures the organization of the flow. If it is close to
one, then all the grains have nearly the same velocity. Ifit is small,
the granular medium is in a gas-like state, where the randomized
motions of the particles dominate. The use of the terms “granular
gas” and “granular temperature” imply that the granular medium
is in a state like that of a usual gas: that the “thermal” velocities of
the grains are much larger than the hydrodynamic ones. But is this
really the case? One could easily imagine a situation where a
cluster of particles bounces back and forth between the two walls,
without much relative motion between neighboring grains.

To see what situation applies to our simulations, we return to
the data used to produce Fig. 10. The average velocity of the
particles in each strip can be calculated, and the kinetic energy
related to this motion can be compared to the total. The results are
shown in Fig. 11. The results show that near the piston, most of the
energy is in the mean motion of the particles, even when the piston
is descending (¢p=2/3). Thus the motion of the piston is
supersonic. Near the fixed wall, where most of the particles are
located, however, most of the energy is thermal. One can therefore
conclude that in the cluster near the wall, gas-like conditions do
prevail, i.e., most of the motion is thermal. Obviously, our dense

granular gas differs from an usual gas in many other respects, such
as the formation of cluster near the wall, and to the anomalous
scalings reported here.

6. Conclusions

We report simulations of two-dimensional dense granular gas
without gravity vibrated by a piston. The restitution coefficient
used here depends on the relative velocity of particles. This allows
to simulate a dissipative granular gas in a much more realistic way
than using a constant restitution coefficient. This model of velocity
dependent restitution coefficient is indeed in good agreement with
experiments [11-14,17,18,27,28]. At high enough density, we
observe a loose cluster near the wall opposite to the vibrating one.
This leads to unexpected scalings: the pressure, P, and the granular
temperature, 7, scale linearly with the piston velocity V. The
collision frequency at the fixed wall and at the vibrating one scales
respectively, as N'V' and NP, where N is the number of
particles. We emphasize that these scalings can only be reproduced
with this velocity dependent restitution coefficient. If one uses a
constant restitution coefficient (as in most of previous simulations
of granular gases), one obtains Poc T'oc I without gravity, no
matter the constant value of the restitution coefficient. However,
this 7% scaling is not in agreement with the one reported during
microgravity experiments in a dilute regime [4]. Simulations of a
dilute granular gas with velocity dependent restitution coefficient
yield a scaling in agreement with this experimental one [6].

One difference between our simulations and the microgravity
experiments on granular gases is that it is common to shake the
whole container filled with particles in the experiments [4]. One
experiment has been recently performed by agitating dilute particles
with a piston in low gravity [S]. The anomalous scalings, reported
here numerically in a dense regime, may thus be observable in such
microgravity experiments with many more particles.
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