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Résumé. Un ensemble de particules granulaires vibrées magnétisées permet d’observer une transition entre
un gaz granulaire et un cristal hexagonal dans un système 2D hors équilibre, lorsque le champ magnétique est
augmenté à agitation constante [1]. En calculant, les fonctions de corrélation de courant longitudinal et transverse,
nous étudions la dynamique de ce système en mesurant le spectre des excitations, indiquant comment l’énergie est
répartie à travers les échelles. Des relations de dispersion peuvent être extraites, montrant la propagation d’ondes
longitudinales et transverses (dans la phase cristalline seulement), qui sont analogues aux phonons de la physique
du solide. Cette analyse nous informe sur les propriétés mécaniques et thermodynamiques du système.

Abstract. Using a 2D out-of-equilibrium system of magnetized and vibrated granular particles, a transition
from a granular gas towards a hexagonal crystal has been reported, when magnetic field is increased at constant
agitation [1]. By extracting the longitudinal and transverse current correlations in dynamical regime, the spectrum
of excitations can be measured to characterize how energy is distributed through the scales. Dispersion relations
are obtained, showing propagation of longitudinal waves and of transverse waves (in the crystal phase only),
which are analogous to phonons in solid state physics. This analysis provides insights on the mechanical and
thermodynamic properties of this system.

1 Introduction

A macroscopic experiment [1, 2] has been developed in MSC laboratory where a tunable magnetic
field is applied on a 2D vibrated granular medium made of soft-ferromagnetic spheres. Like in condensed
matter, depending on the relative ratio between particle agitation and distance interaction strength, gas-
like or solid-like phases can be observed. They are characterized using a particle tracking of individual
particles. For a specific choice of the initial particle number in the cell, of the cell acceleration and of
the gap size imposing the 2D confinement, a transition from an out-of-equilibrium granular gas to a
hexagonal crystal of repelling dipoles (analogous to the Wigner crystal) is observed, when the magnetic
field is increased. The protocol, the description of the experimental system and the first results have been
reported in a previous publication [1]. Here, we focus on the dynamical properties of this 2D granular
system, studied in the spatial Fourier space. The computation of the transverse and longitudinal current
correlation functions gives access to the spectrum of excitations and their temporal decay. We evidence
strong differences between the dissipative granular gas phase and the hexagonal crystal phase.

The experimental setup (see Fig. 1) consists of an assembly of 2,000 soft magnetic spheres of diameter
a = 1 mm confined in a square cell (9 × 9 cm) with a gap of 1.42 a. The cell is vertically vibrated at
fv = 300 Hz with a r.m.s. acceleration Γ = 1.6 g. Due to the roughness of the cell bottom, the particles
are performing Brownian-like motions in the horizontal plane. By imaging with a high speed camera
on the area S0 (5 × 5 cm) the trajectory of each particle is reconstructed. When the external vertical
magnetic field B0 is increased, each sphere behaves as an induced dipole. In first approximation, two
particles separated by a distance ri,j interact according to the repulsive potential Ui,j = 4π

µ0
B2

0
(a/2)6

r3i,j
.

The parameters of our experiments are the area fraction φ = N πa2

4S0
(with N the numbers of balls imaged

on S0), the mean kinetic energy per particle Ec = 〈 m2N
∑N
i=1 v

2
i 〉 (with m mass and velocity vi of

c© Non Linéaire Publications, Avenue de l’Université, BP 12, 76801 Saint-Étienne du Rouvray cedex



2 M. Berhanu et al.

particle i) and the mean magnetic energy per particle Em = 〈 1
N

∑N
i=1

∑N
j=i+1 Ui,j〉. The dimensionless

number ε = Em/Ec quantifies the ratio between interaction strength and kinetic energy. B0 is varied in
[0.11, 430]G corresponding to ε ∈ [10−4, 1.5×103]. Each run is repeated five times. After an equilibration
time of 100 s, measurements are recorded during 3.85 s. As observed previously [1], in the center of the
cell, the dimensionless particle density φ decreases with ε (Fig. 1 (b)), because particles are concentrating
on the non repelling cell boundaries. The crystallization towards a hexagonal crystal is monitored by the
hexagonal order parameter |Ψ6| = |〈 1

nk

∑nk

k=1 ei 6θjk〉| (the sum is performed on the angles of the first
neighbours of one particle and averaged over the particles and over the time). |Ψ6| is of order 0.4 in
the granular gas phase to reach 0.9 in the hexagonal crystal phase. The transition is located at ε ≈ 62
(Fig. 1 (c)), corresponding to a maximal susceptibility, of this order parameter.
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Figure 1. (a) Experimental setup. Snapshots (1) (ε ≈ 0), (2) (ε = 16.2), (3) (ε = 283). (b) Area fraction φ as
a function of ε = Em/Ec. Dashed line, area fraction computed on the totality of the cell. (c) Hexagonal order
parameter |Ψ6| versus ε. The black dashed line at ε = 62.4 marks the transition between the granular phase and
the hexagonal crystal phase.

To characterize how injected energy is transferred through the scales to build a stationary out-of-
equilibrium state, a convenient method consists in studying the statistical properties of particle velocity
field in spatial Fourier space. Velocity correlations at a particular wavenumber k appear naturally as
a spectrum amplitude at the scale k. We thus introduce the longitudinal current correlation function
Jl(k, t) and the transverse current correlation function Jt(k, t), defined as [3, 4]:

Jl(k, t) =

〈
1

N

N∑
i,j=1

(k̂ ·vi)(t) (k̂ ·vj)(0) e ik[ri(t)−rj(0)]

〉
, (1)

Jt(k, t) =

〈
1

N

N∑
i,j=1

(k̂× vi)(t) (k̂× vj)(0) e ik[ri(t)−rj(0)]

〉
. (2)

k̂ is the unitary vector directed along k. 〈 · 〉 denotes a temporal average. These functions are computed
on a grid (kx, ky) of size 50 × 50 on the interval 0.0624 < ‖k‖ < 3.12 mm−1. Then assuming system
isotropy, we define the angular averaged current correlation functions: Jl(k, t) = (2π)−1

∫ 2π

0
Jl(k, t) dθ

and Jt(k, t) = (2π)−1
∫ 2π

0
Jl(k, t) dθ.

2 Spatial spectra, distribution of energy over spatial scales

The values of Jl(k, t) and Jt(k, t) at t = 0, are respectively the structure factor of longitudinal
velocity modes and of transverse velocity modes and can be interpreted as spatial power spectra as they
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provide the kinetic energy distribution over the spatial scales. A flat spectrum as a function of k denotes
equipartition of energy over the modes. Following the fluctuating hydrodynamics theory approach, for an
out-of-equilibrium dissipative granular gas, Jt(k → 0, 0) = 2Tb and Jt(k ≈ 2π/a, 0) = 2Tg [4, 5], where
Tb is the “bath” temperature and Tg ≈ Ec/m the usual granular temperature (these temperatures are
defined by analogy with the physics of molecular systems). Due to the collisions at the grain size, in a
dissipative granular gas, Tb is assumed larger than Tg. In our experiment, we observe that Jt(k, 0) and
Jl(k, 0) are nearly flat (Fig. 2 (a)), except at the three smallest wavenumbers, where higher values are
recorded. A plateau at large scale is not really visible maybe due to the lack of resolution in k. We measure
the temperatures Tg as the average of Jt(k, 0) on the five last values. The evolution of these temperatures
as a function of ε are displayed in Fig. 2 (b) and compared with the usual granular temperature Ec/m.
We find that Tg ≈ Ec/m. As reported previously [1], we observe a non monotonous behavior of Tg, which
is maximum for ε ≈ 10. Indeed, a moderate ε reduces the rate of dissipative collision. Then at higher
amplitude of B0, the formation of the hexagonal solid phase limits the horizontal displacements. In the
hexagonal crystal phase, we remark that Jt(k, 0) presents a smooth maximum around k a ≈ 1.5. It is
probably related to the propagation of the waves, which will be characterized in the following.
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Figure 2. (a) Longitudinal spatial spectrum Jl(k, 0) (blue) and transverse spatial spectrum Jt(k, 0) (red) for
few values of magnetic field B0: (+) B ≈ 0 G, ε ≈ 0, (◦) B = 62 G, ε = 8.80, (∗) B = 185 G, ε = 83.2 and
(×) B = 430 G, ε = 1484. For the two first cases, Jt(k, 0) are fitted by the green line curves using Eq. (3). (b)
Evolution of analog temperatures as a function of ε = Em/Ec. Red (◦) granular temperature Tg, Magenta (∗)
Ec/m, Green (×) bath temperature T̃b from fits of Jt(k, 0) by Eq. (3) (see Sec. 3), Blue (�) granular temperature
T̃g from fit (Eq. (3)) only in the granular gas phase (see Sec. 3). The black dashed line at ε = 62.4 marks the
transition between the granular phase and the hexagonal crystal phase.

3 Decay of current functions. Characterization of dissipation.

To characterize the dissipative processes at play in the granular gas phase, we measure the temporal
decay of the transverse current Jt(k, t). In the granular gas phase, the decay is well approximated by
a decreasing exponential ∼ e−t/τ(k), where τ(k) is the typical lifetime of a perturbation at the scale k
(Fig. 3 (a)). In vibrated granular layers, the dissipation is often modeled by the sum of a viscous drag and
of a Coulomb friction: τ−1(k) = ν k2 + γb [4], with ν a kinematic viscosity and γb a friction coefficient.
This hypothesis appears valid in our measurements in the granular gas phase only. In the solid phase,
the correlation functions are mainly oscillating and the exponential fits become questionable. ν rescaled
by a2 and γb are plotted as a function of ε in the granular gas phase (0 < ε < 62) (Fig. 3 (b)). For this
set of experiments, the dissipation appears dominated by the friction coefficient. A characteristic length
ξ = (ν/γb) of order 0.3 mm can be defined. This value is considerably smaller than the one found in
Puglisi et al. [4] (without magnetic interactions, without lid, for stronger agitation and for varying area
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Figure 3. (a) Temporal decay of Jk,t, for various k (from top to bottom) for ε ≈ 0. Dashed line, corresponding
to exponential fits defining the dissipative time τ(k). The behavior is similar for larger values of ε in the granular
gas. (b) Evolution with ε of dissipative coefficients: green ◦ friction coefficient γb and black � rescaled kinematic
viscosity ν/a2. (c) Rescaled particles diffusion coefficient D/a2 plotted as a function of Tg/(τ(1/a) a2). Each point
corresponds to a value of ε for ε < 62. The dashed line is the line y = x.

fraction φ). The fluctuating hydrodynamics theory interprets this length as a spatial correlation length
of excitations, which controls the shape of the transverse velocity structure factor Jt(k, 0) [4, 5]:

Jt(k, 0)

2
= T̃g +

T̃b − T̃g

1 + ξ2 k2
. (3)

In the granular gas phase, our measurements of Jt(k, 0) are well fitted by Eq. (3) (see Fig. 2 (a)), providing
an estimation of the bath temperature T̃b and of granular temperature T̃g. The difference T̃b−T̃g quantifies
the distance to the thermodynamic equilibrium [4, 5]. In Fig. 2 (b), we compare as a function of ε these
temperatures. The distance to equilibrium T̃b − T̃g decreases with ε to vanish at ε = 17 close to the
maximum of Tg. Then T̃g becomes larger than T̃b denoting an inversion of the slope of Jt(k, 0). Due to
the magnetic repulsion, large scale excitations become likely unfavorable. We note that T̃g differs from
Tg and from the usual granular temperature Ec/m.

Finally, we examine briefly the link between diffusion and dissipation. The self-diffusion coefficients
are obtained for each experiment by fitting the mean-square displacements of particles 〈(ri(t) − ri(t =
0))2〉 = 4Dt. The standard diffusion process remains valid in the granular gas phase until approximately
ε < 50. By analogy with the Einstein relation, we show experimentally:

D

a2
≈ Tg

τ(a−1) a2
=

Ec

(ν a−2 + γb)ma2
. (4)

This identity is particularly true for the points corresponding to the increase of Tg with ε and a little less
when the system approaches the transition threshold. This result suggest that the fluctuation dissipation
theorem holds in a dissipative granular gas, when the dissipation coefficients are estimated from the
velocity correlation functions.

4 Spectra of excitations, dispersion relations

The dynamical properties of the system are now studied by computing the spatiotemporal velocity
spectra in the wavenumber–frequency (k, f) space. From the Wiener–Khinchin theorem, the angular
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Figure 4. Longitudinal and transverse velocity spectra as a function of the rescaled wavenumber k a and the
frequency f . In colorscale log10(Sv(k, f)). (a) Svl(k, f) for ε ≈ 0. (b) Svl(k, f) for ε = 83.2. (c) Svl(k, f) for
ε = 1484. (d) Svt(k, f) for ε ≈ 0. (e) Svt(k, f) for ε = 83.2. (f) Svt(k, f) for ε = 1484. Black thick line: theoretical
dispersion relation for point dipoles [6]. Red line: experimental dispersion relation from local maxima. Black thin
line: linear fit of experimental dispersion relation. (g) Experimental sound velocities extracted from the dispersion
relations (see text). + blue, longitudinal, linear fit valid in the granular gas phase. ◦ red, transverse, linear fit.
∗ cyan, longitudinal sound velocity from experimental estimation of ωD. × magenta, transverse sound velocity
from experimental estimation of ωD. Black CLth theoretical longitudinal sound velocity with the experimental
parameters. Green CTth theoretical transverse sound velocity with the experimental parameters. Black dashed
line at ε = 62.4 the transition between the granular phase and the hexagonal crystal phase.

averaged velocity power spectra are deduced from the temporal current correlation functions by a Fourier
transform:

Svl(k, f) =
1√
2π

∫ T

0

∫ 2π

0

Jl(k, t) k dθ e2iπft dt and Svt(k, f) =
1√
2π

∫ T

0

∫ 2π

0

Jt(k, t) k dθ e2iπft dt

Some typical longitudinal and transverse velocity spectra are displayed in Fig. 4 for ε ≈ 0 (granular
gas), ε = 83.2 (transition domain) and ε = 1484 (hexagonal crystal). We notice in all measurements a
strong peak around f ≈ 46 Hz and k ≈ 0. This global oscillation could be attributed to a vibration
mode of the cell. In the granular gas phase, the maxima of Svl(k, f) when k is varied follows a line
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crossing zero, defining a dispersion relation of compressive longitudinal waves (Fig. 4 (a)). In contrast,
the maxima of Svt(k, f) are located in f = 0, revealing absence of transverse waves as expected in a fluid
phase (Fig. 4 (d)). By increasing ε, as the system becomes more rigid, evidence of transverse waves disper-
sion appears (Fig. 4 (e) and 4 (f)). The dispersion relations differ from simple lines and become dispersive.

However, the dispersion relation of 2D system of point dipoles distributed in a hexagonal lattice can
be analytically computed in the harmonic approximation (small displacements) [6]. In the solid phase,
the theoretical dispersion relations are compatible with the experimental spectra. We note that at high ε,
the large scales are not well energized, making a linear fit in this area questionable. To determine the
sound velocity, which is given by ∂ω

∂k when k → 0, in the solid phase, we estimate the top of the exper-
imental dispersion relations to get the characteristic pulsation ωD. Theoretically, ωD = B0

√
2 a

2
√
mµ0 φ5/2

[6],

then the longitudinal and transverse sound velocity read: CLth = 1.283ωD a
2
√
φ

and CTth = 0.387ωD a
2
√
φ

. The
corresponding experimental velocities (∗ and ×) are reported in Fig. 4 (g) as a function of ε and com-
pared to the theoretical estimates (black and green lines, valid only in the solid phase). Surprisingly, the
agreement is better for moderate values of ε. The linearity of the sound velocities with B0 (not displayed)
is also well verified. The transverse sound velocity is zero in the granular gas phase and becomes non
zero at ε = 17, which is the beginning of the transition towards the hexagonal crystal phase and smaller
than the threshold at ε = 62.4 (maximal succeptibility of |Ψ6|), which provides a supplemental criterion
differentiating granular gas and crystal phases. The elastic coefficients could be then measured from the
sound velocity estimations without perturbing the system.

5 Conclusion

The dynamical analysis of this system provides a good macroscopic illustration of phenomenon usually
observed in solid state physics. In the granular phase, energy is mediated by compression longitudinal
waves, whereas in the hexagonal solid phase, energy transfers between particles occur by the equivalent
of phonons, whose dispersion relations can be analytically computed. Similar observations have been re-
ported in hexagonal crystal of charged particles (dusty plasmas) [7], with a different interaction potential.
The main difference with microscopic systems is the out-of-equilibrium character of our experiment. In
the granular gas phase, the fluctuating hydrodynamic theory explains well the deviation from energy
equipartition due to the dissipation. As ε increases in the granular gas phase, we quantify the decrease
of the distance to equilibrium as it was stated in our previous work [1] for the quasi-elastic phase.
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